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On Multiple Distributions

By Tadashige ISHIHARA

In the theory of quantumn wave fields, there appears a distribution
called " invariant Δ-function" which gives the commutation relation
between fields quantities. This Δ-function is not a function but a
distribution and is considered to be defined by the wave equation
(Π-*0 Δ = 0 with initial conditions Δ(#, 0) = 0, aΔ/a/(#, 0) = — δ0(*)
(c. f. J. Schwinger ([9]), W. Pauli ([10])). Concerning this sorts of
equations, we consider generally here about an equation of evolution
in the sense of distribution.

L. Schwartz treats this problem ([3]). He considers distributions
Ux(t) e S)'(Λ ) on the spacial variables (x19 ..., xn) where the time variable
t is a parameter. For the simplicity we call hereafter this sort of
distribution a parametric distribution and call a distribution on
the space ( x l 9 ..., xn, t) a proper distribution. He discusses mainly
parametric distribution and parametric equation of evolution. Concern-
ing the proper one L. Schwartz refers (§ 16) that a parmeteric distri-
bution can be considered to be a proper distribution and also refers
to a proper distributional equation. But the relation between parametric
and proper distribution and the relation between parametric and proper
distributional equation is not treated in detail. In this paper we start
from proper distribution conversely and researches in what case it can
be considered as parametric one and researches in what case a proper
equation can correspond to a parametric equation.

To give a clarification of these relations we introduce the notation
of multiple distributions defined in §3, and research (§3, §4) several
properties of multiple distributions.

A parametric distribution (e £)'(#)) is a multiple distribution of a
distribution ( e S>'(#, t)) and the special distribution ( e 3)'(f)). In § 5 we
consider this special case and study relations between proper distribu-
tion and parametric continuous or parametric continuously differentiable
distribution. As an example of applications we discuss in § 6 relations
between two sorts of equations.

The invariant Δ-function mentioned at the top will be clarified
in the sense of the one in the proper distributional equation, and since
its corresponding parametric equation can be solved, we obtaine
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proper distributional solution with consideration of § 6. (Direct calcula-

tion as a proper one is also possible).
Concerning the topological terminologies used in the paper refer

to N. Bourbaki ([4], [5]), C. Chevalley ([8]).

§ 1. Topologies defined by bounded sets.

In this section we modify a few the B. H. Arnold's results ([!]).
Let S={θ, xy y, •••} be a vector space over the real number field with
zero vector θ, and let 33 be any collection of subsets of S satisfying

(Bl) For any xeS, {x} e33,
(B2) The union of any two sets of 33 is a set of 33,
(B3) Any subset of a set of 33 is a set of 33,
(B4) Any sealer multiple of a set of 33 is a set of 33,
(B5) The convex hull of a set of 33 is a set of 33.

We call the elements of 33 bounded sets of the vector space S.
The following algebraic properties of 33 hold in our cases too.

Lemma 1. The linear sum of any tow bounded sets is bounded.

DEFINITION 1. For any X(^S the symmetric star like hull X* of X

is
X*= {U\X\\\\<1} .

Lemma 2.

( 1 ) For B e 33, we have B* e 33 .

(2) // |λ |< |// | , then \X*ζ^μX* for X<^S.

THE TOPOLOGY IN S.

DEFINITION 2. A subset G of S is open if and only if whenever
gζG there exists a convex set N such that for any Z?e33 there exists
a λ>0 which satisfies g+\B(^N<^G. (N depends on g, but is
independent from B).

Lemma 3. Definition 2 makes S a topological space.

Proof. It is evident that the empty set, the whole space and any
union of open sets are open. If G and H are open, and geG^H,
there exist sets N1 and N2 such that for any Z?e33 there exist μ>0
and v>0 which satisfy g+μB*(^N1(^G and g + »B* (^N2(^H.
Setting λ = min{^, μ ) , we have \B<^λB*(^μB*
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so that G^H is open and S is seen to be a topological space.

Lemma 4. There is a fundamental system of convex balanced neigh-

borhood of θ.

Proof. If G is an open neighborhood of <9, there exists a convex

set N such that G~^>N~^\B. For any point x6\J0<Λ<laN = N,, there

exist 0<^aQ<^a1<^l such that a^x/a^^a^N. Since a^N is convex

and can swallow any .β G SB for some positive multiple μ, we have

Λ: + (l — a0/a1)μB= (ajaj (a^x/a^ + Cl — a0/a1)μB3 a,N. So Λ^ is also

an open convex set. Since (—ΛfJ is also an open convex set we have

a convex balanced open neighborhood of θ, N0; N0 = ΛΓ l A (—ΛΓJ CG.

Lemma 5. T/z/s topology is compatible with the vector operation of S.

Proof. First the mapping (x, y) -*x+y is continuous jointly.

