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The Fundamental Solution of the Parabolic Equation
in a Differentiable Manifold

By Seizo Ito

§0. Introduction. The existence of the fundamental solution of
the parabolic differential equation in the Euclidean m-space has been
shown by W. Feller [2] for m =1, and by F. G. Dressel [1] for
general m. Recently Prof. K. Yosida has generalized the result by
an entirely different approach to the case of a Riemannian space.
(See the immediately preceding paper by K. Yosida in this issue.) In
the present paper, we shall show that the fundamental solution may
be constructed for the case of a differentiable manifold, by means of
Feller-Dressel’s idea, and that the case of a Riemannian space may be
deduced from the result.

The author expresses his hearty thanks to Prof. K. Yosida who
has shown him the manuscript of the paper [4] before the publication
and has encouraged him with kind discussions throughout the course
of the present paper.

§1. Preliminary notions and main theorems. Let M be an m-
dimensional manifold of C%-class such that the function of the trans-
formation between two local coordinates has partial derivatives of
second order each of which satisfies a Lipschitz condition of order
v(0< vy <1) at every point?, and fix s, and ¢, such that —co<s)<t,<co.

First we give the following

DEerINITION 1. (Cf. [3] p. 42) Let fy(t, ®), ..., fu(t, ) be functions
on (s,, t,)x M which depend on the local coordinate around z®. The
system of functions {f,, ..., f,} is said to be bounded by K if there
exist a canonical coordinate system on M and constant K ~>0 such that

[f N <K, i=1, .., n;s< t<¢, yes,,

1) We say that a function f(x) satisfies the Lipschitz condition of order Y(>0) at x
if there exist constants N and & >0 such that |f(x)-f(9)|< N |a?—»'|Y whenever
|xt—y?| <3, i =1, ..., m, where (x?) and (y!) respectively denote the local coordinates;
such notion may be defined for functions on (so, #0) xM (Cf. [1], [2]).

2) Examples of such functions are ai/(¢, x) and bi(¢, x) stated below.
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for any x € M, where a canonical coordinate system should be understocd
as defined in pp. 41—42 in [3] and S, denotes the unit sphere with the
centre x with respect to the canonical coordinate around .

We consider the parabolic differential operator L :

[ —1I, —A o
-1 e ot
where v
. 2 : o
= — gt )% N 9 .
(1.2) A=A, =a"( x) T +b(t, @) 5% +c(t, @)

and | a”(t, z) || is a strictly positive-definite symmetric matrix for any
<t, x>>; a*(t, ) and b'(, x) are transformed between two local coor-
dinates («’) and (z‘) in the following manner :®

oz oF’

1.3) at(t, &)= S0t ot o"(t, x)
it =Y — ozt k| . o*Z! L] "
(1.4) bi(t, &)= o b*(t, x)+ 5550 o (t, x)

We assume further that

dait, x) %at(t, x) bt @) L _
D ot ’ oxkoxt xt (% 7, ELl=1, ..., m)

and c(t, x) satisfy é Lipschitz condition of order ¥(0< y<1) at every
point <'t, > of (s,, t,)x M,

II) the system of functions

1J 2415 iJ i )
ot oa o%e o0 det | a¥ || 7Y, ©, b o

* od*’ oa*ont’ ot ’ ox*’
Wik l=1 .., m

is bounded by K (Definition 1).»® It follows from this condition that
there exist constants ¢, and ¢, >0 such that

(1.5) el Ell 2=t 2)EE =c, | £

for any ¢, x and any £ € R™, where || a,,(¢, ) || denotes the inverse matrix

of || a”(t, )|l and || & |2 =3¢ |

3) This transformation ruie is connected with the fact that the value of A-f(¢ x) is
independent of the local coordinate.

