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On the Behaviour of Analytic Functions on Abstract
Riemann Surfaces

By Zenjiro KURAMOCHI

In this article we shall study mainly the structure of the covering
surface, over the w-plane, of a function which is meromorphic on an
abstract Riemann surface F. As a theorem of representation, we shall
prove

Theorem 1. Let F’ be the remaining surface complementary to a
compact subset F, of F. Then, if FEOG and € Oxg (Oyp = Ougp), we
have F’¢€ O 450 ,4p).

Proof of the former part. Since F¢ O, there exists a positive
bounded harmonic function w(p) on F’ such that «(p) =0 on OF>,
Let F’~ be the universal covering surface of F’. We map F’” conform-
ally onto |z|< 1 by z2=¢(p). Assume F’¢ 0,5, then there exists a
- bounded analytic function A(p) on F’. Consider w(2) = o(p~'(2)) on
|z|<_1. Then there exists a set E of positive linear measure on |2|=1
such that »(2) has angular limits larger than 88 >0) on E. Let {&,}
be a sequence of triangulation of the w-plane such that &,,, is a
subdivision of &, and becomes as fine as we please when #n — .
Denote by {Af}® (=1, 2,-.-) the triangles of &,. On account of
Fatou’s theorem A(p(2)) has angular limits almost everywhere on E.
The subset of E, where A(z) has angular limits contained in A! will
be denoted by E.. Then every E{ is linearly measurable. There exists
at least two Ef, EY such that E!/\ EY =0 and both mes E! and mes
E% are positive. On the contrary, suppose for every n there exists
i(n) such that mes E!=mes E. A(2) must be a constant contained in

/3.;\ AP, Let U(z) be a harmonic function in |z|< 1 such that U(z) =1

1) Og, Ogp, Oup, Oup, Oap and Oap are the classes of Riemann surfaces on which the
Green’s function, non-constant positive, bounded, Dirichlet-bounded, bounded analytic and
Dirichlet-bounded analytic function does not exist respectively.

2) We denote by 9S the relative boundary of S with respecto to F.

3) 4% are made half open so that they are mutually disjoint for fixed #.

4) M. Tsuji: Theory of meromorphic function in the neighbourhood of a closed set of
capacity zero. Jap. Journ, 1944,
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on E} U(z) =0 on the image of OF, on |z|=1 and U(z) =—1 on E%.
U(z) can be considered on F, since it is automorphic. Let {F,}® be an

exhaustion of F and put F+=8{p: U(p) g%} , F-=¢ {p: U(p)g—%} .

Then neither OF* nor oF - intersects 9F,. Let {V,(p)} be a sequence
of harmonic functions in F, such that V, (p)=1 on 9F,/ N\ F* and
Vip)=—1 on oF,—(0F, \ F*). Then we can® easily define a non-
constant bounded harmonic function V(p) from a sebsequence {V,(p(}
which converges uniformly in F. Hence F ¢ Oyj.

Proof of the latter part. Assume, there exists a Dirichlet-bounded
analytic function A(p) on F.

Case 1. The domain which is covered by w= A(p) is dense in the
w-plane. Since 9F, is compact, w = A(p) (p€ OF,) is bounded. Let M
and N be the maximum and minimum of Re A(p) (p€9F,). Then
there exist at least two components of F on which Re A(p) = M’ and
Re A(p) < N’ respectively, where M >M, N~ >N. We denote them by
F* and F~. Then neither OF* nor OF~ intersects 0F,. Consider Re
A(p)—M and Re A(p)—N’ on F* and F~. Then Re A(p)—M' =0 on
oF*, Re A(p)—N’ =0 on 9F~ and Dy +(Re A(p))< oo, Dp-(Re A(p))<co.
Let {F,} be an exhaustion of F and {V,(p)} be a sequence of harmonic
function in F, such that V,(p) = Re A(p)—M on oF, N\ F* and =0 on
oF,—(oF, N\ F*). Then we can define” a non-constant Dirichlet-bounded
function on F from uniformly convergent subsequence {V, ()}.

Case 2. If A(p) does not cover a domain, take a point w, in it.

Then we see easily DF,(TP)I_—ZE»>< oo and !m— <. We can

suppose without loss of generality that D (A(p))< M,< + o and |A(p)]
<_M,<+co. We map the universal covering surface F’* of F’ con-
formally onto [2|< 1 by 2= @(p). Denote by E, the image of 9OF, on
|z]=1 and by E, the complementary set of E, on |z|=1. Since
F ¢ O, there exists a bounded harmonic function o(p) on £ such that
o(p) =0 on 9F, and w(p '(2)) =1 almost everywhere on E;. In the
same manner as above, we can find triangles A; and two subset E;
(¢ =1, 2) of positive measure of E, such that A(p)= A(p(z)) has angular
limits, on E,, contained in A,. By a suitable choice of the coordinate
axes we can suppose without loss of generality that §, < Re(w) <3,