For any open set Gx+y which contains x+y, there exists a convex set

Nx+y such that Gx+y^>Nx+y 3 x+y. Now Nx+y — (x+y) is a convex set

which can swallow any Be S3 for some positive multiple, so it is

a neighborhood of θ as can be seen in the proof of Lemma 4. By

Definition 2, for any open set G and for any X3S the subset x + G is

open. So x+{Nx+y — ( x + y ) } / 2 is a convex neighborhood of x and

g}+y — ( χ + y ) } / 2 is a convex neighborhood of y and we see

Next the continuity of the mapping (λ, x)-+\x is seen as follows.

A mapping x-*\Qx is continuous in the neighforhood of x = θ

for any fixed X 0 . If λ0 = 0, this assertion is evident. If λ0 Φ 0,

λ0(AΓ0/λ0)d^V0 d Nζ^G for any neighborhood G of θ where Λf0 is a

convex balanced neighborhood of θ. But N/\ is a neighborhood of θ

so the mapping x-^\x is continuous.

The mapping λ-^λ#0 is continuous in the neighborhood of λ == 0

for any fixed x0. For {x0}> {x0}* G B and for any neighborhood G of θ,
there exists μ>0 such that μ{x0}* C^oC^CG. Then for any

1 λ I < μ we have λ# G Λf0 C^ G.

The mapping (λ, x)->\x is continuous in the neigeborhood of
x = θ, λ = 0, since for any neighborhood G of θ we have λΛΓ0<^Λf0CWc^G
for |λ|^l.

Therefore we see the .continuity of the mapping (λ, x)->\x and
Lemma 5 is proved.
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TOPOLOGICAL BOUNDEDNESS.

We define a new concept of boundness in the usual way by

DEFINITION 3. A set T C^ S is topologically bounded if and only if
for each neighborhood U of Θ there exist a λ with T(^\U.

We denote by X the collection of all subsets of S which are
topologically bounded.

Lemma 6. £^>33, and the collection £ satisfies the axioms B1)—B5).

Proof. ί£ ^> 33 is the direct consequence of Definitions 2 and
3. So T evidently satisfies Bl), B3), B4). B2) follows from the
existence of a fundamental balanced neighborhood system of θ. B5)
follows from the existence of a fundamental convex neighborhood
system of θ.

Lemma 7. The topologies defined in S by the collection Z(τ^) and

by the collection 95 (τ«J ere identical.

Proof. T^g is stronger than T^ since 93 d £, and T^ is stronger
than T^ by virtue of the definition of £.

TOPOLOGIES DEFINED BY BOUNDED SETS.

Theorem 1. Definition 2 makes S a bornographic ([7]) locally convex

topological vector space.

Proof. The proof of Lemma 9 assures the bornography of this
space.

Remark. If a locally convex topological vector space V is given
and if we take the totality 33 of bounded sets (in the natural tolplogy
of V), 95 satisfies Bl)— B5) and the topology r^ is stronger than the

natural topology of V. But if V is a bornographic space the topology
T^ is identical with the old topology of V.

§2. Bounded sets in the product space.

NOTATIONS.

For any 0 < π <C °o we consider the vector space of all real
valued τr-times differentiate functions having compact carriers. We
denote the space S)* ([2]) defined on the w-dimensional Euclidean
space R"(x) by 3)*(#), similarly the one on Rm(t] by S)*(ί) and the one
on Rm+n(x, ΐ) by £)*(:*;, /) where m>0 and w>0, and denote the
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totality of bounded sets in their natural topology by ^8^(t) etc. Further
we denote their strong dual spaces by ®(7θ'(jt;), ®°°'(ί) etc, denote the

convergence in the topology of ®(7θ/ by the symbol _4, and denote
the bounded sets in S)00' by B^y .

ARNOLD'S FAMILY IN S*(ί).

Now we take a sequence of functions (φj(t) \ φj(t) 6 ®*(f )> >Q} where
Q is a definite distribution of ®μ'(/) for μO, and often call it a (v, Q)-
sequence. We consider also occasionally a (v, Q)-sequence each of them
having a carrier contained in a fixed compact set K of R and call it a
(v, Ky Q}-sequence.

We take the totality of the above (v, Q)-sequences and denote it
by 33'(f), and consider the minimum collection of subsets of ®*(ί)
which satisfies axioms from Bl) to B5) including both 33'(f ) and 33^(0-
For the sake of simplicity we call such a collection an Arnold's family.
In this case such an Arnold family S5°(ί) really exists and is uniquely
determined and is given by a collection of sets of the following form

where the symbol ((A)) means the convex hull of a set A. In fact,
Arnold's family must .̂t least include this collection, and this collec-
tion satisfies Bl)— B5), so this is indeed our Arnold's family. We
denote this family by S5°(ί) and each set of it by B°(t). We denote
by %l(t) a fundamental neighborhood system of θ which is induced by
S3°(ί) obeying the method § 1, its element by N(t), and denote the

space 3)*(f) having this topology by ®ρ(f)

ARNOLD'S FAMILY IN THE SPACE

We consider the tensor product space ([6]) S)*(#)<g)35*(f) i.e.