4) This condition seems to be closely related with K. Yosida’s HYPOTHESIS in [4].
But our condition does not require any restriction for g(x) = det || gys(x) || even if M is a
Riemannian space with the metric d»2 = g;;(x)dx'dx/. See Theorem & below,



The Fundamental Solution of the Parabolic Equation in a Differentiable Manifold 77

We fix a canonical coordinate system & for which the condition
II) is satisfied. A

Next we fix a real number sy(s,< s, < t,) and put a,(x)=a,(s,, %)
and a(x)=det || a,(x)||. Then, by virtue of (1.3), we may define in
M the metric d.r* =a,(w)dw’'de’ and the measure do = a(x)da? - da™.
Let L* and A* be the (formally) adjoint operator of L and that of A
with respect to this metric :

o

I*=Lf = AL+ 3,

1 o ——
¥ A¥ — . tJ
A —Atx l/a@ axiax_}a (t’ x)l/a'(x)
1 8 i TN
— .2 b(¢, 2 a(x)+c(t, x).
i e ¥ W U)ol )
DEFINITION 2. A function w(t, «; s, ¥), s,<s<t<#%,; @ yeM,
is called a fundamental solution of the parabolic equation L-f = 0 if, for
any s and any function f(z) uniformly continuous and bounded on M,
the function

(1.6) ftray= |t =5 5 wfwia

satisfies the conditions :

(1.7 L-ft, #)=0, s<t<t, weM,

(1.8) 1511? f(t, ) = f(») (uniformly on M)
and ‘

(1.9) both f(¢, «#) and %,f(t’ ) are bounded on (s, ¢") x M

for any ¢ and ¥, s<s' <t <¢,.

A function wX(s, y; t, %), t, >t >s >s,; %, yeM, is called a
fundamental solution of the adjoint equation L*f* =0 of the equation
L-f =0 if, for any ¢ and any function f(«) continuous and summable
on M with respect to the measure d,x, the function

(1. 6%) ¥(s, ) = SM w¥(s, y; b, ) (@)

satisfies the conditions :
(1.7%) L¥f*(s, 1) =0, t>s>s,, yeM,
(1.8%) lim f¥(s, ) = f(u)
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pointwisely and strongly in LYM) and
[ both § 174 )y and | |2 1,
M M os
bounded on (s, ¢') for any, s’ and ¥, t >t > >s,.

We state here the main theorems, which will be proved in §4.

d.y are

(1.9%)

Theorem 1. There exists a function u(t, x; s, y) of C'-class in t and
s (s,<s<t<ty) and of C*-class in & and y, with the following properties:
i) u(t, x; s, u) is & fundamental solution of the equation L-f =0
il) w*(s, y; t, @)=ult, «; s, ¥) is & fundamental solution of the
adjoint equation L*f* =0,

iii) Lut, x; s y)=0, L¥ult, ;s y)=0
iv) S ult, »; 7, Eylr, &; 8 Y)df=ult, x; 8, ¥), s<r<t.
M

Theorem 2. Let u(t, x; s, y) and u*(s, y; t, &) be the functions
stated in Theorem 1.

i) If a function f(t, x)(s<t<t,, v € M) satisfies (1.9), (1.7) and
(1.8) where f(x) is continuous and bounded on M, then it is expressible
by (1.6).

ii) If o function f*(s, y)(t >s >t,, ye M) satisfies (1.9%), (1.7*)
and (1.8%) where f(x) is uniformly continuous and summable on M with
respect to the measure d.x, then it is expressible by (1.6%).

Theorem 3. (UNIQUENESS OF FUNDAMENTAL SOLUTION) If a function
u(t, ; 8, y) is continuous in the region: sy < s<t< t,; x, ye M, and
satisfies the condition i) or ii) in Theorem 1, then it is identical with
u(t, x; s, y) stated in Theorem 1.

Theorem 4. If c(t, 2)<0 in the differential operator A,,, then
ut, x; s, ¥)=0; if especially c(t, 2)=0, then s wt, x; 8 )y =1.

