On Homeomorphisms which are Regular Except for a Finite Number of Points

By Tatsuo Homma and Shin'ichi KINOSHITA

Introduction

All spaces considered in this paper are separable metric. Let h be a homeomorphism of a set X onto itself. Then $p \in X$ is called *regular*¹⁾ under h, if for each $\varepsilon > 0$ there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \varepsilon$ for every integer n. If $p \in X$ is not regular under h, then p is called *irregular*.

A set X will be called a C^* -set if X-A is connected for any A which consists of a finite number of points of X. For example any *n*-manifold $(n \ge 2)$ is a C^* -set. Then one of the purpose of this paper is to prove the following

Theorem I. Let X be a compact C^* -set and h a homeomorphism of X onto itself. If h is regular at every $x \in X$ except for a finite number of points, then the number of points which are irregular under h is at most two.

We shall also prove the following

Theorem II.²⁾ Let X be a compact C^* -set and h a homeomorphism of X onto itself such that

(i) h is irregular at a, b $(\pm) \in X$,

(ii) h is regular at every $x \in X - (a \cup b)$.

Then either (1) for each $x \in X-b$ $h^n(x)$ converges to a when $n \to \infty$ and for each $x \in X-a$ $h^n(x)$ converges to b when $n \to -\infty$, or (2) for each $x \in X-a$ $h^n(x)$ converges to b when $n \to \infty$ and for each $x \in X-b$ $h^n(x)$ converges to a when $n \to -\infty$.

§ 1.

Let X be a set and h a homeomorphism of X onto itself. Let R(h) be the set of all points which are regular under h and I(h) the set of all points which are irregular under h. Then

¹⁾ Introduced by B. v. Kerékjártó [5].

²⁾ This is a converse theorem of Theorem 1 of the authors [3].

Tatsuo HOMMA and Shin'ichi KINOSHITA

$$X = R(h) \cup I(h)$$
 and $R(h) \cap I(h) = 0$.

Furthermore let A(h) be the set of all points which are regular and *almost periodic*³⁾ under h and N(h) the set of all points which are regular and not almost periodic under h. Then

$$R(h) = A(h) \cup N(h)$$
 and $A(h) \cap N(h) = 0$.

Lemma 1. Let $p \in R(h)$. Then $p \in A(h)$ if and only if for each $\varepsilon > 0$ there exists a natural number n such that $d(p, h^n(p)) \leq \varepsilon$.

PROOF. It is clear that the condition is sufficient. We shall prove that the condition is necessary. Let $\varepsilon > 0$. Since $p \in R(h)$, there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \varepsilon$ for every integer n. Since $p \in A(h)$, there exists an integer $N(\pm 0)$ such that $d(p, h^{N}(p)) < \delta$. If N>0, then the proof is already complete. If N<0, then $d(h^{-N}(p), p)$ $< \varepsilon$, which completes the proof.

Similarly we have the following

Lemma 1'. Let $p \in R(h)$. Then $p \in A(h)$ if and only if for each $\varepsilon > 0$ there exists a natural number n such that $d(p, h^{-n}(p)) \leq \varepsilon$.

Lemma 2. Let $p \in R(h)$. If $(\lim_{n \to \pm \infty} h^n(p))^{(1)} \cap R(h) = 0$, then $p \in A(h)$. PROOF. Let $q \in (\lim_{n \to \pm \infty} h^n(p)) \cap R(h)$. Given $\varepsilon > 0$, there exists $\delta > 0$ such that if $d(q, x) < \delta$, then $d(h^n(q), h^n(x)) < \frac{\varepsilon}{2}$ for every integer n. Since $q \in \overline{\lim} h^n(p)$, there exist integers m_1 and m_2 $(m_1 + m_2)$ such that $d(q, h^{m_1}(p)) \leq \delta$ and $d(q, h^{m_2}(p)) \leq \delta$. Then

$$d(p, h^{m_2-m_1}(p)) \leq d(p, h^{-m_1}(q)) + d(h^{-m_1}(q), h^{m_2-m_1}(p)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

which completes the proof.