5) In this article we assume {F,} has a compact relative boundary {0F,}.
6) A. Mori: On the existance of harmonic functions on a Riemann surfaces, Journal of
the Fac. Univ. Tokyo, 1951, 247-257.
M. Parrean: Sur les moyennes des fonctions harmoniques et analytiques et la classi-
fication des surfaces de Riemann, Annales de Fourier. 1952, 1-95,
7) See 6)
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(we A,), 8 <Re(w) <3, (we A,) (5,<8,) and mes E, >0, mes E, >0.
Let U,(p) be a harmonic function on F’ such that U,(p) = Re A(p) on
oF, and U/(e~'(p))= N, on E,;, where N,<_N <Re A(p) < M,. Then

F,(U(p)) <M, <. Put U(p) =Re A(p)—U(p) (== constant) and

—e{p U(p)>8+8 N}and F- —e{p U(p)(m Nl}. Then
OF* does not intersect 9F, and Dp+(U,(p)) < M, < co. Denote by C, the
ring : p<|2|< 1 (p<_1). Since U,(p) has angular limits between §,—N,

and §,—N, almost everywhere on E,, we can construct an angular
domain D which contains an end part of every A(f): | arg(l—e "z)|<_

% (¢°c E/ C E,, mes E/ >0) and find p such that §,—N,+&> U,(z) =

8,—N,—¢& in DN\C,, where «S<§3%82 Now D N\ C, consists of a finite

number of domains, then there exists a domain D’, such that D’ has a
subset E,” C E,’ of linear measure positive on its boundary and that
the boundary of D’ is rectifiable. Hence there exists a non-constant
bounded harmonic function /(z) in D’ such that «’(z) = 0 on the bound-
ary of D’ except E,” and 0 < o’(2) < 1. Let {F,} be an exhaustion of
F and o,(p) be a sequence of harmonic function in F, N\ (F’—F7) such
that o, (p) =0 on OF,+(OF* N\ F) and =1 on oF, "\ (F'—F"). Then
for sufficiently large » the image of OF, is contained in C, and the
image of OF,+ (oF* N\ F) does not fall in D/(CC C,). Consider o,(p) in
D’. Then we see w,(p)=> o'(2), whence w(p)=Ilim 0, (p)==0. Let

{V.(p)} be a sequence of harmonic functions such that V,(p) is harmonic
in F,, V.(p)=Uy(p) on 9F,N\F* and V,(p) =2 '2*3 —N, on 9F,—(3F,
NF*). Then we can define a non-constant Dirichlet-bounded harmonic

function® as above. Hence F ¢ Oyp=O0uzp-

IVERSEN’s PROPERTY. Let F be an abstract Riemann surface, {F,}
be its exhaustion and w,(») be the harmonic measure of 9F, with respect
to F,—F,, i.e., o,(p)=0 on 9F, and w,(p)=1 on 9F,. Denote by °C,
the niveau curve of w,(p) with height p.*C, consists of a finite number
of analytic curves PJ}, °I2, ... °lK»n Put °PL!= Slaaw"ds and A, (p)=
m?x PLE. "

Theorem 2. If
Pn_dp

lim 516480 AP gy = oo,
0

N=o0

8) A. Mori: A remark on the class of Oygp of Riemann surfaces, Kodai Math, Semi.
Report, No, 2 June 1952, 57-58,
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then every connected piece of F over |w—w,|<_S covers every point except
possibly a null set of E z°.

We can prove the theorem similarly as in the previous'®.

Pn dp
ReEMARK. Pfluger™™ proved, if limS eSO An(p) dp,=co, F€ Oyp.
0

n=oo

Let F be a Riemann surface of finite genus. Then F can be mapped
conformally onto a subsurface F of another closed Riemann surface F'*
of the same genus. Suppose Fe O,; is represented as a covering sur-
face F, over the w-plane by a mapping function w=f(p).

Let V,(w,) be a connected piece of F, over the circle |w--w,|<p.
Then V,(w) has a finite or enumerably infinite number of analytic curves
«a, lying on |w—w,|=p as its relative boundary. Let f *(«,) be the
image of «, on F*. Then > *«,) and a subset of (F*—F) will be a
finite or infinite number of continua which are denoted by b,i=1, 2, ---).
b; and their limit points enclose a domain V such that V> f'(V,(w,)).

Theorem 3. Let F be a Riemann surface of finite genus and F*—F
(Fe 0,z be a set of linear measure zero. If the number of continuum
boundary components of V is finite, the connected piece V,(w,) covers
lw—w,|<p except possibly a null set of E ,p.