M

Next, if M is not only an infinitely differentiable manifold but also
a Riemannian space with the metric dr? = g, (2)dx'd2’ @ priori, then it
is natural that we take the measure '

dax =1/ g(x) &t -+ da™ where g(a) =det || g;(2) ||

and consider

[ v=a+F

i Al — 1 2 iJ( a’)l/g(a') .

l/g(.%) 5% 8:171 bi(t :L)|/g(@)+0(t )

1/()3““
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as the adjoint operator of L and that of A. But the results of this
case may be immediately deduced from the above stated results by
means of the function

5
at, z; 8, y)=u(t, «; s, y);g%%; ;

that is,

Theorem 5. If M is o Riemannion space with the metric dr® =
g.(@)dx'da’, then we may replace L*, A*, u and d,x in Definition 2 and
in Theorems 1, 2, 3 and 4 by L', A", u and d,z (stated just above)
respectively. '

§2. Quasi-parametrix. First we consider L,, and A4,, in the Eucli-
dean m-space R™. Put

W, @5 s, ¥) = (t—s) % exp {_“u(t» 95)'(4&2;—;{))(90’ —y’)}

8y < st ty; ®, yER™,

and
Vit @)= exp{-0lb B ge, ag—ag .. agn
R™ 4
Then we have

Lemma 1. Let f(t, ) be a bounded and continuous function on
(8 V)X R™(sy < s<ty), and put

(2.1) ft @, 7)== SRM V@, x5 70 (e, y)dy, t>7>s.
Then we have
(2.2) Sift m =] SV o5 u)fr vy,

o [ 3 )= 2Vl @5 m, ),y
(2.3)

O fw = =Wt @ 9, v)

MJ f( y Ly 'T)— SRmaxtaxj ’ s Ty YT YRY
and
2.4 Lim  f(t,, @, t,)=f(r, £)V,(r 2).
tl\?tz;/f
1=

5) It is true that a@(x) and g(x) depend upon the local coordinate, but the ratio a(x)
/ g(x) is independent.
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Proor. The equalities (2.2) and (2.3) may be easily proved from
the assumption. We shall prove (2.4). By the substitution: y'=
(t—7)!€ +a', in the right-hand side of (2.1), we get

_ Neres
it = exp [ %lb DEE g, (¢—nberaye
Rm
where (t_,,)’zg +x means the sum as vectors in ™. Hence we obtain
(2.4) by Lebesgue’s convergencé theorem, q.e.d.
Similar argument shows that

Lemma 2.

lim SRm 1@, 2)V({E, ;5 s, y)dx = f(s, YIV(s, v)

¥s

for any function f(t, x) bounded and continuous on [s, t'] x R™(s< t'<t,).

Lemma 3. Let f(r,v) be a function defined on (s, t,)x R™ which satis-
fies the following three conditions: i) StS | f(ry v)|dydr<oo(s<t<1y),
. . . s Rm
ii) f(r, v) is bounded on [s, t']xR™ for any s and t', s< s < t' <&,
f(r, y) satisfies a Lipschitz condition of order ¥(0 < v<1) at every point
in (s, t,) xR™; and define f(t, x, v) by (2.1). Then, for any <t, 2 >¢€
(8 ty) x R™, there exists a constant M such that

(2.5) |% f(t, @ )| <ME—r)") -

whenever s <t < t<t'; further we have

[ g:[é%f(t, %, 7)|dr < o0,

(2.6)
dr < oo,

S:I%;xff(t, x, T)

PRroor. By the condition iii), there exist 8(0<8<1) and N(0)
such that
e ) | Fr )=t )| SN {|r =]+ Dly'—a| "

whenever |r—t| <8 and || y—«| <3. Hence the relation t—8<r<t<t'

implies t‘:

2.8) 'S
Y=z <8
gg N-**aﬂ, v, «; T, y)[ {IT—tl*+Zly“—x"|’}dy-
Y =zl1=8 ot 3

%V(t’, x; T y)l"f(“r, -1t v)ldy
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If we calculate WV(t x; 7, y) and put

(2.9) y‘—x*=(t'—7)%gi, i=1, ..., m,
then we may see that the right-hand side of (2.8) is not greater than

(o ¥ (5= f| Zoutt, wiee | + L 0= it 18|

x{]t—Tl’+ lt’-—-rlfvzi]]&'l"} exp {—@E—P} dg.