Lemma 3. For each $p \in A(h)$ $(\overline{\lim_{n \to \pm \infty}} h^n(p)) \cap N(h) = 0$. PROOF. Given $q \in (\overline{\lim_{n \to \pm \infty}} h^n(p)) \cap R(h)$, it is easy to see that $p \in \overline{\lim_{n \to \pm \infty}} h^n(q)$. From Lemma 2 it follows that $q \in A(h)$, which completes the proof.

Now assume that $p \in A(h)$ and that U is a neighbourhood of p. Let n(p, U) be the set of all integers n_i such that $h^{n_i}(p) \in U$. Furthermore assume that $n_0 = 0$ and that $n_i < n_{i+1}$. It follows from Lemmas 1 and 1' that n_i is defined uniquely for every integer *i*. Put

³⁾ Let h be a homeomorphism of X onto itself. Then $x \in X$ is called almost periodic under h, if for each $\varepsilon > 0$ there exists an integer $n \neq 0$ such that $d(x, h^n(x)) < \varepsilon$.

⁴⁾ $\lim h^n(p) = \{x \mid \text{ for each } \varepsilon > 0 \text{ there exist infinitely many integers } n \text{ such that } d(x, z)$ $h^n(p)) < \varepsilon$.

$$m[n_i] = n_{i+1} - n_i$$

$$n[p, U] = l. u. b. m[n_i].$$

$$n_i \in n(p, U)$$

A homeomorphism h of X onto itself is said to be *strongly regular* at $p \in X$, if there exists a neighbourhood U of p such that h is regular for every point of U. Then we have the following

Lemma 4. Let X be locally compact. If h is strongly regular at $p \in A(h)$, then there exists $\varepsilon_0 > 0$ such that $n[p, U_{\varepsilon}(p)]^{\circ}$ is finite for every $\varepsilon < \varepsilon_0$.

PROOF. Since X is locally compact, there exists a neighbourhood U of p such that \overline{U} is compact. From the strong regularity of h at p it follows that there exists a neighbourhood V of p such that h is regular for every point of V. Let $\varepsilon_0 > 0$ be such that

$$U_{\varepsilon_0}(p) \subset U_{\cap} V.$$

Let $\varepsilon < \varepsilon_0$. Suppose on the contrary that $n[p, U_{\varepsilon}(p)]$ is not finite. Then either $\lim_{i \to \infty} m[n_i] = \infty$ or $\lim_{i \to \infty} m[n_{-i}] = \infty$.

First we suppose that $\lim_{t \to \infty} m[n_i] = \infty$. Then there exists a subsequence $\{n_{ij}\}$ of $\{n_i\}$ such that $\lim_{j \to \infty} m[n_{ij}] = \infty$. Since $\overline{U_{\mathfrak{e}}(p)}$ is compact, there exists a subsequence $\{n_k\}$ of $\{n_{ij}\}$ such that $\lim_{k \to \infty} h^{n_k}(p) = q$, where $q \in \overline{U_{\mathfrak{e}}(p)}$. Since $q \in R(h)$, there exists $\delta > 0$ such that if $d(q, x) < \delta$, then $d(h^n(q), h^n(x)) < \frac{\varepsilon}{3}$ for every integer n. Let K be a natural number such that if $k \ge K$, then $d(q, h^{n_k}(p)) < \delta$. Since $p \in A(h)$, there exists a natural number N such that $d(p, h^{n_K+N}(p)) < \frac{\varepsilon}{3}$. Then for each $k \ge K$

$$d(p, h^{n_k+N}(p)) \leq d(p, h^{n_K+N}(p)) + d(h^{n_K+N}(p), h^N(q)) + d(h^N(q), h^{n_k+N}(p)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

But this contradicts $\lim_{k\to\infty} m[n_k] = \infty$.