Proof. We see that every b; consists of finite or an enumerably
infinite number of f !(«,) and a subset of F*—F. Let 8 be a subarc
of b, and let us draw a rectifiable curve ¢ connecting two endpoints of
B such that B and y encloses a simply connected subdomain N of V.
Let G be a simply connected domain such that GON and the distance
between ON and 9G is positive. We map conformally G onto |z|< 1,
and N onto |§|<1 by z2=¢(p) and E=n(p) respectively. Since the
composed function 2= '(p))=2(£) is bounded in [&|<’1, 2(§) has
angular limits and angular derivatives (containing) infinity. Denote by

d;if) =oco and the angular domain: |arg

(1—e""’§)l<% at ¢ by A(e). If E is a set of positive linear measure,

E the set on |£|=1, where

we can find a closed subset EY(C E) of positive measure such that

d%(;—) tends to the angular limit oo uniformly as &—e®c E’ from the

9) Eap is the boundary of a domain € Opp on the w-plane.
10) Z. Kuramochi: On covering property of abstract Riemann surfaces, Osaka Math.

Journ., 6 (1954).
11) A.Pfluger: Uber das Anwachsen eindeutiger analytischen Funktionen auf offene

Riemannschen Flichen, Annales Acad. Fenn., 1948,
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inside of A(f). In usual manner we get a domain D(C |£|< 1), which
contains an end part of every A(9) for e®c E’, and is bounded by a
rectifiable curve C consisting of E’ and segments lying on the boundary
of A(0) (¢°c E’) and further an analytic curve. Denote by &; points in

|£]< 1 where dz:oo. We can suppose 'Z;\\)l (£e€ D), therefore the
|

dé
Lo . S(dz dz
characteristic function 7T (Eff) of dE

2IG(E, £)< oo, where G(§, &) is the Green’s function of D with its pole

at &. We map conformally D onto |{[< 1 by £=&(). Then E’ is
transformed onto a set E, of positive linear measure on |{|=1. Since
D has a rectifiable boundary, we can construct a domain D’ containing

is bounded, which implies that

an end part |arg(1—e"’9§){<% for e’®c E,/, where E,/ is a set of posi-
tive linear measure on which log]lg—g—Z,G(g, ¢,)=U(¢) tends uniformly

to co, when ¢ tends to E’ inside D’. It follows that U(¢)=co. Hence
E is a set of linear measure zero.

If BN\ (F*—F) is mapped onto a set E, of a positive measure on
|€|=1, we can find a set E/(C E,) of positive measure and we con-
struct an angular domain D, containg the end part A(f) for ¢®c E/ and
!ng< M< oo on the boundary
of D,. We see at once ¢ Y(C+ M) is rectifiable. On account of Ries-
z’s theorem E, corresponds to a set of linear measure positive of £.
This contradicts our assumption. Since b; is covered by a finite number
of subarcs, we observe that >0,/ \(F*—F) is a set of harmonic measure
zero with respect to V.

If V,(w,) the connected piece, on |w—w,|< p, does not covers a
set larger than E,,, there would exist a non constant bounded analytic
function A(w)= U(w)+iV(w) such that Uw)=0 on |w—w,l=p. If
A(p)=A(fY(p)) regular throught V, A(p) must be a constant, because
U(p)=0, whence there exists a closed set E* where A(p) is not regular.
Since E*(C(F*—F)) is totally disconnected, we can find a domain
G(C_ V) containing E**(C_ E*) such that oG has a positive distance from
S+ E**. We can find a non constant harmonic function U(p) by
Neumann’s method such that U(p) is bounded in F*—G, U(p)— U(p)
is bounded and the conjugate function of U(p) is one valued and bounded
in G—E**  Since the genus of F* is finite, we can construct a non
constant bounded analytic function on F from U(p) with a linear form
of Abel’s first kind integrals. This contradicts the fact Fe O,5. Hence
V,(w,) covers |w—uw,|<_p except possibly E,,.

having a rectifiable boundary C such that
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Remark. We constructed a covering surface F'® over the z-plane
such that F satisfies the conditions of theorem 3, i.e., 1°) harmonic
measure of (F*—F) is zero with respect to V (above defined) of every
connected piece. 2°) F is mapped conformally onto a domain on the
w-plane, whose boundary is a set of linear measure zero on the real
axis, and we proved that F has not Gross’s property. Hence the con-
ditions of the theorem are sufficient to have Iversen’s property but not
Gross’s property for F.

GRrROsS’s PROPERTY. It is well known

Theorem 4.'® Let z=2z(p) be a meromorphic function on an abstract
Riemann surface € O,. If we denote by p= p(2) its inverse function and
if p(z) is regular at z,, we can continue z(p) analytically on half lines:
2=2,+7e"%0 <7< o) except for 0 of angular measure zero.

We have, however,

Theorem 5. A Riemann surface of Ogp has not necessarily Gross’s
property.

In order to prove the theorem, it is sufficient to construct a Riemann
surface which has not Gross’s property but on which no non-constant
single-valued positive harmonic function exists. As preparations, we
shall prove some lemmas and define notations as follows.

