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On Homotopy Type Problems of Special Kinds
of Polyhedra II

Hiroshi UEHARA*

§1. Introduction

This paper is a continuation of my previous paper [14] of the
same title, where I gave detailed accounts of homotopy types of @
AZ-complex and of some special A3-complex. They are completely
determined by their cohomology groups, some homomorphisms z, A,
defined among them, and Steenrod’s squaring operations, so that their
homotopy invariants should be also determined by them. Homotopy
type problems and related subjects are dealt with in this paper.

First, the exact sequence of J.H.C. Whitehead [4] is generalized in
order to compute formally I',,,(0), I',.,(0) (§ 3) under some restrictions
in dimensions. In case of cohomotopy groups this is accomplished by
M. Nakaoka to get a generalization of the exact sequence of Spanier
(refer to [15]). Utilizing this, we can compute up to group extension
homotopy groups 7,., (P), 7,.. (P) of a polyhedron P with vanishing
homotopy groups =, (P) =0 for each i< n. This calculation suggests
us to compute combinatorially =,.,(P), 7,., (P) of an A2-complex and
also =,,, of a special kind of polyhedron (see §6). The study of
reduced complexes in my previous paper and of J.H.C. Whitehead’s
secondary boundary operations (see §4) enables us to solve thoroughly
how =,,, (P)%, =,.,(P) of an AZ-complex are computed by the aids of
homology groups, of Steenrod’s squaring homomorphisms, and of some
homomorphisms x, A, (see §5), and also to get the way of calculation
of I',,,(P), I',,,(P). In §6 we restate concisely the results of my
previous paper [14] through this sequence.

Until §6 we assume n >3, or n_>2.

We proceed to attack more complicated lower dimensional cases
related to the subjects discussed till §6. Recently Hirsch [16] gave a
very elegant expression of the kernel of the homomorphism i: =, (P)—
H,(P), where P is a simply connected polyhedron without 2-dimensional

* Yukawa Fellow.
% I have been informed of the existence of Hilton’s paper on =zj,41(P) through Chang’s
paper.
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torsion. In §7 we calculate the fourth homotopy group of a polyhedron
whose third homotopy group vanishes besides Hirsch’s assumptions on
P. This is a step towards the solution of homotopy type problems of
lower dimensional cases. Finally, calculations such as 7,,_, (S"VS™),
which are utilized in course of our discussions, are studied in preparation
for my forthcoming paper. I hope, I shall come back shortly to the
homotopy type of a five dimensional simply connected polyhedron in
connection with brilliant results obtained recently by N. Shimada.

I would like to express my sincere gratitude to my teacher Astuo
Komatsu for his constant encouragements during this study, and I
thank Mr. M. Nakaoka for his kind criticisms.

§ 2. Generalization of the exact sequence of J.H.C. Whitehead

Let K be a connected CW-complex and let ¢® be a 0-cell, which
is taken to be a base point of all the homotopy groups. Let

C,(0) = 7pe (K?, K*™) and A, (q) = 7,,q (K”),
where K" denotes the r-skelton of K. Then, let us consider the follow-
ing sequence designated by (C, 4) (q)

J» (@) Br(q) 4, . (q I19-1(9) . (@)

—_— Az»(q) — C, (q ) —_— ) —— Cp—
» where 3,(q) is the homotopy boundary operator.and j,(q) is the relativi-
zation. Evidently 8,(¢)-7,(¢)=0. If we put j,_,(q)-8,(a)=29,(q),

we have three groups H,(q), I, (q) I1,(q) as follows;
H,(q)=Z,(q)|B,(q), where Z,(q) is the kernel of 9,(g), and B,, (@)
is the image of 9,,,(q);
I',(q) is a kernel of 7,(q); :
© IL,(¢) =A,(@)| D,(q), where D,(q) is the image of A3,.,(q). As
J.H.C. Whitehead defined the exact sequence in [4], we have the
following exact sequence >),(K) with three operations B, , g,

Br+1(q) (n ( Sp(a B (
s Hy (@) 22 1 () 3, () 22 () 2P, () e

It is obvious that 3, (K) is the sequence of J.H.C. Whitehead used in
[4]- It is also verified through an analogous way as is shown in [4]
that >1,(K) is a homotopy invariant of K. Then we have several
formal properties;

Theorem 1.
(2.1) p,(@): I'y(g) =11,_,(g+1),
(2.2) I1,(0) =~ =, (K), where =,(K) denotes the p-dimensional

homotopy group of K.
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(2.3) r,(q)=0 for each p <mn,

I1,(¢) =0 for each p <n-—1,
if =, (K) vanishes foreach i< n.
2. 4) If K is a,sphe'ricdl in dimension less than n and if ¢<p—4 and
q<Mm -3, n—1)-2, wehave .

r»(2); @AK p**y = H,(q),

where 9,(K,p"*") is the. p dimensional. homology group of K with the
(p+q) dim. homotopy group p°** of p-dim. sphere as its coefficient group.