S)*(Λ) (g) ®Λ(ί)-

where 2« means finite sum. We consider in this space the Arnold's
family 33°(:r, /) which includes a family of subsets

where
B(x) ® B°(t) = {φ(x)φ(t)\φ G BJ(x) , φ e

Then 33° (ΛΓ, ί) is also uniquely determined and is given by the
collection of subsets ((B(x) ®B° (t))) with their arbitrary subsets, where

M*) and 5°e33°(f), since the operation contained in the axioms
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Bl)— B5) are closed either in 33*(*) or in 23°(/), and the Arnold's family
must contain at least this family. We denote by %l(x, t)={N(x, t)} a
fundamental neighborhood system of θ which is induced by this family.

NEW TOPOLOGY IN THE SPACE S)*(ΛΓ, t).

Similarly in the space Φ*(ΛΓ, t) we find the Arnold's family which
contains 23 °(*, t) and 33̂ *, /), i.e.

, t)\JB°(x, t)))\Be^(x9 t ) , B°e®°(x, t ) } .

A fundamental neighborhood system of θ is given by

, t)\JN(x9 t ) ) ) \ V z ® ( x , t ) , NeK(x, t)} ,

where 55(Jtr, /) means a fundamental neighbornood system of θ in the
natural topology of ®*(Λ:, t) . We denote the space ®*(ΛΓ, t) having
this topology by 3)ρ(#, t) or simply by ©ρ.

THE SPACE ®QΛ, ®QA.

Thus the space S)ρ(#, /) is introduced by a single distribution Q,
but a similar process is possible for a fixed family of distributions
{ Q λ l ^ e Λ } . That is to say B ° ( ΐ ) is expressed by

Z > o / / \ / / E>//\ . ,\ is \ ίr \ ί°°
ΰ (f) = ((^(O^yfc-i W i - i V y j - i

where φi}λ —+Q\ , and of course v is larger than the orders of the

distributions Qλ . The forms of Arnold's family in the other spaces,
say, ®*(#) ® ^(t) and 3)*(jι;, t), are quite similar. We denote the space
©*(ί) or <SF(x9 t) having this topology by S)QA(ί) or ®ρΛ(Λ;, /). The
orders μ of the distributions Qλ and the orders of the convergences
v = v(λ) can be various, but we have interest only in the case when
both μ and v are constants, and we consider only this case.

From the same family of distributions we can also construct

another B°(t) as follows.
We take a family of sequences { { φ v \ j } | λ e Λ } which satisfies the

condition that for any neighborhood of θ, V, of ®Cv)/(/) there exists j0 such

that (1) forany;^y o , for any λeΛ, φλJ-Qλe V, (2) V//o0,*6A<ta e B«(t).
We call it a (v, Q)-famaily and write its element by B((t). Now we

consider B°(t) = ((B^^^l^piB^t))) or its arbitrary subset. The other

forms of Armold's family are quite the same. We denote the space

®*(ί) or ®*(ΛΓ, t) having this topology by ®ρ(/) or by ®Q(Λ:, t). We often

consider properties common to each of the spaces 3>ρ(#, /), ®QΛ(#, /),
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*> ')• In such a case we denote them collectively by ®p, similarly
denote the space 3>ρ(f), S)QΔ(ί) and ®ρΛ(ί) by ®p(f) .

PROPERTIES OF THE SPACE ®p.

Lemma 8. F0r «wy neighborhood of Θ, N(x, /), m ®*(Λ;) ® 2)*(ί)
contained in the space ®P #wί/ /or <wy bounded set B«(x)y there exists a
neighborhood N(t) of θ in S)P(ί) such that N(x, t)^>B(x) ® N(t).

Similarly for any bounded set B°(t) there exists a neighborhood of
V(x), θ in D*(x) such that N(x, t)^> V(x) ® B°(t).

Proof. For any covex neighborhood N(x9 t)9 of θ, and for any bound-
ed set B«(x)9 we consider the NBW such that NBOβ) = {g(t) \f(x)g(t) e N(x, t)
for all f ( x ) e B ( x ) } . Now any bounded set B*(x)®B°(t] in ^(x)®^f(t}
is swallowed by N(xy t) for some positive multiple λ, so for any bounded
set B°(t) in S)*(ί), NB^ must swallow B°(t) for the same positive multiple
λ. While Njχx) is a convex set for a convex set N(x, t), it must contain
some neighborhood N(t) of θ in ®Λ(ί). So the former part of Lemma
holds, and the latter holds also quite similarly.

Corollary. T €©£(#, ί) 15 separately continuous for ^(x] and ®P(ί).
The following property is evident.

(ii) TΌ*I > τD*2 for τf1 < τr2 and

where τί/1 ^> τv2 means that the topology of the space indexed with ^

is finer than the topology of the one indexd with v 2 , and ®nL \, means
the space with the topology induced by (v19 Q)-sequences.