Lemma 1. Let G be a curvilinear rectangle on the z--(=x+1y) plane
whose sides are C,: —a<x<a, y=0, C,: x—a=p(y), (0<y<b), y=y,
C: pb)+a=x=@pb)—a,y=>b and C,: x+a=q(y), y=y0b=y=0),
where p(y) is a continuous function such that p(0)=0. Suppose a positive
harmonic function U(z) on G such that U)=M on C,+C, and U(z)=0
on C,+C,, then there exists a curve connecting C, with C, on which U(z)

is larger than Mw(a, b), where w(a, b) is the value at w:l—zb f the har-
. . <> > .

monic measure of sides (p, pD)+(ps D,) with respect to the rectangle,

on the w-plane with vertices such that p,: w=—a, p,: w=a, p,: w=

a+1ib and p,: w=—a~+1b.
Proof. We map G conformally by the function z=f(w) onto a

rectangle with vertices ¢,: w=—a, ¢,: w=a, ¢,: w=a+i¥ and ¢,: w=
—a+1ib’. Then 2a _<__Sa:j¢igﬂdu (w=wu+1v), and by Schwarz’s inequality
we have

12) See 10).

13) R. Nevanlinna : Eindeutige Analytische Funktionen, 1936.
Z.Yujobo: On the Riemann surfaces, no Green’s functions of which exists, Mathe-
matica Japonica, No. 2 (1951), 61-68,
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of

5 dudv = 4a%0’ .

v (a+e
4a%b < 2aj X

0J—-a+¢®

It follows d<¥. Consider U(z) in the w-plane, then we see that
U(f(w)) = Mw(a, ') > Mw(a, b) on the segment w=u+'7b, (—a <u<a).
If we denote by / in the z-plane the image of the segment, / is the
required curve.

NotatioN 1. The number P, (=2, 3, ---; lim P,_,=o0).
21+%+---+2,+,1
Put rn=k7—4~* , Sp =r"“6_ s and let R, be a ring such that
Vyoot »g—sn,,glz[ <r,— gsn and M, be the module of R,: M,=log
1
11-6-22"\ . . .
(- T ) . e transformations: R,—the rectangle with vertices
6—22"""
(==, 0), (=, 0), (=,iM,), (—=,iM,) in the &-plane — the upper z-half
plane <A=——%€ , B=-1, D=1, E= ll{> — the unit circle of ¢-plane
are carried by £=log z,
. 1., .
(1+z)n+v_(1—z)
f — lS" — ¥2dli ==, = K
B Jon/ (1—7?)(1—K*)

(1—i)q+V%(l+i)

(1
respectively. We have o(z, M,)=¢ i \M">/ 32 by some calculations. Put

1
Py T oz, M)

NotATION 2. /(1 is an integer) (n=1, 2, ---; lim p,/ =o0).

Let {I,,} n=1,2,.--;v=1,2,3,..-21) be slits such that 7,—s,<
2| <L 7,+s,, arg z=22% and denote by R,/ the ring such that 7,_,
—%sn_lglz[grn+%sn and U(z) be a harmonic function in R, such

28n 2¢n—1

that 0 < U(z) < Pri3(8>0) and U(z)=0 on 2 L+ Z I'_,. Then there

exist {,’} such that maximum of U(z) in R, is smaller than % for
Pon = /s oy 2= fin_y, (Fig. 1).

NoTATION 3. p;, and u, (@, and u, are integers) (n=2, 3, -;
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lim ll,;l/_].:()())'

" Let U(z) be a harmonic function as above. Then U(z)= 21;\ Ue)
vORn

55/22)@‘) ds(¢), where g(z, ¢) is the Green’s function of R, with pole at

2. Since %(z §) is continuous function of z for fixed ¢, there exist

on(&)
{m",} such that |U(zl)—U(zz)(<% for every pair z, and z, lying on the

Tut 7 ™

circle |z|= 5 »-t such that |arg z,—arg z, |<2% — for p, ,>=>pwp/ . Put’

Mn:MaX (u'n/’ /l'n//)'
NoraTioN 4. The number N, (N, is an integer) (=1, 2, 3, ---).
Let U(z) be a harmonic function on R, such that 0 < U(z) < P}i¢
on R/, Uz < 2 on >'1,.,,, and U(z):<,;7?_—1 on >} I, except possibly

a set of measure smaller
than length of 1, ,,/N,
length of I,,/N” respec-
tively. Since, if N and
N"=co, we have Uz) <
%, on R, by Notation 1,
there exist {/V,} such that
U(z)g% on R, for N
>N,,, and N”">=N,,
(Fig. 1).

Lemma 2. Let G be
a domain in the z—plane

with boundaries consisting Fig. 1
of analytic curves «,, 4, =+, Yus> va- Map G conformally onto a ring Ry
“in the t—plane such that 1 <|¢| <M so that Yis Vs Voo *°* > Yna MAY COVVe-

spond to |&|=1, lé‘.l:eSm and radial slits respectively in this ring. Let
U(z) be harmonic in G with boundary value @,(2) on v, and @) on «,
respectively, where p(z) (i=1, 2) is a continuous function of z. Then

DAU(E) =D UEN = 5o | 1900~ ,0)]700,
where U(L) and p,0) (=1, 2) are transformed functions from U(2) and
(/)i(z)'

Proof. Let 7(£) be a harmonic function on R, such that =(&)=,(6)
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on [¢{|=1, T({)=¢,() on |§,’|—eSm and ’—O on radial slits. We can
prove easily D(U(&)) = D(+(¢&)).