Proof. (2.1), (2.2) are direct consequences of definition. (2.3) can
be easily verified from the. fact that K .is of the same. homotopy type
as a complex, the (rn—1)-skelton of which is a single point. In order
to prove (2.4) we show that C,(q) = €, (X, p"*?), if ¢ < Min. (p-2,n—1)
—2 and ¢<p—3, where €, (K, p**?) denotes the p-dim. chain group
with p”*? as its coefficient group. Let ¢, be an arc joining in K*~! the
base point e° to a point on the boundary of a p-cell ¢ and let &” be
the union \/(f,+0¢}). Then we have a triad (K”; ¢”, K*™'). Let us
consider thez sequence .'

— 7, (%) = 7w, (K" > m, (K", &%) > m,_, (87) —
If i <p—2, we have =, (K*\) = =, (K", &) and =, (K" = =,(K), so
that =, (K7, é”)——O for i <Min. (p—2, n—1). In virtue of a main
theorem of triad it.is seen that (K”; &%, K*™1) is (p+g+1)-connected if
p+q+1 < Min. (p—2, n— 1)+p —1.- Therefore, we have

prq (5 ; 5”) = Ty, (Kp,Kp_¥)
if ¢<Min (p—2,n—1)—2. Furthermore, if ¢ <p—3, we have

I’+(I (67—' 7’) = ﬂp+'l-—l (\/ Sp-_l) B 2 n’)H"I—l (SW 1) = Z ”P'HZ (Sp)’ Where the
last iromorphism is estabhshed by suspensmn -Thus we have i,;

Tprg (K2 K™ 2= €, (K, p**9) if ¢ < Min.(p—2,2—1)—2 and ¢<p— 3
Now let us consider the following dlagram,

1o+q+1(-Kp+1 Kp) p+q(Kp) p+q(Kp K"~ 1)
llml 8 @ lip
Crri(K, (0 +1)+7+1) po1 >C,(K,p""")
— 7tp+q—1(1{pily]{p~?)
lip—[ .

. @p_l(K (p 1)»4-0—1)
If ¢ <Min. -3, n—1)—2 and ¢ <p—4, 17, 1s Uy and z,,n are all
1som0rphlsms onto. As is easily seen, we have .

Bp+1(9) 7n(q) Br(q) Fr-1(q9)

p+q—-1(Kp 1)
ap(ﬂ)
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Bpa1 (@) = 7, (@) Byiy (@) = 15" Opir (@)1,
9, (@) = Gpo1 (@) By (9) = i1, (9)+5, -
Thus, 9, (q), 9,., (¢) may be regarded as ordinary homological boundary
operators. Notice that coefficient groups are identified by isomorphisms
by suspension, when homological boundary operators 5,,+1(q), ép(q) are
considered. This proves

o (@): D& 9" =~ H, (q).

§3. Formal calculations of I, (0), I,., (0).
In this section we assume that K is a connected complex aspherical
in dimensions less than n. Then we have

3.1) r,.,0=0, I',(00=0 from (2.3).
It is seen from (2.4) that if n =5, we have
H,(0)=9,(X,I),

(3-2) Hn+1(0)g 'brwl (K9I)9

Hn+2 (0) = ‘bn+2 (Ko I) ’

'Hn+3 (0) &= ‘bn+3 (Ki I) ’
where I denotes the group of integers. Let us consider the sequence
21 (K) ’

T, () 1L, () 2D B, (1)~ T, (1) —>

, then we have &,(1): IT,(1) = H,(1) from I',(1)=T,_, (1) =0. Since
Pury (0): Ty  (0) = 11, (1) from (2.1) and since o,(1): 9,(K, I,) = H,(1),
for n > 6, from (2.4), we have
3.3) o7t (1) Fa(@) Pasr (0); Tpyy (0) = 9,(K, 1),
if » > 6, where I, is the group of integers reduced mod. 2.