Hence, by means of the facts ¢’ —+>t—+ >0 and t—+<6<1 and by the
boundedness of a,(t, #) and -g-ta,.,(t, x), there exists a constant M, such

that

(2.10) V(t, @3 7 DU )~ 1t 2 dy| <Mty O3

’SIW—ZHSS at’

whenever t—8<r< t<t'. Furthermore, we may easily show by way
of the substitution (2. 9) that

@i || S s n ) e 91 o)y | <M,
V—z|l=
and
(2.12) ‘,(—%SRmV(t’, ;7 y)dy‘z’é%SRmexp{—%w’f——)g}df)ng

for any ¢ >r>t—38 for a suitable constant M,. From (2.10), (2.11)
and (2.12) and by (2.2) in Lemma 1, we get

l“a% f(t', @, )

=[f. 2 @i o ) {fe D=1t )} dy |+
+ I (t, x)\-\gﬁg v, ;o y)dy’éMz(t——«r) (-3
-

whenever t—8<r < t<t, for a suitable constant M,. On the other
hand, = f(t’ %, ) is bounded uniformly in <#, x, +—> such that
t'—r=3, as is easily seen from the properties of V(¢', x; =, ¥) and f(=, ¥).
Hence we conclude (2.5); consequently we get

.

We may prove (2.6) in the similar manner.

dr < oo,

2
af(t’ x, 'T)
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Lemma 4. Let f(r, y) and f(t, z, v) be as stated in Lemma 3 and put

F(t, o) = S’ f(t, @ v .
Then
2.13) 2R, w) = f(t, )V,(& @)+ H O Vt, @; 7 y)flr, y)dydr
at 0 s Rm at ’ ’ ’
and
(2.14) A F(t, @) = S’ SRm AV, @5 m)f(e, v)dydr .

Proor. For any A >0, we have
L P+ a, 0)-Ft, o))

=z\1—5:+4f(t+zs. @, T)dr + H* HE+A, z, 1)—f(¢, @, m)jdr

= f(t+A, @, t+0A)+ S”g—tf(tw'A, @, v 06, 0 < 1;
the first term tends to f(¢, x)V,(t, ) bp (2.4), as A | 0, while the second
term tends to St %f(t, z, 7)d= by Lebesgue’s convergence theorem and

(2.5). Hence we have, by (2.2),

llm- {F(t+ A, 2)—F(t, )}

4%0
= 6, Wit )+ [ | S,V @ wfCr, e
Thus we see that the right derivative D;F(t, ) exists and is continuous
in ¢ for any 2, and hence g—tF(t, x) exists and equals the right-hand

side of the above equality ; this fact shows (2.13).
(2.14) is obtained from (2.3) and the following relations:

——F(t x)—-s _f(t @, oYr
” J et
oz’ ow’ ow ax’
which may be proved by virtue of (2.6).

F(t, )= f(t, x, )T,

Lemma 5. Let ¢(x) be a function of C*-class on R™ such that

op()
ox’

az¢(m)' .. .
520 <Cy i, j =1, ..., m (Cy: constant).

’
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Then

| L Lp(2)V(E, 25 s, y)]lgCl(t—s)'@g_l-exp {-M}
4(t—s)
where C, and C, are positive constants which depend only on c, in (1.5)
and C, stated just above.

This lemma may be proved if we achieve the calculi of differentia-
tions in L, [@(2)V(t, #; s, y)] considering the assumption for ¢(2) and
the following two facts: 1) || a,¢ )| - || (¢, @) | = identity matriz,
2) p and C are positive constants and X is a variable >0, then there exist
positive constants C, and C, such that A”exp(—C\)<C,exp(—C,\).

Next we fix a function o(\) of C*-class in A=0 such that o(A)=1

or 0 if xgl or Agg respectively and 0<o(A\)<1 for any A>0, and

d?o(N\)
hat ¢ @\
that e
For any z€ M, we map a neighbourhood U(z) of z onto the unit
sphere S in ™ by means of the canonical coordinate € & around z (see

§1), and let Uy(z) and U,(z) be the inverse images of S1={§ s NEN2<LZ %}

satisfies the Lipschitz condition of order v at every A.

and S, = {g; Il EIl 2<%} respectively under this mapping. By means

of this mapping, we may consider any function (&) defined on S as a
function on U(z). We shall denote by ¢,(2) the function on U(z) defined
in such manner from the function @(£) on S.