Now we divide the ring into sufficiently narrow circular regtangles
A0 1<¢) <eM 0,<arg < 0,,, (=1, 2, .-, m) such that Max ¢{(¢)—
Min ¢{(0) g% and Max @i(6) —Min @§(9) g%, where Max ¢{(0), Min ¢} (0)
is the maximunm and minimum of ¢@i0) (=1,2, 6;,<6<86,,,)
respectively.

Let {A/} and {4/} be A; such that Max ¢{(d) <Min ¢§(¢) and
Min, ¢/(6) = Max ¢{(f) respectively and {A;”} be rectangles contained
neither in {A/} nor in {A;/}. If A;c {A/}, let Ui¢) be a harmonic
function in A; such that U{)=a,(0) on v, U,{)=w,0) on v, and

8U(§) =0 on two segments : 1<|§|gem, arg {=40;, 1g|§|gegﬁ, arg

¢ __9] . and on radial slits in A4;. Let U*(¢) be a harmonic function
in A; such that U¥*()=Max ¢{(0) on v, U*()=Min@}() on v, and

a(g*(g) =0 on boundary segments and radial slits. Since U A6 —U*&)<0

and ,ﬂ (§)<O on «, and U(g‘)—U*(é’)>O and oy, n(§)>0 on v,, we
have D(U(©), U{)—U§) =0. Clearly Di(Upsen=""97| Max
91(0) — Min 91(0)|* and Da U(E)) = DafT,(£)) = D4,(U,*(§>)+DA,(U,(§>—

UXE) +2Ds,(U©), (U6)— UME) =Dy U §)) =
—9;)

‘mjejse\en l(6)—

@,(0)|°d0— 40 ’2“ If A;€¢ {A/”), we can prove similarly the above
inequality. If A;e€ {4/}, let U*(&)=0. Then

1 — 2 _4(9'4—1"9;')
DU =0z 5o (o) —p0)do— 200”0,
Hence
DieUEN = 3 (5t oy ooy, | PO —0,(01200)

Let #—>oc0. We have the lemma.

Lemma 3. Let R and R, be rings 1 <|L|<eP with the same slits
{{S¥*} (=1, 2,) such that

B 28 b
s<|t|<es,arge =2 (k=1,2, -, ])

[\

;N
~ D~
q

58 58
Skrev<|f|<er, argl =
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Connect R, with R, on {iS¥}, (i=1,2; k=1, 2, .-, /) crosswise. Then we
have two-sheeted Riemann surface R. Denote by ¢ a point such that ©
has the same projection as ¢ and let U(L) be a single-valued positive
harmonic function on R such that UE)<P on R. Then

[ V(O |=|U©)—-UE)|<\P

at every point whose projection lies on |¢ |~eZ, where N (<_1) depends

B

continuously on the ratio 7 only.

Proof. Map R conformally onto a strip R, by n=Ilog ¢ and consider
V(§)= V(log ) on this strip. Then V() is harmonic and vanishes at
every end points of the image {{S*} of {’S*}, and has the same absolute
value with opposite sign on two sides of every {iS*}. Now we fix 7.

Let q,/(\J be two points facing each other on two sides of {{S*} and let

%gk} be a set of point /& on {iS*¥} (one of ¢ and /(\1) such that égiz(i;z)?])
og(q, n)

=2 .

= 5n(q) =0

Let V*() be a harmonic function on R, such that V*()=P on
Re =1, Re =/ and {,,SAk} and that V*()=0 on the remaining

. g(q, og(q, n) — *(E)=
boundary of R,. Since ja R, ds(q)=2=, we have V*(§)= anaRn s

P%a‘%@ds<x(n)P, om,)<1). On the other hand, V()= V*(n+27’5)
and A\(y) is continuous with respect to 5. Then we have V*(5) <\

P(\) on Re 77:—2/2, By maximum and minimum principle, we have

| V()| <| V*()|< AP, where A depends continuously on the ratio J? .

In the following we fix two bounds M, and M, (Ml<fli< M) so that
A may be always smaller than A, (A,<1).

A) In the z-plane denote by J,, (# is fixed; v=1, 2, -.-, 2¥n) a circular
rectangle, containing I,,, with sides 9/,, as follows:

2 7T 2 14
'z]:rn——&s‘n, %—22.2‘141 < arg z S 27:n 22-7;1@;’
7'”—36'” é]zlgrn“,_ssn)argz:‘z_z‘g—zz,—%;’
2 27:1)
|z|=7,+3s,, % 5%, o 2,”, sargz =< Din 22,7t2un’
rn—33 |zl~<—rn+3sn’argz_27tu+ i
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Let L,,, L,, be half straight lines such that

. _ 2av 4
L,: 0<|z|<eco, AG 2= 5+ T — 5o

’. oo _ 27y 7 .
L,,: 0<]z|<< ,argz_T+n+m (Fig. 2).