§ 3. Properties of the space X®P . (I)

We consider the strong dual space ®p of ®P and the closure of
the space ®v in the topology of 35P, and denote this closure by 7φp.
Then X®P is a topological vector space and ®v C^ X®P C ®^ C ®CΛy

with topologies τ^v > τ,φp > rφoo, , τφv > r,^Q > T,̂  > r/φβ and

T/e-ΓN^i ^> τ,,τs*2 for TTj < τr2 , and v t ̂  v2 .
^QCΊ) ^«Cv2) <jj/

If Te'SM*, /), we have a filter g on ®v(jc, t) such that g > T.
Now in the inequality
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where <^4, By means sealer product of A and B, for any £>0 we
can take an element F of the filtre g such that for any two elements
f and / of F, the 3rd and the 4th terms are smaller than 6/4 uniformly
for φeB^(x}, φjeB°(t), and we can choose j0 such that for any

the 2nd and the 5th terms are smaller than 6/4 since
/), φ(x}yx\φ£B«} e£ v(f). So we see lim^T</, <pQ> exists.

Further if two filters g and g converge to T in the topology of ®^
this limit must conincide. In fact we can take a set F e S and a set
F 6 3 and yo such that the same evaluation of this inequality for
/ 6 F and f eF can be done. This uniquely determined weak limit in
®°°'(Λ;) is at the same time a strong limit since this convergence is
uniform for φ e 33*(#).

DEFINITION 4. Multiple distribution of a distribution Te'S)e(*, /)
and a distribution Q(t) 6®Cl°'(f) is a distribution TρeS>c*v(,r) such that
for ^G®*(#), <Tρ, ^> = limc?®j </, 9>Q>. Of course in the space

Λ or '®e , the same definition is poisible for any λ e Λ.

A CHARACTERIZATION OF SPACE 7®p.

Theorem 2. // Te7®ρ, ίto T is continuous with respect to any
(v, pQ}-sequence uniformly for φ eB^x), where p is an arbitary constant,
and the limit determined by this sequence coincides with pTQ.

Proof. The former part of the theorem is seen to be true from
the following inequality by the similar evalution as above :

Denoting the limit of this Cauchy filter by <(T, <pQ>, we obtain the
latter part of the theorem similarly by the following inequality.

Corollary. IfTe'^and { { φ λ ^ } | λ e Λ } is a (v, pQ)-familyy then T
is continuous with respect to the sequence { φ λ j \ j = l, 2, ...} uniformly for
λ e Λ and uniformly for φζB^x).

Proof. This is evident if we examine the proof of Theorem 2.

REMARK. The topology rD,Q is dependent on two constants τry v.
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However when TQ can be defined, it is uniquely determined by T and
Q and does not depend on TT, v.

The following lemma is occasionally used.

Lemma 9. If {φ} ^B^γ and {βk(t) |& — 1, 2, ...} is a (0, Ky ^-sequence
then {φ*/3 f c | fe = l, 2, ...} is a (v, Q}-sequencnce whose convergence is uniform
for φ e 5(vy .

Proof. For any uζB^y, we have <φ*/3, #> = <£, φ * w > where

v means the reflection. Now {φ*«|φ6 J3(vy, ueB^} is a bounded set
in the space C° (i. e., the space of continuous functions having topology
of compact convergence), so <φ*/3 fc, u > — > 0 uniformly for u
and for φ 6 -BCvy .

Corollary. // {φ} =B^ e33v, dm/ {/3 f c | fe = l, 2, ...} 15 a (0, /£, 0)-

sequence, then (φ * /3fc) i^ 0 uniformly for φ 6 £v

Proof. For any ueB^γy <φ* )8s, W> = </8 |5, φ*&>->0 uniformly
for w 6 #(vy and φ e 5(v) , by Lemma 9. Since ®v is bornographic,
τφ(vy/ = τφc) . This proves our corrollary.

Theorem 3. (THE CONVERSE OF THEOREM 3)

If Te®C7θ/(:r, t) and < T, φφt > makes a Cauchy sequence uniformly
for φeBΛ(x) with respect to any (v, pQ}-sequence {φj /or p = 0, 1,

ex®ρ.
/ Q \ /

Proof, we take a sequence a fc(jc)o: fc(i) _!__> δ(#)δ(ί) in S)(#, ί) such
that {Λ f c(Λ:)} is a (0, ίί, δ(Jt:))-sequence and {«*(/)} is a (0, /f, δ(/))-
sequence where δ(jc), δ(ί) means Dirac's δ at the origin of J f f jc ) and
Rm(t) respectively. (Hereafter we call such a sequence a-sequence)-

For any φeB^(x) and φ^Bf(t) we have

- < T,

+ |< T,

In the 2nd term, (S — a^x)) is a (0, K, 0) sequence, so 9>*(δ— ά f c ) 0
by the above corollary. Since <T, <pφ> is bounded for φφ e B^(x}®B°(t)
by assumption, Te®£ and Lemma 8 can be used. So for any £>>0
we can take kQ, such that for any
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uniformly for φ3^Bf(t] and φζB^it). In the 3rd term,

{φ*ά*(x)\φeB«(x), * = 1, 2 ...}eB*(x)

and the term {φj(£)*(δ(f) — ά f c(f)) |&— 1, 2, ...} is a (y, 0)-sequence whose
convergence is uniform for φj . So by the assumption it follows that
the 3rd term is <£/2 uniformly for φj£B'(t) and φeB«(t).