Next we calculate I',,, (0) by the sequence 33, (K). In the sequence
>0 (K)

n+1 (1) n+l (1)

we have Onrz (1) 2 Onp (K, Ip) = H,,, (1), for n>6,
Op+1 (1) . ©n+1 (K» Iz) = Hn+1 (1) ’ for n 2 6,
r,1)=0 from (2.3),
“Purz (0): Tyyy (0) = I1,,,, (1)  from (2.1).
Let usdenoteby 4 I',,, (1) | B,.o W) 0,ss (1) Dpis (K, I,), then we have
from the exactness of 37, (K)

B4 Jni(1); Parz (0) Ty (0) | Fpir (1) A = 030y (1) Dy (K, 1)

n+ 1 n+ n+
By 03U, 3B E, 1) I, 1) —
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In order to calculate I',,, (1) involved in A we consider 3], (K)
o 1,(2) —— 1L, 2 H,(2) — I, (2) —>
where we have J,(2): IL,(2) = H,(2) from I',(2) =1',_, (2) =0. Since
r,,, (1) =11,(2) from (2.1) and since H,(2) = 9,(K,1,) for n >7, we
have
(3' 5) ont (2)'§n (2)' Pr+1 (1) > Pn+1 (1) &= ‘bn (K’ Iz) .

Theorem 2. In o connected complex K aspherical in dimensions less
than n we have

(3.6) 1,(00=0, ,
@7 o (1) Jn@) Pasr (0): Ty (0) = D, (K, I,) for n>86,

@. 8) fg_}n+1 (1) : Pr+e (0) | DAY (0)l8n+l (1) (Pﬁll (2) r§;1 (2) Ty (2) 9, (K, Iz)l
%n+2 (1) Op+a (1) ®n+2 (K’ 12)) == Op+1 (1) '@n-&-l (K! 12) fOT n 2 7 .

For the sake of brevity we shall often use the way of expiession

(3' 9) 1‘n+2 (0)] '@n (Iz)l%mz (1) '@n+2 (I2) = ©n+1 (12)

for (3.8), abbreviating all the isomorphisms in (3.8). As we stated in
the introduction, Theorem 2 is established in the sense that it helps
us in suggesting the complete solution of computations of homotopy
groups and of homotopy type problems. It should be noted that we
shall give full accounts of I,,,(0), I',,,(0) without restriction as to
dimension in the sequel, utilizing reduced complexes together with the
study of B-operation.

§ 4‘ QSn+2 (O)’ §23n+2 (1)! and %n+3 (0)
i) B,,,(0) Let K be a A}-complex, and let Sg,_,: 9" (K, I,) — H"*2
(K,I,) be Steenrod’s Squaring homomorphism. As is shown in [4] by
J.H.C. Whitehead, we have
A D, 0)=9,(K,I,) for n>2,
i Hyy(0) = 9, (K, I) for n>2.
Then v =AB,,, (0) 712 D,y )= D,1.(T,) for n°>2 can be determined
by Steenrod’s operation as follows. If x € $"(Z,) and y € 9,,,(I), we have
4.1 KI[vy, 2] =KI [y, Sg,_, 2],

where KI denotes Kronecker index, and, as to group multiplication,
two groups I, I, are paired to I,. From (4.1) vy may be regarded as
an element in Hom [9" (X, I,),I,] such that "

viy: Yo —> KI[y,Sq,0] .
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Therefore »-is determined in the sense that vy represents an element
in 9,(X, I,). (refer to [11] or [12])

ii) 9B,.,(1) Let K be the same as before. From (3. 5) we have
= 07" (2) X (2) Py (1) 2 Ty (1) = 9, (K, 1), and put g =o,,,(1):
n+2(I2) —H,,,(1). Then » =1B,.,(1) p: $,.,(I5) = ,(I;) can be also

determined analogously by Steenrod’s operation. Two cases i), ii) can
be easily verified by the aid of reduced complexes .
iii) 9B,.5(0) Since no account of B,,;(0) is in print and since it
is applied to the homotopy type problem discussed in the sequel, we
give here detailed account of it in case where K is such a complex
as was dealt with in [147]. K is of the same homotopy type as the
following complex L. :

L"*“=(S’£Ve’1’”)+---+(S?:Ue2”)+(Sz°+1Uetiiuezi%)'+- +(Sp Ve Vet
+(SEirn Y eRIE) + e H(SEV D FS  +5202,

‘where e}*1(i =1, ..., k) is attached to S? by a map f;: 8e”+1——>S" of
odd degree o, € +1(z—lc+1 k+l) is attached to S* by a map g,:
2t — Sp of degree 27, and e;”z(z' =k+1,...,«) is attached to S} by
an essential may 5,: Se;“z —S?. L is constructed- by attaching to L"*2
a number of (n+3) cells e;*? (i =1, ..., @) by Be}** = 2 X Snr24 Z /w,,wj
k+ .
ﬂ-j:;j u“vj+ Z ROLD where N denotes the generator of n'mz(S ),
0 (=k+1, ..., IC) is the free generator of =,., (S"Ue"+2), and v; (j =k+1,
yE+1D) is the generator of =,,, (S7Ver1Ver™?) of order two. By
definition T',,,(0) is the image of the injection i: =, (L") —m, ,(L"*?).
Since 7,,,(S2Ver ) =0 (j=1, ..., k), 1,,,(0) is generated by v;(j=k+1,
» k+1). A base of 9,.,(L, 12) is {j,ert, (j =k+1,...,k+1)}, where °
7. is the natural homomorphism of a group of cycles mod. 2 into the
corresponding homology group with integral group reduced mcd. 2 as
its coeflicient group. A mapping \: j, €i+' —v, induces an isomorphism
A Dai(L, )= T, ,(0). If a base of 9,.5(L, I) is {j,€1", (=1, ..., m)},