Now we suppose that $\overline{\lim_{i\to\infty}} m[n_{-i}] = \infty$. Then there exists a subsequence $\{n_{ij}\}$ of $\{n_i\}$ such that $\lim_{j\to\infty} m[n_{-ij}] = \infty$. Since $\overline{U_{\mathfrak{e}}(p)}$ is compact, there exists a subsequence $\{n_k\}$ of $\{n_{ij}\}$ such that $\lim_{k\to\infty} h^{n_{-k}}(p) = q$, where $q \in \overline{U_{\mathfrak{e}}(p)}$. Since $q \in R(h)$, there exists $\delta > 0$ such that if d(q, x)

⁵⁾ $U_{\varepsilon}(p) = \{x | d(p, x) < \varepsilon\}.$

 $<\delta$, then $d(h^n(q), h^n(x)) < \frac{\varepsilon}{2}$ for every integer *n*. Let *K* be a natural number such that if $k \ge K$, then $d(q, h^{n}-k(p)) < \delta$. Then for each $k \ge K$

$$d(p, h^{n_{-k}-n_{-\kappa}}(p)) \leq d(p, h^{-n_{-\kappa}}(q)) + d(h^{-n_{-\kappa}}(q)),$$
$$h^{n_{-k}-n_{-\kappa}}(p)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

But this contradicts $\lim_{k\to\infty} m[n_{-k}] = \infty$. Thus the proof of Lemma 4 is complete.

Lemma 5. Let X be locally compact. Suppose that I(h) is a closed subset of X. Then for each $p \in A(h)$

$$\overline{\lim_{n\to\pm\infty}}(h^n(p))\cap I(h)=0.$$

PROOF. Let $p \in A(h)$. Then there exist open subsets U and V such that $U \ni p$, $V \supset I(h)$ and $\overline{U} \cap \overline{V} = 0$. Since h is strongly regular at p, it follows from Lemma 4 that there exists $\varepsilon_0 > 0$ such that $n[p, U_{\mathfrak{e}}(p)]$ is finite for every $\varepsilon < \varepsilon_0$. Let $\varepsilon_1 > 0$ be such that $\varepsilon_1 < \varepsilon_0$ and that $U_{\varepsilon_1}(p) \subset U$. Since h(I(h)) = I(h),

$$\overline{h^n(U_{\varepsilon_1}(p))} \cap I(h) = 0$$

for every integer n. Put

$$U_{0} = \{x \mid x \in h^{n}(U_{\varepsilon_{1}}(p)), n = 0 \ 1, \cdots, n[p, U_{\varepsilon_{1}}(p)] - 1\}$$

Then U_0 is an open subset of X and $\overline{U}_0 \cap I(h) = 0$. From the definition of $n[p, U_{\varepsilon_1}(p)]$ it follows that $h^n(p) \in U_0$ for every integer *n*. Then

$$\overline{\lim_{n \to +\infty}} h^n(p) \cap I(h) = 0,$$

which completes the proof.

By Lemmas 2, 3 and 5 we have immediately the following

Theorem 1. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that I(h) is a closed subset of X and that $p \in R(h)$. Then

(1)
$$p \in A(h)$$
 if and only if $\overline{\lim} h^n(p) \subset A(h)$ and $\overline{\lim} h^n(p) \neq 0$,
(2) $p \in N(h)$ if and only if $\overline{\lim} h^n(p) \subset I(h)$.

Lemma 6. Let h be a homeomorphism of X onto itself. Suppose that I(h) is a closed subset of X. Then N(h) is an open subset of X.

PROOF. Since I(h) is a closed subset of X, we are only to prove that if $p \in R(h) \cap \overline{A(h)}$, then $p \in A(h)$. Let $\varepsilon > 0$. Since $p \in R(h)$, there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \frac{\varepsilon}{3}$ for every integer n. Since $p \in \overline{A(h)}$, there exists $q \in A(h)$ such that $d(p, q) < \delta$. Since $q \in A(h)$, there exists an integer N such that $d(q, h^N(q)) < \frac{\varepsilon}{3}$. Then

$$d(q, h^{N}(p)) \leq d(p, q) + d(q, h^{N}(q)) + d(h^{N}(q), h^{N}(p)) < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Therefore $p \in A(h)$ and the proof is complete.

