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On Homotopy Type Problems of Special Kinds
of Polyhedra I
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1. Introduction

It is one of the aims of modern topology to classify topological spaces
by their homotopy types. Two spaces X and Y have the same homotopy
type if there exist maps f: X—Y and g: Y—X such that gf and fg are
homotopic to the identity maps X—X and Y —Y respectively. The problem
of determining by means of invariants of X and Y whether X and Y are
of the same homotopy type or not, is of great importance in modern
topology. This general problem has not yet been solved. A number of
particular results are well known.

In 1936 Witold Hurewicz solved in his famous paper [ 8 ]* the homotopy
types of an » dimensional locally connected compact metric space aspheri-
cal in dimensions less than %, and of a locally connected compact metric
space aspherical in dimensions greater than unity. After this, many
endeavours have been made to solve this general problem by several
modern topologists, J. H. C. Whitehead, R. H. Fox, S. C. Chang, and others.
Among them the recent brilliant results of J. H. C. Whitehead [3], [4]
and of S. C. Chang [6] have much to do with the present paper. White-
head reported in [3] that two simply connected, 4 dimensional polyhedra
are of the same homotopy type if and only if their cohomology rings are
properly isomorphic. According to Whitehead, an arcwise connected
polyhedron P is referred to as A%-complex if dim. P<n+2 and »(P)=0
for each i<“n. Though the author is unfortunate enough to be inaccessible
to [4] here, he is informed of Whitehead’s far reaching results through
the introduction of Chang’s paper [6]. They are stated as follows. Two
AZ-complexes are of the same homotopy type if and only if their coho-
mology systems are properly isomorphic. Chang introduced new nu-
merical invariants called secondary torsions to characterize the homotopy
type of an AZ-polyhedron together with the Betti numbers and coeffic-
ients of torsion. Furthermore he reduced a given Aj-complex to a
reduced complex which consists of elementary A%-polyhedra.

The main purpose of this paper is to determine the homotopy type

* The number in square bracket is referred to the bibliography listed at the end of this paper
* Yukawa Fellow.
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of an A}-complex P with vanishing (%+1)-st homotopy group of P.
Throughout the whole paper we assume # >3. Let H" (r=0, %, n+1,
n+2, n+3) be the r dimensional integral cohomology group and let
Sq,_, : H(2k)—-H"**2) and Sq,,_, : H**'->H"*3(2) be Steenrod’s squaring
operations. Then, following J. H. C. Whitehead, we refer to FH=
H{H°, H*, H**', H"*%, H"**3, H"(2k), H**%(2), H**3(2), pn, A, 8Sq,_3 Sq,_,}
as A3-cohomology system. It will be shown in Theorem 1 that two such
complexes are of the same homotopy type if and only if their cohomology
systems are properly isomorphic. The method of proving this is analogous
to that of Whitehead [3]. The reduction of such a given Aj-complex
to a reduced complx is also shown. Before performing this, the author
gives another elementary but elegant way of proving Chang’s reduction
of an AZ-complex to a reduced complex, which was pointed out for him
by Gaishi Takeuti. The author would like to express his sincere gra-
titude to Professor G. Takeuti for his kind criticisms and encouragements.

2. A Spectrum

A brief sketch of the definition of spectrum of cohomology groups
and related lemmas used in the sequel seems to be desirable for the
convenience and the clearness of ‘the applications in this paper. All the
concepts and lemmas in this section are in [3]. Let a sequence ¢={c"}
(n=0,1,..) of free abelian groups of finite rank be related by a
‘“ coboundary ” homomorphism 6 : ¢"—c**! for each =, such that 85=0.
By an usual procedure, the n-dimensional cohomology group H"(m) with
integers reduced mod. m can be defined in terms of C and §. For
integers » >0 and ¢>0 two operations A,, y,,, are defined such that