Corollary. // T<E®°°'(#, f) ««rf {< T, <pφλj y \ j = 1, 2, ...} makes

a Cauchy sequence with respect to any {φλj} of a (v, pQ}-family {{φλj} λ eΛ}
for p = Q, 1, uniformly for φeB^x) and uniformly for λ e Λ , then

Te'S>β.

The proof is quite similar to the proof of Theorem 3.

§4. The Properties of the Space f<S)P (II).

CONTINUITY OF MULTIPLE OPERATION.

Theorem 4. The mapping T-*TQ is a continuous linear mapping from
ΦP(ΛΓ, /) to <&w(x}.

Proof. Linearlity is evident. Now for a neighborhood U of θ in
the ®C1£)'(*) such that U= {T|Sup^ B*(*)|< T, φ >|<6}, we can
take a neighborhood Λf of θ in '®P such that

for the same B^x). Then we see for any TeN, TQX e C/, q. e. d.

MULTIPLE DISTRIBUTION BY DERIVATIVES OF Q.

We denote a differential operator in R^'(t)y such as

— 3ίmm, where |5|= 51 + - -f 5M and aSl.
is a constant, by D0" and its conjugate operator by Dσ*, i. e.,

Theorem 5. // Γe'®^ (TT, ^, /.) /few D^T e7®^7 (τr+σ ,

v — σ , μ—σ), and TotQ\ = (D*T)Qλ . Especially if Dσ is a product such

that Dσ = D(flD(r2 then from Γe7®/)^, if /0//0ws fA^f D

REMARK. If Te®c*y, then Dσ*Te®c*+σy and a map of (T/, i/,
) — sequence by Dσ is a (TT' — σ , v7-f σ, D^Q^μ + σ)) — sequence, where

rr means φj£D<*'\ vf means ( l / )V, QX(/A) means QX^DW. The nota-
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tions (?r, v, μ) and (τr-f-σ, v — σ , μ — <r) in Theorem 5 are used in similar
meanings.

The theorem may be stated more generally. Consider a mapping
Lt from ®Λ'(ί) into S)*(£) which satisfies the following conditions, (i)
Lt maps any (π' ', */, //Qλ) — sequence to a (TT, v, p Lt(Qλ)) — sequence or

maps any (TT', */, //Q) — family to a (TT, v, p Lt(Qλ)) — family for />' = 0,1
and the some constants /o, where v > μ , i/ > X (X : order of Lt Q).
(ii) L*(®v) d ®v/ where L* is a conjugate operator of ®°°' (#, ί) into
®(7ί/)/(Λr, /) defined by <L*Γ, ^>φ> = <T, φLt(φ)y for ^G®Λ/(Λ;), φe®Λ /(/)
for τrr > 7r.

Concerning this mapping Lc, the following Lemma holds.

Lemma 10. // TG^^TΓ, v, ^), ^if L*Te/®P(7r
/, i/, X)

= (L*T)Qλ where p is determined by the equality Lt(v Q} — sequence
(or formily) = (v, pLt(Q))— sequence (or family).

Proof. Take a filter g on S)v such that g ̂ ^ T.
Then the filter L*(g) converges to L*T in the sense of X2)P (TT', vr, X)

as follows : For any 8 ~^> 0 there exists some F G g such that for any
f G 8, for any ?̂ G DΛ/ we have the following inequality for any φ^ of

any (j/, p'Q) — sequence (or φλj of (vx, p'Q) — family) for // = 0, 1,

, (φ) > - < T, φLt(φ) > 1< 6.

Next for a (j/, Qλ) — sequence we have

< (L*T)Qλ, ^ > = lim^o. < L*T, <pφλj > - lim^ < T, ^Lt(φλJ) >
= < TpLtQx, φ > by the condition (1), q. e. d.

Proof of Theorem 5.

We can take Dσ as Lt in Lemma 10, since condition (ii) is evident
for j/ = v — or and condition (i) is satisfied for v' = »— σ, / — /o, τr' =
The last part of the theorem follows from

^ > , q. e. d.

Theorem 6. // fAe topology of f(^σp(v + σ) is introduced by bounded

sets such that every (v + σ, p'DσQx)-sequence (or (v-\-σ, p'DσQ)-family)
for p' = 0,1, is a map Dσ of a (v, pQK)-sequence (or (v, pQ)- family) and
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if β*Te'Φp, then we have Te'®Dσp.