Lemma 7. Let X be locally compact. Suppose that I(h) is a closed subset of X. Then A(h) is an open subset of X.

PROOF. Let $p \in A(h)$. Let U be a neighbourhood of p such that \overline{U} is compact and that $\overline{U} \cap I(h) = 0$. Then there exists $\varepsilon > 0$ such that $U_{\varepsilon}(p) \subset U$. Since $p \in R(h)$, there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \varepsilon$ for every integer n. Now we are only to prove that if $q \in U_{\delta}(p)$, then $q \in A(h)$. Since $p \in A(h)$, there exist infinitely many n_i such that $d(p, h^{n_i}(p)) < \frac{\varepsilon}{2}$. Then

$$d(p, h^{n_i}(q)) \leq d(p, h^{n_i}(p)) + d(h^{n_i}(p), h^{n_i}(q)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Since $\overline{U_{\varepsilon}(p)}$ is compact, $(\lim_{n \to \pm \infty} h^n(q)) \cap \overline{U_{\varepsilon}(p)} \neq 0$. Then $(\lim_{n \to \pm \infty} h^n(q)) \cap R(h) \neq 0$. From Lemma 2 it follows that $q \in A(h)$ and the proof is complete.

By Lemmas 6 and 7 we have immediately the following

Theorem 2. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that I(h) is a closed subset of X. If R(h) is connected, then A(h) = 0 or N(h) = 0.

By the definition of the regularity we have clearly that if $p \in R(h)$, then $p \in R(h^m)$ for every integer *m*. Conversely we have the following

Lemma 8. Let X be compact. If $p \in R(h^m)$ for some integer $m(\pm 0)$, then $p \in R(h)$.

PROOF. Without loss of generality we may assume that m > 1. Let $\varepsilon > 0$. Since X is compact, h is uniformly continuous on X. Then there exists $\delta_0 > 0$ such that if $d(x, y) < \delta_0$, then $d(h^k(x), h^k(y)) < \varepsilon$ for $k = 0, 1, \dots, m-1$. From the regularity of h^m it follows that there exists $\delta > 0$ such that if $d(p, x) < \delta$, then $d(h^{mn}(p), h^{mn}(x)) < \delta_0$ for every integer n. Then it is easy to see that if $d(p, x) < \delta$, then $d(h^n(p), h^n(x)) < \varepsilon$ for every integer n, and the proof is complete.

Let X be compact. From the above Lemma and the definition of A(h) it follows clearly that if $p \in A(h^m)$ for some integer $m(\pm 0)$, then $p \in A(h)$. Conversely we have the following

Lemma 9. If $p \in A(h)$, then $p \in A(h^m)$ for every integer $m(\pm 0)$.

PROOF. This follows immediately from the theorem of P. Erdös and A. H. Stone $\lceil 2 \rceil$.

By Lemma 8 and 9 we have immediately the following

Theorem 3. Let X be compact and h a homeomorphism of X onto itself. Then $I(h) = I(h^m)$, $A(h) = A(h^m)$ and $N(h) = N(h^m)$ for every integer $m(\pm 0)$.

§ 2.

Let *h* be a homeomorphism of *X* onto itself. An isolated point of the set I(h) is said to be an *isolated irregular point* of *h* and furthermore if h(p) = p, then *p* is said to be an *isolated irregular fixed point*.

Lemma 10. Let h be a homeomorphism of X onto itself. Suppose that there exists an isolated irregular fixed point p of h and that X is locally compact at p. Then there exists a point $q \in R(h)$ such that $\overline{\lim} h^n(q) \ni p$.