we have
lc+l

6”+3 Yij Vj .
j=m+1

If a base of 9"1(L,1I,) is {7,907, (j =k+1, ..., k+1)}, and if a base
of O"*3 (K, I,) is {j.9"*% (=1, ...,a)}, we can choose them such that

KI [?.2 €™y Ja ‘P?“] = 81‘1 » KI [.7‘0‘61, s T2 P ?”] =‘v3w .

8;5 is 0 or the generator of I, according as i == j or i =j. If x€ D" !(F,),
Y E€D,.; (1), we have
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S

14

j§1 DsJs P51, p,€l,,
Z q n+3, (IJEI.

-

=

Then it is seen that
S‘b:—-l T = ; p‘z; SQn-—-l j2 (Pg = 2 p; g sz .7" (P:H ’
so that we have

KI [7/,Sqn 13/] —_— 2 qbp§ ulj€I2'

J=A+1 §=1

By definition of 9B,,,(0) we have

kE+1 4+ m,
K"'lﬂ%n+2(0)J - 7\‘ 1(2 quen-H‘}) = )"—1 (Z q] Z yh 1 Jz 2 q 1.72 " +1 )
=1 =+ =h+1 2=

k+1 m

so that KI[A'%B,,;(0)y.2]= > 3} ¢, pyv,€1,.

J=k+1i=4
This proves KI [y, Sq,.,2] =KI[\19B,,.,(0)y,2].
Since A!'9B,.;(0)y: "® - KI[y, Sg,_,«] €I, may be regarded as an
element of 9,., (L, 1,), B,.;(0) can be determined effectively by squaring
homomorphism Sq,_,. The sequence of Whitehead >3,(L) is a homotopy
invariant so that all the discussions are available for K as well.

§5. Computation of =,.,, =,.,

In this section we assume that K is a A2-complex. Let us consider
the sequence

Bn+2(0) Jn+100)

o H,, 02 02T Jur1

., (022D H, ., (0)—>0

It is seen that J,,,(0) is onto and that the kernel of J,,,(0) is
isomorphic to I, (0)|B,.,(0) ™ 9,.,(K,I) by J,.,(0). By definition
we have A: I,,,(0) = 9,(K, I,) for n>2. Thus the kernel of J,.,(0)
is isomorphic to 9, (K, I,)|v Duis (K, I) by I.1(0)N, so that =,,, (K),
isomorphic to IT,.,(0), is a group extension of 9,(K,I,)|v 9,..(K,I) by
i1 (K, I). Thus =,,, is determined combinatorially up to group
extension. '

Now we proceed to show how =,,,(K) is calculated completely.
This is treated by Chang in his exciting paper [5], but the method of
his is different from mine. To do this we apply a reduced complex
obtained by Chang. Without loss of generality we assume that K is
a reduced complex. For convenience of calculation in the sequel it
seems desirable for us to. put down here nine types of elementary
polyhedra ;
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l) ny — Sn , Q7{+1 :Sn+1 , Q¥+1 — Sn+2 ,

ii) Q,=S"VYe"'!, where ¢"*! is attached to S” by a map f: 9¢"*!
— S? 0dd degree o, a power of a prime,

iii) Q, =S"Ve"+2, where ¢"*? is attached to S” by an essential map
f:oe": 8",

iv) @, :(S"VS”+1)Ue"+2, where €"*? is attached to S”V S"*! by a
map f: 9e""2.— S*V S§**1 of the form a+b, where a denotes an
essential map of 0e"*2 onto S” and b maps 2e"*? onto S"*! with
degree 2%,

V) Q, =8"Ve""1\Ve "2 where €'l is attached to S” by a map
f: 0e"*1 — 8" of degree 2? and ¢"*? is attached to S” by an
essential map of 2¢"*? onto S”,

vi) Q4 =(S"VS")Vert1VVet2 | where ¢! is attached to (S”V S"+1)
V"2 by a map f: 0e"*l — 8" of degree 27,

viiy @, =S"Ve"*!, where ¢! is attached to S” by a map f: oe"*!
— S" of degree 27,

viii) Qs =S8S"*'Ve"*2, where e"*? is attached to S"*! by a map
f: 0e"* — 8"*1 of odd degree o, a power of prime,
ix) @, =S8""1Ve"*2, where e"*? is attached to S"*! by a map
' f: oe"*2 — 8" 1 of degree 2.