Now we define the quasi-parametriz® Z(t, x; s, v) on M as follows.
Since the manifold M satisfies the second countability axiom, there
exists a sequence {z;, z,, -} M such that M=\ /3, Uyz,), where
we may take the sequence in such a manner that every point ze€ M is
contained in finite number of Uyz,). We put

| Son =2, 1 onl || =2, | Walt, 25 )
R o ¢ EANILTO

(t>s; x, yeM)

where
(2.16) Wi, x; 8 y)=V({E x; s, )/ Vs ¥) (%, ye R™).

For any fixed 2, wz,( || x—2, || 2) = 0 except finite number of »’s and hence

6) The function Z(¢, x; s, y) defined here is somewhat different from the parametrix
of K. Yosida [4]. But the former plays a role analogous to the latter in the construction
of the fundamental solution. So, we call the function Z(¢, x; s, ¥) quasi-parametrix.
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~both >V's appearing in (2.15) are essentially finite; we may easily see

from the definition of o()\) that Z(¢, x; s, y) is well defined for any
az oZ o*Z o*Z

2, y€M and any ¢, s(s,<s<t<t,), and 2 Ss * Baon andW

exist and satisfy a Lipschitz condition of order v >0 at every point.
(We note that the function Vs, ) is bounded above and bounded away
from zero and satisfies a Lipschitz condition of or order v >0.)

Whenever « runs over U(x,) for any fixed x,, we may consider in
(2.15) only such »v’s as U(z,) "\ U(w,) is not empty. From this fact and
by (2.15), (2.16) and Lemmas 1, 2, 4 and 5, we may prove the f0110w-
ing Lemmas 6, 7 and 8.

Lemma 6.
im | 7, @; 5 )y =)  (uniformly)
M

tys

for any bounded and uniformly continuous function f(x) on M, and
lim j 18, )28, @5 s, v)ay = f(s, v)

for and continuous function f(t, x) on [s, t')x M(s<_t' <t,).

Lemma 7. Assume that f(r, y) satisfies a Lipschitz condition of order
v(>0) at every point in (s, t,)x M, that f(r, y) is bounded on [, t]xM

for any s and t',s<t' < t,, and that gtg 1f(r »)|dydr < oo for any
s Iy
t>s; and put
e, )= | 26 @5, 9)fe, v¥yir.
sIm
Then F(t, x) is of C'-class in #">s) and of C3-class in a( €M), and

2.17) g_t Ft, @)= f(t, @)+ S sM%Z(t, ;v Pf(r, y)dydr,
(2.18) A F(t, %)= jtj A2, @5 (s v)dadr .
s Im

Lemma 8. There exists a constant M >0 such that
|Z(t, @5 5 )| <M(t—s) "2,

m, _m+1
’%Z(t, 2 s, y){ <Mt—sy D, | L2 z; s v)| <M(t—s)2 ,

[ 12 &5 5 w)lag ana | 126 25 s OldE<M,
M M
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s |LeZ(t, €5 s, y)|dof and y |L,Z(t, @; 8, £)|dE<M(t—s)"
M M
for any t, s, x and y.

§ 3. Construction of the fundamental solution. We define functions
JAt, x; 8, v), n=0,1, 2, ..., by the induction as follows:

3.1) Jot x5 8, y)= L, Z(t, x; s, ¥),
(8.2) Jut, w; s y)= Scs Jolt, 5 7 EWoy(ry E; 8 y)dEdr .
sIm
Then we may prove by Lemma 8 and by the induction that
S |t %5 8, y)|da
M <MYt —s) T I
SWIJn(t. w; 8 y)ldy vl

and consequently

| Jwirlts 25 s, y)lgM”*'z(t_—s)”z HB(; 2)

where B(y, v) is the Beta function. Hence simple calculation shows
that there exists a constant M, such that

o)
Cm—y

| Tt x5 8, y)|d2
(3.3) M <M(t—s)F exp {My(t—s)}} .