PROOF. Since p is an isolated irregular point of h, there exists a neighbourhood U of p such that h is regular for every point of U-p. Since h is irregular at p and h(p) = p, there exists $\varepsilon_0 > 0$ which satisfies the following condition: Given $\varepsilon < \varepsilon_0$, for each $\delta < 0$ there exists a point x with $d(p, x) < \delta$ such that there exists an integer $n(\delta)$ with $d(p, h^{n(\delta)}(x)) \ge \varepsilon$. Since X is locally compact at p, there exists a neighbourhood V of p such that \overline{V} is compact. Then there exists $\varepsilon_1 > 0$ such that

$$\overline{U_{\varepsilon_1}(p)} \subset U_{\cap} U_{\varepsilon_0}(p) \cap V.$$

Since h(p) = p, there exists $\mathcal{E}_2(\langle \mathcal{E}_1 \rangle)$ such that

$$h(U_{\varepsilon_2}(p)) \cup h^{-1}(U_{\varepsilon_2}(p)) \subset U_{\varepsilon_1}(p)$$
.

From this it follows that if $x \in U_{\varepsilon_2}(p)$ and $h^n(x) \cap U_{\varepsilon_1}(p) = 0$ for some integer *n*, then there exists an integer *n'* such that $h^{u'}(x) \in U_{\varepsilon_1}(p) - U_{\varepsilon_2}(p)$.

Let $\delta_n(>0)$ be a sequence such that $\delta_1 = \varepsilon_2, \delta_1 > \delta_2 > \delta_3 > \cdots$ and $\lim_{n \to \infty} \delta_n = 0$. Then for each δ_n there exists x_n with $d(p, x_n) < \delta_n$ such that $d(p, h^{m(n)}(x_n)) \ge \varepsilon_1$ for some integer m(n). Therefore there exists an integer m'(n) such that $h^{m'(n)}(x_n) \in U_{\varepsilon_1}(p) - U_{\varepsilon_2}(p)$ Then there exist a $q \in \overline{U_{\varepsilon_1}(p) - U_{\varepsilon_2}(p)}$ and a subsequence $\{n_i\}$ such that $\lim_{n \to \infty} h^{m'(n_i)}(x_{n_i}) = q$.

34

Now we shall prove that $\overline{\lim} h^n(q) \ni p$. Given $\mathcal{E}' > 0$, there exists a natural number n_0 such that $\delta_{n_0} \leq \varepsilon'$. Since h is regular at q, there exists $\delta' > 0$ such that if $d(q, x) < \delta'$, then $d(h^n(q), h^n(x)) < \delta' - \delta_{n_0}$ for every integer *n*. Since $\lim h^{m'(n_i)}(x_{n_i}) = q$, there exists an integer $N(>n_0)$ such that $d(h^{m'(N)}(x_N), q) \leq \delta'$. Then

$$d(p, h^{-m'(N)}(q)) \leq d(p, x_N) + d(x_N, h^{-m'(N)}(q)) \leq \delta_N + (\mathcal{E}' - \delta_{n_0}) \leq \mathcal{E}'.$$

This proves that $\lim_{n \to \pm \infty} h^n(q) \ni p$ and the proof of Lemma 10 is complete.

Lemma 11. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that I(h) is a closed subset of X and that there exists an isolated irregular fixed point p of h. Let $q \in R(h)$. If $\overline{\lim} h^n(q) \ni p$, then $p = \lim h^n(q)$.

PROOF. Suppose on the contrary that $h^n(q)$ does not converge to *b* when $n \to \infty$. Then there exists $\varepsilon_1 > 0$ such that for infinitely many natural numbers $n_i d(p, h^{n_i}(q)) \ge \varepsilon_1$. Let $\varepsilon(\le \varepsilon_1)$ be such that $\overline{U_{\varepsilon}(p)}$ is compact and that $U_{\varepsilon}(p) \cap I(h) = p$. Since h(p) = p, there exists $\delta(\langle \varepsilon \rangle)$ such that $h(U_{\mathfrak{g}}(p)) \subset U_{\mathfrak{g}}(p)$. Then it is easy to see that there exist infinitely many natural numbers n_i' such that

$$h^{n_i'}(q) \in U_{\varepsilon}(p) - U_{\delta}(p)$$
.