A Al-complex is a complex which consists of a collection of nine
types of elementary polyhedra. A base of 9,(K,I,) is represented
by n cells belonging to Q%, @;, Q,, @5, Q,, @;, which are denoted by
e, e, e, e, e, , e, where ¢ represents the number of » cells.
A base of 9,,,(K,I,) is represented by (n+2) cells belonging to Q%*2,
Q;, Q,, s, Q;, @5, @,, which are denoted by e;'?, eri?, ei'?, el'?, €2,
ex'r. As we consider v: 9,,, (K, I,)—>9,(K,I,) in §4 ii), it is seen
that

viser'? =0, vis €y’ = j.€%, vjsenit =17.€:;

vja €t = 1265, via€0i’ =Ja€l:, vjs€5} =
Thus 9,(K,I,)|v9,., (K, I,) is freely generated by 7,€}., j.€%, -
It is easily verified that =,,,(K) =~ 2 7,1 (Q,,;) for »_>2, where i

denotes the type and j represents the number of Q;. Therefore
A= Z] 7r7,ﬂ(Q1,¢)+Z7rnﬂ(Q ,:) is a direct factor of =,,,(K). Since
Zer (@) = I, and ,,,(Q,,.) =1I,, A is isomorphic to 0u(I2)| D ra(L2)-

Now we put down here the homotopy groups of Q””(y =1,23,4,5,
6, 7, 8,9) as follows:

n+1 (Ql, 1) - I 72‘n+1(Q71“;9 - ’ 7t7r.+1 (Qz,t) - O
(5.1) T (Q@5) =0, 7,,,(Q,,:) = Izqi+1 » i1 (@) =0

Tpi1 (Qﬁ,z )= Izqtﬂ s i1 (Qoi) = Loy, wne1(Q,,;) = I2rs .
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From this table it is seen that the rank of =,.,(K) is equal to that of
D1 (K, I) so that we have

Tyl (K) = @n(12)|p®n+2 (IZ)+B+x

where B denotes the free group of 9,.,(K,I). Let us determine X%.
Let T be the torsion group of 9,.,(I), and let (%, A,, ..., k) be the
invariant system of (#+1) dimensional torsion coefficients, where %, is
a power of a prime. From (5.1) we have X =~ C+%), where C denotes
the subgroup of 7T consisting of all the cyclic groups of odd degree 7.
Choosing even torsion coefficients {%4i,, ..., #i,} out of the system
(B, ..., B), we concider the following operation with respect to 4,
=1, .., a)

Vs 7+ 1
B (B, D)9,y (B Ty )2 9,0 (K, 1) 22D 0 (R, 1,).

Let us define two homomorphisms

A, 'SQQM.H(K,I,,)—’CO,,(K,I),
Hoprq + Da (K:Ip)”’®¢(Kvlq) .

The first operation A, is -3;—8 Let € 9, (K, I,)and let 2' be a represent-

ative of », then . = 2’ is a cycle mod. q. p,,,« is represented by——; x.

(, (® 9)

If Yy =B,,, ()" * My, 2 the kernel of vp,, does not contain Ja€rt?, jaelit.
Putting D = \j A vin(0), D is a subgroup of T, which is generated by

Jo€oit. Together with =,.,(Q,,;) =1I,, we have

D=D+].

Let the invariant system of T|C+ D be represented by {27 ,2%, ..., 2%}
and let E be an abelian group, the invariant system of which is
{200, 2001, L, 2%, Since 7, (Qy,:) = Izrz 19 T (@) = Iz'li+1 s We
have 8 =~ E. In virtue of 7, ,(Q}"*)=7,,,(Qs,) =71 (Q:.)) = 7,1 (Q:,0)
=0 it is concluded that

72'“_,_1(K) = %n(K’ Iz)l”'@m—z (K) Ig)+B+C+D+E .