Ly, t+Li,

Fig. 2 Fig. 3

We denote by G,, the domain with boundaries L,,, L,,, > 9],;

idv, v/

(u'=u+%> and I,,, and map it conformally by w=g¢(z) onto the ring

1< |w|ges’m5‘n so that L,,+L},, I,, > 9], may be transformed onto
iFV

]w]:es’mw, |w|=1 and radial slits ch O, Tespectively. In this

mapping any measurable set of positive angular measure gZA on

kn

|w|=1 mapped onto a measurable set of positive linear measure <
length of I,,/N, on I,,, where «, depends only on the mapping function
w=gp(2) and does not depend on the situation of the set on |w|=1.
And the doubly connected domain bounded by 9J,, and I,, of module
MP is mapped onto a domain bounded by |w|=1 and the image
a]n‘u(w) of ]nv-

Let ¢ be the distance between 9], and the point w=0.

Put

r_ M
Pn = ok (n+ 1y P38

(1)

We choose «, so that e*» <e» and e <e» (Fig. 3).
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Let s, and ¢, (n=1, 2, ---) integers such that

s Pz+28 Qun

Zrn + 1 (W — i) = D (2)
2Py = L "

In the ring: 1< |w|<e*, we define, two systems of rings {*Ci},
(a=1,2;n,» are fixed; i>j,1, j,=1,2,---,¢,) and a circle H, as
follows :

Gl 2a,—y(i(—1)+2j—1) = log|w| = 2a,—y(i(1—1)+27),

Cil yii—1)+2j—1) <log|w| < 4 —1)+27),

H

nv *

loglw|=«,,
Y Y <
@tq +1) and Mgln <M, (see lemma 3).
Let {"StT}, (ST}, {S%}, (ST} (n, v are fixed, i=j,4,j=1,2, -,
q,; k=1,2,-,1,) be slits such that {!S?.}, {S7%}, (¥}, {!S7} are
contained in {C:/} and {C‘f,i} respectively, (Fig. 4).

where y=

St 2, —oii— 1)+ 251+ £ ) < log|w] < 20, — (iti=D)+2i =1+ £ ),
27k
arg w =<,
V. 10 / 5 I {d . ;
Sise: 2, =o{ii—1)+2j=1+ 3 ) < log|w] < 2a,— (ii-1)+2i -1+ ),
27k
arg w =",

S 2«y<i(z‘—1)+2j—-1 +%,) < log|w| g«y<i(i—1)+2j—1 +,g) ,
arg w:27k
e . : 1 . .2
J4N 7<z(z—1)+2]—1+-6~> < loglw] gry<z(z—1)+2]—1+€> ,
27k
arg w ==~

B) Let F (1), F(2), -, F, (2%, F 1), F(2), -, F(2%") be 2% leaves
of rings with slits {{’S%,}, {St¥%}, {S’;}'k}, {’S;"}k} (n, v are fixed; i>7, 1,
1,2, q,: k=12 -,1). Connect F(1)and F (1) (=1,2, -, 2%
crosswise on {/S7,}, {S1.}, {51}, {'S1} (n, v are fixed i=1,2, -, q,;
k=1,..-,/,) and call this connection 1-connecting.

2-Connecting is as follows:
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Fn(l) Fn(z) FM(S) Fn(4) o Fnzqn_l—l) Fn(zqnql)

N/ N N
™\ Y™\ ¢ N

Fqy B2 B3 FM@). Fon1—1) F 20

on {,S?;)n S?zlk) S?;k; /S'ln]‘k} .

In general j,—connecting is (7,=1, -+, g,)

Fn(a+1), Fn(a+2)’ ot Fn(2+2j0—2)’ F”(d+2j0—2+1), F”(a+2j0_2+2)’ Tty Fn(a+2j0_1),

F(a+1), F(a+2), - F(a+2/7%), F(a+277%+1), F (a+250%+2), ... | F (a+2%7"),
on {,S"gok» S’inl,ok’ S:nj‘ok’ ,Sﬂok} (n, v are ﬁxed; i=jo:jo+ 1, s
k=1, 2’ "ty ln))
Where a:o’ 2j0_1, 2.2j0—1, ey (2”""1__1)2].0_1.

Then we have 277-gheeted covering surface R,,. Let U(p) be a
positive harmonic function on R,, such that U(p) <PLi$ and T;(P) be

the conformal mapping p«>p, where p and p are points such that p
and p have the same projections and are lying on the leaves respectively
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which are connected by arrows in the above schema. Consider V(p)=
U(p)—U(Ti(p)) on F(1)+l.€‘(]'o) of R,,. Then V(p) is harmonic and
vanishes at endpoints of {'S}.., Stk» S?‘;ok, ’§?}ok} n, v fixed; i=j,, j,+1,-,

q,,k=1,2,..-,1,) and further harmonic on the remaining {’S7},, S7},, S?‘,’k,
‘S?.}. We have by the lemma and maximum principle

| V(p)| < Pridn, on 2¢, ) <log|w| < 2a,—2q, 1,
| V(D) < PriiAf on (4¢,—2)y <log|w| <2a,—(4¢,—2)y,

........................

| V($)| < Priiag» 7" on loglw|=«,.