Since $\overline{U_{\mathfrak{g}}(p) - U_{\mathfrak{g}}(p)}$ is compact, $\overline{\lim} h^{n}(q) \cap \overline{U_{\mathfrak{g}}(p) - U_{\mathfrak{g}}(p)} \neq 0$. Since $\overline{U_{\bullet}(p) - U_{\delta}(p)} \cap I(h) = 0$, $\overline{\lim} h^{n}(q) \cap R(h) \neq 0$. From Lemma 2 it follows that $q \in A(h)$ and therefore $\overline{\lim} h^n(q) \cap I(h) = 0$ by Theorem 1. This contradiction completes the proof.

Lemma 12. Let X be locally compact. Suppose that I(h) is a closed subset of X and that there exists an isolated irregular fixed point p of h. Put

$$P = \{x \mid \lim_{n \to \infty} h^n(x) = p, \ x \in R(h)\}.$$

Then P is an open and closed subset of R(h).

PROOF. To prove that P is an open subset of R(h): There exists $\varepsilon < 0$ such that $\overline{U_{\varepsilon}(p)}$ is compact and that $U_{\varepsilon}(\overline{p}) \cap I(h) = p$. Let $x \in P$. Then $x \in N(h)$ by Theorem 1. Since N(h) is an open subset of X by Theorem 2, there exists a neighbourhood U(x) of x such that $U(x) \subset N(h)$.

Then there exists $\delta > 0$ such that if $d(x, y) < \delta$, then $d(h^n(x), h^n(y)) < \frac{\varepsilon}{2}$ for every integer *n* and that $U_{\delta}(x) < U(x)$, Since $\lim_{n \to \infty} h^n(x) = p$, there exists a natural number *N* such that for each n > N $d(p, h^n(x)) < \frac{\varepsilon}{2}$. Then for each n > N, if $d(x, y) < \delta$,

 $d(p, h^n(y)) \leq d(p, h^n(x)) + d(h^n(x), h^n(y)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Since $\overline{U_{\varepsilon}(p)}$ is compact, $\overline{\lim_{n \to \infty}} h^n(y) \cap \overline{U_{\varepsilon}(p)} \neq 0$. Since $y \in N(h)$, $\lim_{n \to \infty} h^n(y) = p$ by Theorem 2 and Lemma 11. Therefore P is an open subset of R(h).

To prove that P is a closed subset of R(h): Suppose $x \in R(h) - P$. From Lemma 11 it follows that $\lim_{n \to \infty} h^n(x) \cap p = 0$. Then $\overline{\bigcup_{n=0}^{\infty} h^n(x)} \cap p = 0$. Put

$$a = d(p, \overline{\bigcup_{n=0}^{\infty} h^n(x)}).$$

Since $x \in R(h)$, there exists $\delta > 0$ such that if $d(x, y) < \delta$, then $d(h^n(x), h^n(y)) < \frac{a}{2}$ for every integer *n*. Then

$$\overline{\bigcup_{n=0}^{\infty} h^n(y)} \subset U_2^a(\overline{\bigcup_{n=0}^{\infty} h^n(x)}).$$

Therefore $\overline{\lim_{n \to \infty}} h^n(v) \cap p = 0$. Hence R(h) - P is an open subset of R(h), and the proof is complete.

By Lemmas 10, 11 and 12 we have immediately the following

Theorem 4. Let X be locally compact and h a homeomorphism of X onto itself. Suppose that I(h) is a closed subset of X and that R(h) is connected. If there exists an isolated irregular fixed point p of h, then either for each $x \in R(h) \lim_{x \to \infty} h^n(x) = p$ or for each $x \in R(h) \lim_{x \to \infty} h^n(x) = p$.

Theorem 5. Let X be compact and h a homeomorphism of X onto itself. Suppose that I(h) is a closed subset of X and that R(h) is connected. Let p be an isolated irregular point of h. If $h^m(p) = p$ for some natural number m, then p is an isolated irregular fixed point of h.