Proof. If the topology of ®L p is given by bounded sets such

that for pr = 0,1 each (\>* ', //Ltζ)λ)-sequence (or (i/, /L,Q)-family) is

a map of a (v, /)Qλ)-sequence (or (v, pQ)-family) by the above Lt such
that Lt(φλ(t) * φ2(t)) = L^φ^t)) * φ2(f )), then we have for an α:-sequence
and for a (v, Q)-sequence (or family) {φ},

|< T,

<|<L*T,

-H<L*T, p(^*άΛ:(jr))x{φJ*(8-άΛ:(/))}>|<£, q.e.d.

CONTINUITY OF MULTIPLE OPERATIONS λ->Tqλ.

Theorem 7. // Te'&Q αwrf A = {λ} is a topological space and the
mapping λ-»Qλ is continuous as the mapping from Λ into ®(μy(/) , then
the mapping λ->Tρλ is a continuous mapping from Λ to ®(7°'(jr).

Proof. For any φ e B^x), we take a (v, Q)-family {φλj |λ}. We have

+ {corresponding terms of the 2 nd, 3rd, 4th terms} .

c§y
We take a filter 8 on ®v(#, ί) such that g '°Q

> Γ. Now for any β > 0
there exists Fe^ such that for any/eF the 3rd and its corresponding
terms are <£/7 uniformly for λ e Λ and j = l9 2, ••• and φeB^x).
Regarding such an f(x, t) we consider the 5th term. Since the map-

ping λ-^Qλ is continuous, we can take Vκ such that for any
λ 'eFx the 5th term is <^£/7 uniformly for φ^B^x], since
{<f(x, 0, φ(x)\\φeB«(x)}eB«(t). Regarding such a λ' and an /(*, /),
the 2nd and the 4th and their corresponding terms can be made smaller
than 6/7 uniformly for φ e B^x) by taking some j, q. e. d.

CONVOLUTION AND MULTIPLICATION OF A MULTIPLE DISTRIBUTION.

The following two lemmas may be used in the application.

Lemma 11. // Te'®?\ S£®'(x)r\<S)W(x) then (δ(t)xS)*Te/<SI,^^
and {(Sxδ(/))*T}Qλ=Sc*TQλ.

Proof. Take an ^-sequence. Then for any ψφλj€.B1ί+σ(x)®B'(t)
we have
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= < T, (δ(f ) x S) *

Now {S^l^e^-^Wl 693*00, so

{φ*άκ*S φ£B«+σ(x), * = 1, 2, ••}

and {φλj*|δ(ί) — ά fc(ί))|* = l, 2, •••} is a (v, 0)-sequence or
{{φλj*(δ(ί) - «fc(ί))|* = l, 2, » } | λ 6 Λ } is a (v, 0)-family. So

T* (δ(ί) x S) € f&p^\ and we have

<{T*(δ(/)xS)}Q λ > ^> = lim^β β<(δxS)*Γ, ^>φλ, >

^ < T, (S c^ 9>) xφλj > = < Tρλ, S (% cp >

Here ^ means the convolution in the space ®*+σ(#).

Corollary. // Te;®i(*, f) ί/z^ ZJsΓe7®^" Λwrf (Dp

xT)Qλ= D^

Proof. Take D£δ(#) as S(ΛΓ) in Lemma 11, then we obtain

D£T = (δ(ί) x DJδ(JC))* Te 7®P .
and

(Z

Lemma 12. // Te'®P(*, t), f(t) eD*(t) for κ>v, *>πy g(x) G

Proof. Take an ^-sequence. Then

< (fgT)*(8-at)9 φφ,j > - < T,

+ < ̂  ̂ (^^ά^xί
In the 2nd term {/(ί) φ^(t)\φλj(t)

and (^-^((δ-α:fc)))_l!^0. In the 3rd term we see

£,(*), A? = 1,2, ...16S3Λ*), and {/(φλ, *(δ -

is a (vy O) — sequence or {{/(φλί * (δ— & f e(/)))|^} |λ} is a (vy O)-family.
So we obtain the former part of the lemma. Now

, φφj > = lim^^ < T, gφfφj > and {/φ^ |φ^ runs through
a (v, Q)-sequence}

is a (v, /Q)-sequence, similarly {{/φλj?}|λ} is a (v, /Q)-family, so it
follows that (fgT)Qλ =
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§ 5. Spaces of parametric destributions.

Hereafter we confine ourselves to some special cases. We take
Dirac's 8 and its μ-th derivative δ(μ) as Q, and t itself as λ and Dt as
Lt . We treat only the case where m is 1, though quite similar results
can be obtained in the case m φ 1 too. We take an interval 35 β<O<Cft,
as Λ . Further we write 'S^c o in place of '5>δoo and 'S^oo in place
of '®δo o, similarly 3>soo, and '®/0 for '®δco> and '3)̂  for 'S^o, x®sβ
for 'Ssgco) . We use also notations 3μT/3/S in place of Tδc.«o and Tt for
Tst . These designations are not so unreasonable, since, for example,
if T=f(t) S(x) where /(f)€ΦC σ>(/) and S(x) e ®'(#) then Γe'S/co and
TjCo ) — 3°//9/5 S(jtτ). Using these notations the theorems in § 4 are
written in the following way.