S| 1w s wla
n=0 J g
and that
oo ) —(;L‘ﬂ) 3
(3.4) ;z.‘olJn(t, %; 8 y)| <My(t—s) exp{M,(t—s)’} .
Hence we may define
(3.5) f(t, =; s, y)=2oJ.,.(t, r; s Y)

where the series in the right-hand side converges absolutely and uni-
formly in <¢, z; s, y>> whenever 0< &<t--s<s, and consequently
we get

(B.6)  LuZlt @5 5 )+ | | LaZlh @5 m (r £ 5 v)Mldr
=t @; s v)
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and
le(t, z; s, yldax

3.7) <M,(t—s) " exp (M (t—s) .
| 11t @5 5 w)lda
M

Now we put
wt, ;s ¥)=21t, x; s, y)+
(3-8) + Stg Z(t, @ ;o E)f(r, E; 8 y)dEdr .
sYM

For any fixed <'s, y_>, we may prove from the properties of Z(¢, «;
s, y) stated in §2 that the function f(r, &) = f(r, &; s, y) satisfies the
assumptions of Lemma 7. Hence, by (2.17) and (2.18), we get

L[| 2t @i v ofer £ s viar |
sYMm
='f mut, w5 n Ofte £ 5 wEdr—1 25 5 v).

By means of (3.6) and the above equality, the function (¢, ; s, ¥) in
(3. 8) satisfies

(3.9) L., ;8 y)=0.

If we apply Lemma 8 and (3.7) to (3.8), we get by simple calculations

|u(t, ©; s y)|dx
(3.10) <M-exp {2M,(t—s)',
ngu(t. z; 8 Y|dy
lg—tu(t. x; 8 Y)|da¥
3.1y M i < M(t—s)"exp {2M(t—s)}
SM‘S_tu(t’ x; s, y)|day
and
512) lu(t, @5 s, 9)| <M(t—s) 2 exp (My(t—s)}} ,

Gt @5 5 0)| < Mct—) G exp 1220,0—s)
Therefore we may show by (3.7), (3.8) and by Lemmas 6 and 8 that

(3.13) lim SM wt, ; s, ¥)f(w)y = f(x) (uniformly)

tys
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for any bounded and uniformly continuous function f(z) on M, and that

(3.14) lim jw f(t, 2ty @; s, Y& = (s, )

tys

for any continuous fuaction f(¢, ) on [s, t')x M such that g | f(%, x)|d.x
M

is bounded on [s, ¢') for any ¢, s <t <¢,.

Next, we consider the adjoint equation L*f*=0. If we expand
the terms in A*f*(¢, ) and consider the conditions I) and II) in §1 for
A, we see that the coefficients of A* also satisfy the conditions I) and
II). Hence we may construct a fundamental solution u*(s, v; ¢, ) of
L*f* =0, which has the similar properties to those of w(t, x; s, ¥)
stated just above. For the later use, we note especially_that

(3.9%) Liu*(s, y; t, 2)=0
(3.13%) lim g wi(s, v t, &)f(@)d.a = f(y)
s ¢ M .

pointwisely and also in LYM) for any function f(«) continuous and
summable on M with respect to the measure d,x, and

(3. 14%) lim SM f(s, yyit(s, u; & @)y = f(t, @)

for any continuous function f(s, ) on (s, ¢]x M, bounded on [s', t]xM
for any ¢/, s, < s < t. '

§4. Proof of Theorems. Let u({, x; s, y) and u*(s, v; ¢, ) be the
functions defined in §3. We first prove the following

Lemma 9. There is a constant M, such that, for any compact set
' C M, there exists a function ¢(x) of C?-class on M with the following
three properties: 1) op(x) =1 on L', 2) the support of ¢p(x) is compact, 3) for
any z, (stated in §3), the functions |p(x)|, ag;(’f’) g:ffg:}
veey My, are <M, for xcU(z,) with respect to the local coordinate (€ S)
around z,.