PROOF. We are only to prove that h(p) = p. Suppose on the contrary that $h(p) \neq p$. It follows from Theorem 3 that $I(h) = I(h^m)$. Therefore p is an isolated irregular fixed point of h^m . Then it follows from Theorem 4 that either for each $x \in R(h) \lim_{n \to \infty} h^{mn}(x) = p$ or for each $x \in R(h) \lim_{n \to \infty} h^{mn}(x) = p$. Without loss of generality we may assume that $\lim_{n \to \infty} h^{mn}(x) = p$ for each $x \in R(h)$. Then we have that

$$\lim_{n\to\infty} h^{mn+1}(x) = \lim_{n\to\infty} h(h^{mn}(x)) = h(\lim_{n\to\infty} h^{mn}(x)) = h(p) + p$$

On the other hand we have that

$$\lim_{n\to\infty}h^{mn+1}(x)=\lim_{n\to\infty}h^{mn}(h(x))=p.$$

This is a contradiction and the proof is complete.

PROOF OF THEOREM I. Let X be a compact C^* -set and h a homeomorphism of X onto itself which is regular for every $x \in X$ except for a finite number of points. Put $I(h) = \{p_0, p_1, \dots, p_m\}$. Then I(h) is a closed subset of X and all $p_i(1 \le i \le m)$ are isolated irregular points of h. Furthermore R(h) is connected. It is easy to see that for each p_i there exists a natural number n_i such that $h^{n_i}(p_i) = p_i$. It follows from Theorem 5 that all p_i are isolated irregular fixed points of h. Then by Theorem 4 either for each $x \in R(h) \lim_{n \to \infty} h^n(x) = p_i$ or for each $x \in R(h)$ $\lim_{n \to \infty} h^n(x) = p_i(1 \le i \le m)$. Therefore the number of points which are irregular under h is at most two and the proof is complete.

PROOF OF THEOREM II. This is clear from the proof of Theorem I.

By the theorem of the authors $\lceil 4 \rceil$ we have the following

Theorem 6. If h is a homeomorphism of S^3 onto itself such that (i) h is irregular at a, $b (=) \in S^3$, (ii) h is regular at every $x \in S^3 - (a \cup b)$, then h is topologically equivalent to the dilatation in S^3 .

Remark 1. B. v. Kerékjártó [5] proved that if h is a homeomorphism of S^2 onto itself which is regular for every $x \in S^2$ except for a finite number of points, then h is topologically equivelent to a linear transformation of complex numbers.

Remark 2. For the case where h is a homeomorphism of S^n onto itself which is regular except for only one point see H. Terasaka [7].

Remark 3. It is proved by R. H. Bing [1] and D. Montgomery and L. Zippin [6] respectively that there exist a sense-reversing and a sense-preserving homeomorphisms h_1 and h_2 of S^3 onto itself with period 2 (then they are regular for every $x \in S^3$) such that h_1 is not topologically equivalent to the reflexion and h_2 is not topologically equivalent to the rotation in S^3 .

(Received March 20, 1955)

References

- [1] R. H. Bing: A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Ann. of Math. 56 (1952).
- [2] P. Erdös and A. H. Stone: Some remarks on almost periodic transformations, Bull. Amer. Math. Soc. 51 (1954).
- [3] T. Homma and S. Kinoshita: On the regularity of homeomorphisms of Eⁿ, J. Math. Soc. Japan. 5 (1953).
- [4] ———: On a topological characterization of the dilatation in E³, Osaka Math. J. 6 (1954).
- [5] B. v. Kerékjártó: Topologische Charakterisierung der linearen Abbildungen, Acta Litt. ac Sci. Szeged. 6 (1934).
- [6] D. Montgomery and L. Zippin: Examples of transformation groups, Proc. Amer. Math. Soc. 5 (1954).
- [7] H. Terasaka: On quasi-translations in Eⁿ, Proc. Japan Acad. 30 (1954).