If we denote by an(l)—ﬁ‘,,(j)l the maximum of |U(p,)—U(p,)|,
where p, and p, have the same projections and lie on H,, of F(1) and
15‘\( j) respectively, we have ]F(l)—ﬁ‘(Zf")]<P,},¢f Anmitt - Taking account
of the property s, and g¢,, we see that there exist at least s, leaves

such that |F(1)-—FA‘(5)]< 1

7+l (i=i1’ ] itn)'

Construction of the Surface.

We mapped G,, by w=¢(z) onto the ring 1< |w]| gesmg'n and
defined slits {’S™,, S™,, S, ’S™,} and H,,. Consider the inverse image
in the z-plane of them and denote them by the same letters. Then
{H,} (n is fixed, v=1, 2, ..., 2*») are approximate ellipses enclosing
{I,.,}, and {83, Sw} G=4,4,i=1,2,,4¢,; k=1,--,1,) lie approx-
imately radially in the approximate ring bounded by I, and H,, and
{’St., St} lie approximately radially outside of H,,. Denote by
F (1) the z-plane with the slits 7,, and {’S;’yvk,S:",vk,S;'y“k,'S;";k} and -
by F,(2) .- F, (277", 19',,,(1), fvm(z) ---ﬁ‘m(Z"m‘l) the z-plane with slits
Sy, Smv., Sm ’Smr), where m is fixed; v=1,2, -, 2%n; {>j,i,j=
1,2 3,--,q,; k=1,2,-.-,1,,. Let F,, be the part of F, such that
0<L|2|L7,+3s,, where F, is the unit circle with {/,,} (n=1,2,.--).
Connect F,, with {F,(1)} on {I,} (v=1, 2, ---, 2¥») crosswise and connect
every F, (1) with F,(/) and FA‘m(l’) (=2 3,2 I'=1, 2,..-, 27»7") on
(S, Sm., ST, ’S™1 in the manner mentioned in (B) (m=1, 2, .-, n).
Then we have a Riemann surface denoted by §,. &, covers the part
|2]| <7,+3s, 14+2%; ... +2% times and covers the part |2|>=7"+3s,
2% 4 ... +2% times. Put \/B,=F. Then F is the required Riemann

surface, (Fig. b5).
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S35t iy Sisier S e

Fup(2) = Fp(3) =+ = F,(29~1)
AN A A
=F,(1) = Fp(2) = - = Fp(29n71)

STk St St S
Iﬂ‘l

Fn(1)

Fig. 5

Proof of the theorem.

Let lz\:rnﬂ—g s, be a circle on F,, which is a dividing cut of
F. If we denote by %, the compact surface which is one of the two
divided by the above cut, then F= \/ %.,. Denote by L, the maximum
of U(p) on ]z[:rn-kgsn on F,. Let U(p)=L, on p, on |z|:rn+gsn
of F,, we see, by maximum principle, that there exists a Jordan curve

C joining two boundary components of the ring rn+gs”§|z|grn “
——g S,., such that U(p)=L, on C. Then by notation 1, there exists

a divinding cut / in the ring such that U( ﬁ):ﬁ—lf‘;’— on/. If limL,=>PL"3
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U(p) must be constant infinity by minimum principle. Hence, without
loss of generality, we can suppose

lim L, <_ P}

(8,—8,_.) is the Riemann surface which consists of the ring, of F,
2n-1

such that 7, +3s,, <|2|<7,+3s, and leaves > ((F, (m) + ﬁ‘n(m)).

(¥,—Bn-) has two circles |z|=7,+3s, and |z|=7,,+3s,, as its
boundary components ¢, and «,’ respectively.

Let T,(p) be a conformal mapping in (¥,—%,_,) p<b, where p is
. . . . . * *
the symmetric point of p with respect to the straight line L, +L.,
X X
such that L, : 0<]z|< oo, argz=27’7\‘ Z . 0<|z|<oo, Liy: arg 2 =

+
2”’“—£(>~=1, 2, - 2“"). Put Uy(p)=U(p)—U(Tp(#)). Then |Uy(p)|

P2
2bn 2 "2
is subharmonic on (§,—3,-,), <P on q,+y, and vanishes at every

point whose projection is on L, +L,,. Let (F,—%...)* be the surface
2vn 2in—1

consisting of 33 J,, of F, and 3 (F(m)+F (m)), and let (§,—F,_.)s be
the part of (¥,—3,_.) which is over the part of the z-plane such that

Fr(1)
Fn(2)
Fr'(1)

2xk T 2k Ve
0 <|z|< oo, —Zp—n+n—mgarg zgw+7z+m

(containing 2”k> , if 1<k< %" _

Opn
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27k 27k 7
0slzl<lon, 9o — 7~ gigm = =g~ 7 gigm
<contammg 227zk> , if %1 < kL 20, (Fig. 6).