Proor. We may consider that the sequence {z,, z,, ---} stated in
§ 3 is so chosen that each point z € M belongs to at most m, neighbour-
hoods Uy(zv,), n=1, ..., m,, where m, is a constant depending only on the
dimension of M. Now we take z,, n =1, ..., 1y, so that I' C\ /7°,Uy(zy,)
(see §3), and put

; 6L i=1,

24?21 a’"n( ” X — vy ” 2)
x) =
! ol 15—2 %)
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where o,(-) = wz,(-) which is defined in §3. Then we may easily show
that the function ¢(x) has the properties 1), 2) and 3) stated above;
the constant M, is determined by means of m, and supremum of

o], |22 [Tl 0<n1 (see §3)

b

Lemma 10. Assume that f(x) and W(x) are funclion of C*-class on
M such that S [ f(@)|dg < o0, S |A*f(x)|dx <o and that M x),
M M

2
a%h(a:), a—SWMx); i, 7=1, ..., m, are bounded on M. Then

| t@raumena = asfe);noan
IM M

Proor. Let I'y, n=1, 2, ..., be compact subsets of M such that
ncr,--— M. Then, for each #», there exists a function ¢,(2) of
C?-class on M with the properties 1), 2) and 3) stated in Lemma 9
where we read I', for I' in 1) while the constant M, is independent of
n. Hence, by means of Lebesgue’s convergence theorem, we may
show that

| faramene=1im| o) ALp o
M nre J g
= limS A% p(2)H(2)d =S A% f(@) W), q.e.d.
nre Jpp M
Lemma 11. If a function f*(s,vy), s,<s<_t, yeM, has the pro-
perties (1.9%) and (1.7*%) (¢: fized), then
(4.1) [ e, ente, €5 5 w)E =P 0)
M

for any (s <t < %)

Proor. From (3.9) and the assumption (1.7*) for f*(r, ), the rela-
tion s <7, <7, <t implies

0= STZ dq-S {L*f*(,r' f)'ﬂ(’r, E, s, y)—'f*('r, f)‘LTgu(T, E; s, y)idaf
M

71

=[Tar [ 141, £rstr, £ 5 D)~ B Augrlr, £5 5 114

+ STZ dr XM {%:’E)H(T £; 8 y)+H(r, &) %57:—8;2/)} det

71

7) Any function on M is considered as a function on (sg, #p) X M, sO we may operate
A;z to the function.
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the first term equals zero by Lemma 10 since f(§)= f*(r, &) and
hE)=u(r, &; s, y) satisfy the assumptions of Lemma 10 for any fixed
T, s and & while we may apply Fubini’s theorem to the second term
by virtue of (3.12) and the assumption (1.9%) for f*(r, &), and hence
the second term equals

SM{f*(Tz. Eu(ry, E5°8 Y)—1* (71, Eul1, &5 8, Y)}daE.

Thus we see that S *(z, Exulr, &5 8, y)d, £ is independent of =, s< r<t.
M

From this fact and (3.14), we obtain (4.1).
Now we shall prove Theorems stated in §1.

Proor oF THEOREM 1. For any fixed ¢ and z, w*(s, v ; {, ) satisfies
the assumption of Lemma 11 as a function of s and y. Hence we have

4.2) SMu*(T. E; t wu(r, £; 8, Y)dE=u*s, y; ¢t ), sr<t.

Taking the limit as =1 ¢, we obtain by (3.10) and (3.14*) that
(4. 3) wt, x; s, y)=u*(s, y; t, ).

From the relations (3.9—14), (3. 9%, 13*%, 14%), (4.2) and (4.3), we may
easily show that the function w(t, «; s, ¥) has all properties i), ii), iii)
and iv) in Theorem 1.

Proor orF THEOREM 2. Assume that f*(s, y) satisfies (1.9%), (1. 7*%)
and (1.8*%). Then, by Lemma 11, we have

(4.4) SM ¥ 2T, 25 8, Y)2 =58, ¥), sp<s<r<t.

Taking the limit as + tends to ¢ and considering (4.3) and (1.8%)
(strong convergence in LYM)), we get (1.6*), which proves ii) in
Theorem 2.

Similar argument shows i) in Theorem 2.

Proor or THEOREM 3. If (¢, x; s, v) is continuous in the region:
8o <s<t<t,; ®, y€M, and satisfies i) (or ii)) in Theorem 1, then, for
any continuous function f(z) on M with a compact support, we get

S ut, x; s ¥ ¥y =S wt, x; s, YY)y
M M

(or SM (i, x; s, f(e)x = SM u(t, x; s, y)f(x)dx respectively)
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by virtue of Definition 2 and Theorem 2. It follows from this relation
and the continuity of « and v that (¢, z; s, y)=u(t, 2; s, ).