Theorem 4'. TAe mappings T->T/0 0«rf T->3μT/9/S <zrέ> continuous.

Theorems7. // Te'2>$25 then 3λT/a/λ e '®^±*] and
-λ) for any 0<λ</^.

Theorem 77. // ΓG^W, M^ ίfe mappings i0-^T/a^ 15

Theorem 8. // for any / e SB, //ter^ corresponds Tt e ®C*V(ΛΓ)
mapping t^>Tt is continuous, we can define (n + \)-dimensional

distribution f on the interior of 53 by < f , ^(ΛΓ, ί)> = j^ < Tt, ^(ΛΓ, ί) >,, Λ
^A^rβ < >β means the sealer product between ®*(#) ^wrf ®CIC)/(Λ;).

Te (y) /or ΛWJ π > v > 0, tfwd f t = T,.

REMARK. It is evident that if V j ^ i ^ , then r/^ (v2) is finer than

τ/φρ(Vl) and /®Qλ(v2)C/®Qλ(^ι) So if we can prove fe/®s8(^ = 0),
it follows t e ̂ (v > 0) .

Proof. Manifestly T is an additive operator, so we show its

continuity on 3)ĵ (#, /). Now a family {T t |ίeSS} is a bounded set in
3>C1°'(*), and a family of functions {φt(x)\φeB«(x, t), t e W } eSB^ΛΓ). So
there exists a number M such that for any φeBJ(x9 f), |<Tt, ^,(Jc)>|<M,
i.e. |< T, ^>(jc, ί) >|<M(δ— a), which means continuity. We prove
the second and third proposition generally about μ-times continuously
diff erentiable distribution for μ<iτr using the ^-sequence. For any
φ G BJ(x) and for any element φej of a (//, δ£μ))-family we evaluate
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In the 2nd term <£>*(δ-άfc) ϋ 0 and /fc(ί) = < T,, 9>*(δ— άs(#))> is a
μ-times continuously differentiable function and Sup, e ^|3λ/fc(/))/3/λlLl!^0

for 0<λ<>. While we can take a (/A, S7μ))-family {φf, \t G 93,.;' = 1,2, •••}
each of whose carrier is contained in a compact set SB. So the 2nd
term is smaller than 8/2 uniformly for j and /. In the 3rd term

On the other hand {φtj*(δ—άk(t))\k = 1,2, ->} is a sequence which
converges in the topology of ®CfλV and ©'. So the 3rd term is <^£/2

uniformly for j and f 0 , and f e VA=</®$OO (where ^ = ̂  = 0, 1, — μ\

μL means μ in § 2). The last evaluation is done by taking a sequence

< 3^ < T, , ̂  >/a/^, φ, > = < T^, ^ > ,

where T^μ) means μ-ih parametric derivative of T.

From this proof we see also that the following theorem holds.

Theorem 9. If a parametric distribution Tt is μ-times continuously

differentiable with respect t on $5, then T which is defined in Theorem 8

belongs to the space AP=O 7®sgcp) and its μ-th parametric derivative T$°
is equal to c^T/dt't or (d»Ί '/3/^0 on SB.

Theorem 10. // Te'3b$g and f is constructed from Tt on 55 by
Theorem 8, then T = T on 55.

Proof. Since ^(x) ® ®*(0 is dense in the topology of ®^ in

®Λ(ΛΓ, t), we have only to prove < T, u ( x ) v ( t ) y = ζf, u ( x ) v ( t ) y
for u(x)v(t).

Now

T, - « T,

If we take φj δ0 then {rtφj \j = 1, 2, •••, ί e 93} is a (v, τ7δ)-family. So
there exists ^0 such that for any j^>jQ, \(Tyuφtjy—(T,uδty\<^S/2M
by Corollary of Theorem 2. If we take Msuch that Max|fl(£) |<M/(6— «)
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then the 3rd term is <<S/2. The 2nd term is smaller than

|< T, uυ > - </, uυ >| + |</, uυ > - «/, wφt, > , v(t)

- « T, uφtj > , v(t) >] .

If we take g_^T then the 1st term is <£/6 and
!</> uΦtj > — <T, uφtj >|<^£/6M uniformly for ty j. For such an / we
can take j such that the 2nd term |</, u > - </, wφ^ >|<£/6M
uniformly for /. So we have |< T, w^ > — < T, w0

Theorem 11. (THE CONVERSE OF THEOREM 10)

, q. e. d.

//

continuously differentiable from 8̂ to
derivative T^ equals

mapping t->Tt is μ-times
Ϊ5 ^-//? parametric

Proof. We take a sequence {φj} such that Φ ^ " " " 0 - Then
{τtφj\j, t} is a (/A — 1, τίδ

cμ~°)-family where T means a shift. So we
have |<T, «τ_^>~<Γ, MT.^^^Kθ uniformly for Δ/ where

|£ 0 -fΔ/e33}. So for ^φO, there exists a y^f) such that for any
ξ) and for any Δ/ with |Δ/ <|f |,

\<T, «τ.Λφ,>-<Γ, «τ.^-«>|<£|f|.