~ Theorem 3. The (n+1)-dimensional homotopy group of & Aj-complex
can be calculated combinatorially by homology grouns; ,, Dui1s Duses OY
homomorphisms; p, A, and by B,,,(1): Dprs (Ls) = D, (I).
Now we give a more detailed account of Theorem 2, 3.9 and then
compute 7,,,(K) combinatorially. First I',,,(Q;) (i=1.2,...,9) are
calculated as follows:
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| S (Q;L) =1I,, I‘n+2 (Q?H) =1I,, | A (Q*luz) =0
| AP (Qz) =0, . (Q3) =0, | B (Q4) =1I,,

(5. 2) Pm—z (Qs) =Iz ’ Pn+2 (Q6) =-12 +12 ’ Fn+2 (Q'I) =I4 o
L. (Qs) =0, I, (Qg) =1,.

i) Let %, be an n-dimensional even torsmn coefficient, a power of

2, and consider @, = ;8¢ s;a,,ﬂ(z,”)—»& () 223 9,(1,), then

\}_’/ Pp, ©n+1(1h ) is generated by j,e5:, j2€5,., Ja€7, -

ii) In virtue of the operation v, $ (12)1(\j Py Duir T, )Y v+ Do (L)
is generated by j,e], .

iii) Let k, be an (n+1)-dimensional even torsion coefﬁment a power

of 2, and consider the operation v, = g,, 84, Dpra(Zp, )——> Dpi(I) —> Ho.2

Ou+1(I2), then \/ Vi, Oura (Ip,) 1s generated by j,e}fit, 7205, j.e5" where

€;l denotes an (n+1) cell bounded by an (n+2) cell.
iv) Let us denote by B an abelian group, which is the direct

sum of p integral groups mod. 2, where p is the (#+1)-th Betti number
of K.

\) \/ Py One1 (L, )N (»Dnse (I2)) is generated by joef., 7265, -
iv) A’ —\hj P, ®7.+1(I;,i)l(\J P, Puer T DA (2 Dz (I2) is generated
by j.e€;.. Let the invariant system of A’ be {2, ..., 2} and let us denote

———

by {4, ...,4} that of A. 6

_.—

Then from (5.2) and from I',,,(K) =3 I',,,(Q,,) it is concluded
that we have e

L, oK)= (\J P, nﬂ(Ihi))n(v%m(Iz))+35n(12)|(U PpOuirLp NV (v9,.5(15))
+\,/ (Pki wia (g, ) +A+B.

Theorem 4. ', .o (K) of a Ai-complex K can be calculated combina-
torially by homology groups; 9., Due1s Pnrzs by homorphisms; p, A, and
by %n+2 (1) : ®7z+2 (12) g %n (IZ)’

Now that I',..(K) has been computed, it is easy to compute
7,2 (K). We give a table of = ,,,(Q,);

(5.3) T (@) =1, 7, (Q")=1I,, m,,(@Q)=I,
Ty (@) =0, 7,,(Q;)=1I, Tpeg (@) =1,

* 1t is well known that m,42(S*Jen+1) is a group extension of Iy by I, where e"+1is
attached to S” by a map f: 027+1-S5% of even degree 5. According to [20], my2(S?Jen+1)
=I, if 6=2. Here we assume, n,.2(S?Ye?+1)=I, for »>>3 in case 5=2,
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Tun2 (@) =L +1 s 702 (Q) =L+Ty, 7,02(Q) =14,
s (Q) =0, 7oy (Qy) =1, ,

It is clear that 9,,,(I) is generated by _706” y Jo€si?, Jo€r?. From
(5.2), (5. 3) and from 7r,,+2 (K) = Z‘ 7,2 (Qy,), for >3, we have

Ty (K) == n+z(K)+©n+z (.

Theorem 5. The (n+2)-dimensional homotopy group of a A2-complex
can be calculated combinatorially from ,, D,i1s Opizs s A, Bss -

§6. Ai-complex

In [147] I solved thev homotopy type problem of a A3-complex.
Making use of the sequence of Whitehead, we restate the problem. Let
us consider the sequence '

n+3(0 n+2(0
o BT (0) o T (0) — Haa (0) 2201, (0)

6-1) o L H,.,(0)—0—11,(0)— H,(0)—0.

It was proved in §4 ii) iii) that the homomorphisms B,,;(0), B,.,(0)
are determined by Steenrod’s Squaring homomorphisms Sq,_;, Sq,.,
respectively and that I',,,(0) is isomorphic to 9,,,(I,). Following
Whitehead [4], we can establish analogously geometrical realizability,
so that all the results in [14] are obtained by the aid of the sequence
(6.1).

By the sequence we have

Theorem 6. =,.,(K) of A}-complex is a group extension of 9,,,(I,)]
B3 (0)- D5 () by the Kernel of B,.,(0); 9,:2(0) > 1., (0).