On the other hand let V,(p) be a harmonic function on (¥,—%._.),
such that V,(p)=PLi} on the boundary of > ©9J,, and vanishes at

vtk 2
every point whose projection lies on the stralght lines L,, and L},
where L,,: 0<|z|< o, arg z—%€f+ +2 o L,: 0L]z|<oo,
arg 2 = 21?:4 7 — 2-75‘“"'

Since |U,(p)| is subharmonic and the angular domain bounded by

L,.+ L/, contains the half plane bounded by liA and i;k;v\, we have
V()= |U.(p)|, where

k¢x+%ﬁn¢x—%Wnﬁ32mgX>%Wn
k¢x+lﬂa$x+%%"ﬁzdnggm

Bnn - __1 n 1 n - ~ 3 n
ke — 2 e — 20 2 N 2

In order to estimate the value of U,(p) on I, (s=X \+1,-

)Au}Z“—l,x——Zn“+1 o 1,2, -, n—1). We consider V,(#) on
Ink ’ (Flg' 6)-
28n

Let V(p) be a harmonic function on L (J.»—1,,) such that V(p)=0 on

DMz 2¥n

Z v and V(p)=P:i$ on p - Then we have by Dirichlet principle

nD2+28
s = Dscypy (VD) = D a0 (Vi) (4)

Map conformally the domain of F,1) with boundary L, +L.,+
I (k’:k+g;)+lnk by w=@(2) onto the ring 1glw|gemn as
irk, b

defined in (A) and consider the composed function V,(p)=V.(®(z)). Then

Vi(p)=0 on \w]:esmg"l). If Vi p);gni_l_l on a set of angular measure

larger than 1 on H,,, there exists at least s, leaves of {F,(7), IAV‘,,( Nt

Kn

by (B), whose H,, have the property such that V,(p) :2:;{'}- — on the set

of angular measure larger than % on H,,. Let D(V,(p)) be the Dirichlet
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mw(%l)

integral over e <|w|<Le of these leaves. Then we have by

lemma (3) and (2)

S Piip 20
(5) contradicts (4), whence V( p)gn—f_—i on H,, of F, (1) except possibly
a set of angular measure smaller than % .
Next consider Vy(p) in 1< |w|<Le® (of the image of F,(1)).
If |V(0,)— Vi2)|= ’%_1 on a set of angular measure larger than%,
we have by lemma 3 and (1)
. 1 P23 gen
D(Vk(p)) ;'271'(}14—1)2[6"6(”_ ‘Jﬁ}f’ ’ (6)

where arg p,=arg p,, p, and p, lieon |w|=1, and |w|=e*" respectively,
and D(V,(p)) is the Dirichlet integral over 1<|w|=<e* on F,(1). But

(6) contradicts (4), whence V,(p) ;‘% on |w|=1 except possibly a set

of angular measure smaller than 2 . If we consider the above results

Kn
in F,, we see that V,( p)g—g— on [, except a set of measure smaller

n+1
than length of I,./N,.

We see at once U,(p)=0 on Iz, Ly <B=x+g}z, ,8’:)\.—-%‘;).
On the other hand V. (p)>|U\(p)| on I, (k==8,8). Thus |[U\(p)| <
aei on every I, (v=1,2, -.-,2") except a set of linear measure
smaller than the length I,,/N,. In the same manner we have in

(Frs— Bnss), [U(p)—U(TA(p))lg% on every I, ., except a set of linear

measure smaller than the length of I, ,,,/N,_,
Consider T,(p) in (§,—8,.) (v=1, 2, ---, 2*s-1). Then we see that
| U (p)| < PL? on the ring R/, and that U(p) is symmetric with respect

to Z2*»-1 directions except at most % on R,, (See Notation 4).
Then by (Notation 3) [U(pl)—U(pz)l_g_%— on the circle C,: |z,|=
ijzl’!’:l on F, such that |arg p,—arg p;,(gz%“_l. If we denote by

Max U(p), Min U(p) the maximum and minimum of U(p) on C,, we have
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. 7
|Max U(p)—Min U(p)| < -

Denote by 3,” the surface such that ¥,” consists of the part of F,

Vot ¥y n 295,71 .
on |z|< 5 and X} Zl] (F,(m)+ﬁ‘,(m)). Then F=\J/%,”. Since
1=1 m=1 n

every %,” has only one boundary component lying on C, on which the
oscilation of U(p) is smaller than Z? . Let n—>oo. U(p) must reduce

to a constant on account of maximum and minium principle. Hence
FeOyp.

Since F, is the unit circle, it is clear that F has not Gross’s property
and by theorem of Gross we see F ¢ Og.

From this example we see that the validity of Gross’s property of
Riemann surface does not depend upon the complexity of the boundary.
It depends rather upon the “force” of the boundary, i.e., roughly
speaking upon the size of the boundary.

(Receved April 1, 1955)