ProOOF OF THEOREM 4. By virtue of Theorem 3 and by the argu-
ments in § 3 and the proof of Theorem 1, we may put

(4.6) w(t, @5 8, y) =Sl ult, ¥; s, )

n=y

where
ut, ;5 s, y)=2(t, x; s, ¥)
u(t, ©; s, y)= S‘S Z(t, %27y EW,y(ry £; 8 Y)oEdr, n=1.
sIM

From the definition and properties of Z and J, (§ 3), we see that each
u,(t, x; s, y) vanishes outside a compact set of x for any fixed ¢, s and
9, and that the right-hand side of (4.6) converges absolutely and uni-
formly in <7¢, #; s, y > whenever 0 < é<t—s<,. Hence we may prove
that, for any function f(z) which is continuous on M and vanishes
outside a neighbourhood of a point in M, the function

f(t, )= Swu(t, z; s, y)f(y)dy =Z} SM ult, @ ; s, YY)y

pi

tends to zero as x tends to the point ot infinity”, for any fixed ¢ >s.
Moreover, we get
L-f(t, «)=0
and
118, @) <M(t—s)" exp (M(t—s)'}
for a suitable constant M, >0;

the last relation follows from (3.7), (3.8) and the boundedness of f(x).
Hence, by the well known method, we may prove that ¢(¢, )<0 and
f(2)=>0 imply f(¢, 2)>0; and consequently we get u(t, «; s, #)=0.

In the case c¢(t, ) =0, if we apply i) in Theorem 2 to the function
f(t, 2)=1, then we get

g u(t, ©; s, ydy=1.
M
Thus Theorem 4 is proved.

Proor orF THEOREM 5. We shall call by Theorems 1/, 2/, 3’ and

8) This expression means that, for any € >0, there exists a compact set I C M such
that x¢ 1" implies |f(¢, x)|<e.
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4' respectively Theorems 1, 2, 3 and 4 which are modified as stated in
Theorem 5. We note the relations

Vi) _ V) V9w) _ v gw)

@D Ao i = v A Ve = Valy)
and

V@), vV a(z)
(4.8) dx = V) dx, o = EC )d

which immediately follow from the definition of A’, 4%, d,» and d..
By means of these relations and Theorems 1, 2 and 4, we may easily
prove Theorems 1/, 4’ and i) in Theorem 2/. If fy(s, y) satisfies the
the assumption of ii) in Theorem 2’, then the function

(s 0) = ;jgg'-”; f(s, v)

satisfies (1.9%), (1.7%) in the sense of initial definition, and

. vV 9()
lim f*(s, y) = —== s
H7‘( Y) l/a(y)f(y)
where Y9 f(y) is continuo d bl M with ct to
0 y) is continuous and summable on with respe
the measure d,x. Hence, by Theorem 2, it follows that

f'(s, )= 5-%‘%]‘*(, Y)

_ [ VD), Vg(@)
—SMI/Q() (05 8 207y @

- § at, x; s, Y@M,
M

which proves ii) in Theorem 2’.

Theorem 3’ may be proved from Theorem 2’ by the same argument
as the proof of Theorem 3.

Thus Theorem 5 is established.

(Received March 6, 1953)
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Added in proof. It may not be of no use to state a relation between the
results of Feller [2] and Dressel [1] and the result of the present paper.

The boundedness of at/, &, §at! /0x* etc. is assumed in [1], but the assump-
tion II) stated in §1 in the present paper does not require the boundedness (in
the usual sense) of these functions. For example, consider the equation

) wld, %) = alx)uE %) +b(xdut, x)+c(x)ult, %), alx) >0,
—o0 < oo, (—o0 Iy < x <72 ).
If @, b and ¢ satisfy the assumption I) in §1, if
S:'1 a(x)~Ydx = S:z a(x)~tdx =, n<c<r,
(cf. (29), (30), in [2]),

and if B, b, and ¢ are bounded where & = (b—a/2)a~%, then the equation (1)
satisfies also the assumption II) even if @, 1/2 and b are unbounded.