§7. Lower dimensional case

In this section we assume that K is a simply connected complex
without 2-dimensional torsion. Besides this, we assume =;(K)=0
We shall show how =,(K) can be calculated in terms of homology.
As was proved by Whitehead [2],

K3 ~ L =83+82+ -« +83+S3+ oo + 83483, + -+ +83.¢,

where 2-spheres and 3-spheres are attached at a point. Since K is
free from 2nd torsion, the 3-skelton of K is of the same homotopy type
as L?. Then we have

K' ~{L*;R,,..,R}*=L",

* This notation is often used in [14]; if an n cell e” is attached to a space P by a map
f:0 en—P, the attached space is denoted by {P;=x}, where = is an element of np-1(P)
represented by f.
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where R, =, +b,,S3, o, €73 (S2V ...V §}), and S3 (= 1,...,0) is the
generator of =, (S%). Notice that b,;S} is mot summed with respect
to j, and that b,, is greater than unity.* If e, denotes the generator
of =;(S?) and if e, (i==7) is represented by the Whitehead product
[a;, @;], where the generator is represented by «,, we have

;=21 Di;€i
i=J
where p,, are integers.

Lemma 7.1. e, S} (=1, ...,0+t) are linear combinations of
R,,R,,..,R,

Take 4 simplex &} in the interior of each 4 cell e}, and join a point
on the boundary &; to L° by an arc ¢;. Let us denote \/ (&+1t,) by

& and its boundary by &*. If we put L =L*—¢&%, L? is ai deformation
retract of L. Let us consider the following diagram

1
7, (L*; &, L)
Ti k
3 3
wy (L4, L) ——> 73 (L) —> w3 (L*) —
tio o 1o
7, (&%, &) —> m, (£9)
T B1
ms (L*; &% L)
Since the triad (L*; &', L) is 4-connected and B, is trivial, ¢, is an
isomorphism onto. From =, (L*) = =,;(K)=0, 9, is onto. Since 9 is
an isomorphism onto, and 9,i, = p9, p is onto, so that e,,, S} are linear
combinations of Bef = E,.
Let us denote by M* {L?; Ry, ..., B\; €11, ... s €5 ... s €053 S3, ...,
S?,.3. From Lemma (7.1) and from elementary operations we have

M~ {L3;R1 y s B30, .. ,O} —_—.L“+§‘;+ coo + 854S+ -0 +S7,, .

p p—=1) o4T

2
From R, = «a;+b,,S} and from elementary operations, we have

Mt~ {L3 30,...,0; €1, ...,€,;5%, ... ,S§+,}
= {L3;en, @y SE, ,s;+,}+sg+ e S
Since e} (j =1, ...,0+t) are attached to S} with degree unity, we have

M4 i d {L2; 611 9 eee y epp} +Si+ cee +S)t 9

* Refer to [14].
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where L? =S}+ --- +S}. Let us denote by N*, {L?; e,,, ..., €,}.
Fiom these considerations we have '
(7.2) L*+8St+ -« +8L,+St+ o+ +S;,, ~N*"+S+ - {+8S).

pCp=1) oxT
2

It is clear that

K5+Si+ <o« + S;~{L“;X1, ,Xx} +8t+ oo +85,, 4SS+ o0 +S,5,,

,meB@:X&de)mdm=£@§D+@+ﬂ.
If f is a homotopy equivalence of (7.2), we have
Yi=f(X)em, (N*+8S¢+ -+ +88) =, (St+ -+ +5})
(refer to §8). From Lemma 2 [14] we have
K54+ 8'4 wo 4+ 8L~ N*+ {s;+ e+ S5 Y,,...,Y,}.
Through elementary operations and change of a base {S}, ..., S,}, it is
concluded that
(7.3) K5+S,‘+---+S;~N"+P§1+---+P;v+Sé+l+---+Sg+S§+---+S3,
where P,; = {S}; ¢, S4}.
If we consider 4-th homology groups of both sides of (7.3), we have
H, (K5)+Ij-_---_il = I+ o 41415+ oo Loy +I+ - +1.

@ plp—~1) A=V
3
Since the ranks of both sides are equal, we have
(7.4) Byto+r =r—y,

where 3, denotes 4-th Betti number. If » is the rank of =,(K), we
have ‘
r+o =A—yp.

From (7.4) we have

(7.5) r—pB,— Bﬁ(_f’z—_l__),,

It is also seen that the torsion group of =,(K) is isomorphic to that
of H,(K). Thus we have
Theorem . The four dimensional homotopy group of a complex
K such that =,(K)=0 for i =1,3 and K is free from 2nd torsion, is
given explicity in terms of homology groups;
wy (K)~I+ -+ +I+15;+ - +1s,,

pp=1)
Bym g
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where 3,, p are 4-dimer_1$ional Betti number, 2-dimensional Betti number
respectively, and (o, ..., o,) is the 4-dimensional torsion coefficients.

In such a complex it is also seen that we have B3, > ‘0(%1) .

§8. Note on homotopy groups

I owe a great deal to recent results due to Blakers and Massey [ 7],
which enable me to calculate homotopy groups used till now. In
preparation for my forthcoming paper it seems convenient to calculate
o (S®V S*) for each n >2, which was also solved by Blakers and
Massey [7]- By doing this we can prove =,(N*)=0, which was
essentially used in § 7. First we define a generalized Whitehead Product.