In the next place we can say lim^ t_>0, J^00(τ^^tφ} — Φj)/Δt ^+ \ fr^ as
follows. For any ^G.β(μ+1), we evaluate

In the 2nd term a set

is a bounded set in
such that for any j

_ . S o i f

jt and - (̂

_Z_>δ(μ~ι:)

? then there exists

uniformly for , Δf .

The 3rd term is equal to

where 0<6>, ,̂ <1.
Since <peβ(μ+1), we have £
term is <6/2 uniformly for
that for any j

such that for any |Δ/|<|0 the 3rd
B^^. So there exists f 0 and j2 such
we have
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and we obtain (1).
Now putting M a x ( j 2 9 j ί ( ξ ) ) = j 0 ( ξ ) for \ξ\<ξ0, we evaluate

|< T, κδ<" > - < {T&^-T

<|< T, Kδ^ > - < T, κ{τ_,

For any £^>0 there exists £0 such that for any J^>j0(ξ0) and
Δf |< I f 0 1 the second term is < 6/2. Now for any Δί with | Δί |< | f 0 1 ,

if we take a φ^ with j^>yo(Δ/), we can make the 3rd term smaller
than 6/2.

REMARK. We have assumed v = p + l in the space '®«KP:> in this
theorem. As the proof shows this condition can be weakened. That

is to say, Theorem is also true for Te'!Σ)sg/Ύ®ί where '®ί is the dual
space of the ®J whose topology is induced by the bounded set defined
by the boundedness of the difference quotient of p-ih differential
coefficient in place of by the bounded set defined by (/> + !, δ') — family.

However it will not be sufficient to assume v = /o, since {τ_Λδ—

but not ~̂ > δ' .

§ 6. Application to the distributional differential equation of evolu-
tion.

L. Schwartz (C3]) treated the parametric equation of evolution
of the following type.

x, t)/dt+ Σ A W W ί * , t) = B(x9 1) ,

where Af(t) is a function of ®c*+p) and B(xy t) is a continuous parametric
distribution. Dp(x) means a differential operator from the space ®(l0/(#)
to S)>+P)/(Λ:) and β, Ay U are all matrices.

We consider the corresponding proper distributional (in ©c*y(#,/))
equation of this type and its proper distributional solution. (Initial
condition on ί = ί0 is given in the space '®p.

Theorem 12. // ΛS a mapping t -» ®c*y(#) /or τr>l ^ parametric
continuously differ entiable distribution U(x, t) satisfes parametric equation
(1) under the above mentioned condition, then U satisfies the correspond-
ing proper distributional equation, i.e.

dϋ(x9 t)/dt+ ^Ap(t)DίU(x9 1) = B(x, t) .
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Proof. By Theorems 8 and 9, Ue '35^ Λ'®gjα>, and U™(x)=(d U/dt)t0

where subscript (1) of U means parametric derivative. By

Theorem 8, B(xy f)£'®$B and Bto(X) = Bt0(X). By the Corollary of
Lemma 11 and Lemma 12, Σ Ap(x, t)Dp

xU(x, t) e'®^+7e\ and
^Ap(t)Dp

xUt(x) = (^Ap(t)DpU(x)t))ίy where Dp

x in the left hand side
of equality means differential operator from ®(7θ/(#) to ®Cirher)/(#) and
Dp in the right hand side means differential operator of the same
form from ®c*v(#, t) to ®c*fσ)'(*, /).

Now we can rewrite parametric equation (1) as a proper equation
of multiple distributions by δ(/), i.e.,

(dϋ(x, f)/3/+Σ ApD
p

xU(x, t))t = (B(x,t))t

for any t G 35. So if we take ~ on both side we obtain a proper

equation in &«^'(x, t), dϋ/dt+Σ A,D»XU=B, by Theorem 11.
Conversely the following theorem holds.

Theorem 13. // a proper equation (1) is given, and the proper solution

U(x,t) belongs to /®5β/Λ\/®$β,(ί/=2) for τr>2, then Ut(x) satisfies the

corresponding parametric equation.

Proof. Manifestly /%(|/==2)C ̂ (, = 1) So aCZ/a/G7®^ by

Theorem T. It holds also that ^A?(t)Dyj(xyt)£&^r(f by Corollary
of Lemma 11 and Lemma 12. Therefore we can take the multiple
distribution by δt of the distribution of both hand sides of the equation

(3J7/3/)t + ( Σ A,(t)DίU(x9 t))t - (B(x, t))t .

Since Z7e/®^,(ί/=2)Λ
/®sβ , (d'U/dt)t equals parametric derivative by

Theorem 11, and the second term equals ^Ap(t)DZUt(x) where Dp

x

means an operator from ®(<>/(#) to ®c*+σ)/(jr) and the third term equals
Bt(x). So this is itself a parametric equation whose solution is Ut(x),
q.e.d.

(Received September 1, 1954)
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