Eﬂ:{x;lgmgo,i:L...,n},

rr=le; @-1 ] o@-1 =0,
=1
K771 =9 (E? X E)+(—1)P+* "1 E? x B 1x 0+ (—1)+* 1 E*1x 0 x E*
= (OE? +(—1)P" 1 E? 1 x0) X E*+(—1)" E? X (0K +(—1)**1 E*-1x0)
=JPIxE'+(—1)P E? xJ*" 1.
Then K?*%'isa (p+g—1)cell. Let X be a space such that X=AVYB
and A B is non-void. If »,(B,A~B)>«, and =,(4, A~ B)>83, a and
B are represented by maps f and g respectively such that
f:(E" OE", J*7')—> (B, A~B, *),
g: (E OFE%, J*1)—> (A, A~B,*).

Let us define a map fVg: K***"!' 5> X = AVY B such that

fVog@,v)=9Ww), (x,y)eJ’ xHE*,
=f(x), (x,y)€E?xJ"1.

If : E?+?-1 5 K?+%-1 ig an orientation preserving map of degree unity,
a composite map (fVg)ogp represents an element of =,.,_,(X; 4, B).
In course of verification that (fVg)op represents an element of
Ty (X ; A, B) it is easily seen that

(_"1) [aa’ B] =8, [as :8] ’
(=1 [a, 098] =B_[a, B].
By definition we have [«a, 8] =(—1)"[B, «]. If ae=,(S*), Be=,(S"),
we have F[«, 8] =0 by definition of the generalized Whitehead
product, where E denotes Freudenthal’s suspension. These properties
are used in calculating =, ,(S?V S). _
Next, by a result of G.W. Whitehead [9] we have =,,_,(S7VS})
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~ 4,755 (S™) 41975, _o(S™) + 07y, (ST x S5, STV S}), where O is an isomor-
phism into and ¢,, i, are injections. Let ¢*" be a 2n simplex in S?xS?
= X* and let X be X -Int. ¢*", then S7VS; is a deformation retract
of X. This retraction is denoted by y». Consider a sequence of a triad
(X* ;o?, X); " ) , ‘ .

ST (X5 02, X) 5 g 1(0%, 62 o> T (X, X) > g o(XF 5 0¥, X) >
If n>2, B is trivial for each i <3n—1, so that ¢ is an isomorphism
into and 7 is a homomorphism onto.

Yi gy (0, 67) = YiD Ty, (57", 62°)
= Pimy,_y (™).
From this any element of oi=,,_, (¢*", ¢®") is represented by a map f:

gon=2 _y gon-1 BoBd gny g ohere [y, i,] denotes the Whitehead product
of ¢, and i,. If a€m,, ,(X*: ¢* X), a is represented by a map f:
(B3 1; B2, B°"%) —» (X*: ¢, X). Let p be an interior point of +*",
and let C*! be the inverse image of p» by f, then we have oC"!
=D"?2=C"1AFE /% Selectapoint O in E¥~2 such that OD"™? = L"!
C E¥? and OC"! = K", then

af (Kn) == f(aK") = _f(Ln—1)< " .

Thus f(K") represents an element of 9,(X*, ¢?). If S}, S; are two
generators of 9, (X%, ¢**), we have

f(K")coa,ST+a,S3,

where (@, @,) is a pair of integers. Then it is verified that if f~g,
we have (a,, a,) =(b,, b,), where g (K")cob,S?+b,S;. Moreover it is
also seen that if a,=a,=0, f is inessential. Thus it is concluded that
that (a,, a,) is an invariant of homotopy classes. If [ is the generator
of =,, (¢, ¢®*) and if »,(X,¢*") = =,(X) = {I,} +{l,}, we have

[l’ ll] € 7:3%-1 (X* ’ *® ’ X) ’
[, l] € mypy (X5 %, X))

Then it is verified that homotopy invariants of these product are (1, 0),
(0,1) respectively. Furthermore we have

vo b L] =+[al 1] =[lh,1] L],

so that two free generators of o=,,_,(SixS;, StV S;) are represented
by two triple Whitehead products. This is a result announced by
Blakers and Massey [7].

Now we prove =,(N*)=0, making use of this. Let us consider
the injection map %:
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7 (SPVSEY e VS — my (NY).

Then it is seen that ¢ is onto and that the kernel of i is generated
by e,+n and triple Whitehead products [a;[a;, a,]], where e,-7 is

represented by a map f:S* —>S° 2/, 52V S:. This proves that the
generators of the kernel of ¢ is the same as those of =,(S2V ... V.82),
so that we have =, (N*) =0
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