Ay HY(q)H—H""Y,
Mpiqs H”(Q)_’H”(p)-

Let € H*(q) and let 2’ € . That is to say, 2’ is a cocycle mod. q. Then
8a'=qy', where y' is an (n+ 1) absolute cocycle. We define A, 2=y, ¢ coho-

molog class containing ¥’. Let c=(p, q), then -ga:’ is a cocycle mod. p,

and we define u,, & as its cohomology class mod. p. It is easily verified
that A,z and g, 2 depend only on 2 € H*(¢) and not on the particular
choice of 2’ € . They are obviously homomorphisms. The union of all
the groups H"(m), for every integer »_>0 and for every integer m>0,
related by the homomorphisms A, p, will be called the cohomology
spectrum of the set of groups C, or merely spectrum of the groups C.
We shall denote it by H. By a proper homomorphism f:H—H of a
spectrum H into a spectrum H, we mean a transformation such that
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i) f|H"(m):H"(m)—H"(m) is a homomorphism for all values of m, #,
i) fA=Af and fup= pf.
If f is a proper homomorphism and f|H"(m): H”(m)—»H”(m) is an iso-
morphism onto for all values of m, n, f is called a proper isomorphism.
Then a spectrum H is called to be properly isomorphic to a spectrum H.
Let Z"(m) be a subgroup of C" which consists of all the cocycles
mod. m, and let 7,, be a natural homomorphism of Z"(m) onto H"(m).
We shall also use j, to denote the natural homomorphism of cocyles
mod. m, in C* onto H"(m). A cochain map g:c"—c” for every =,
obviously induces a proper homomorphism of H into H. Now let f be
a given proper homomorphism of H into H. If f j,0=j.ga for any
@€ Z"(m), a cochain map ¢ is said to realize a proper homomorphism f.
Lemma 1. (WHITEHEAD [3], p. 57, Lemma 4) Any proper homo-
morphism f :H—H can be realized by a cochain map g.

3. Two types of homorphisms

Let C* of a sequence C be an n dimensional group of cochains of
a finite simplicial complex K. Then two types of homomorphisms are
defined among cohomology groups H"(m). One of them is a well known
squaring homomorphism of Steenrod [7] and the other is q,-homomor-
phism, which was introduced elsewhere [11] by N. Shimada and myself.
For convenience, they are put down here. Steenrod showed that
if p—¢ is odd, there exists the i-th square
Sq,: H*(m) — ,H*~"(m),
and that :
if p—i is even and m is also even, the i-th square mod.- 2 can be
defined such that
Sq, : H*(m) — H2"~(2).

This squaring operation will be used essentially in the sequel, while we
shall not need the qt-homomorphisxp except for cohomological properties
in a reduced complex (refer to § 8).

If p—i is odd and m>0 is an even integer, q,: H”(m)—,H?*""* can
be defined as follows. Let x € H?(m) and 2'cx. Since 2’ is a cocycle

mod. m, we have dz'=my’. Putting 8,’,bw’=%8w’=y’, we have a (2p—1)
absolute cocycle
qx = Yx’+mx’;/18§,bx’+( 1)”m 8,,,,a,’ ~ 8,,,9:’

Notice that q{‘x':x'\;x' in case m=0. If we define that g is a
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cohomology class containing a cocycle ¢;2’, it is verified that this defini-
tion does not depend on the choice of a representative &’ of . The
spectrum H related by squaring operations, will be called the cohomology
system, which is denoted by F'H.

4. A3_-cohomology system

If a finite simplicial comylex K referred to in § 3, is an A;-complex,
some conditions are obviously assigned on its cohomology system. It is
evident that

i) H!(m)=0, for any m and n_>i >0,
ii) Hi(m)=0, for any m and for each i >n+3,

iii) H" contains no element of finite order,

iv) H° is cyclic infinite.

Thus, for the reasonable brevity we shall symbolize A;-cohomology system
by

FH = H{H°, H", H**', H**2, H**3, H"(2k), H*+*2), H"*3(2), A, 15,

Sq,-2 Squ-1} -

In this notation the operations A, p are explained in § 2, and the other
two operations are as follows:

Sq,_.: H*(2k) - H*+%(2) for every integer k>0,
Sq, 1 H**' — H"*%(2).
Let FH, FH be the cohomology systems of K, K respectively. By

a proper homomorphism we mean the transformation f: FH—FH such
that

i) f is not the trivial homomorphism FH—0,

ii) f induces a proper homomorphism, as deﬁned in § 2, of the

spectra,

iii) fSq,-» = Sq,-.f and fSq,_, = Sq,.f,

iv) f|H°® is an isomorphism onto.
If a proper homomorphism f induces a proper isomorphism onto of the
spectra, f is called a proper isomorphism. Then FH is said to be
properly isomorphic to FH.

Let P be an (n+3) dimensional finite connected simplicial complex
such that »,(P)=0 for each z/ n and i=n+1, and let us refer to such
a complex as Aj-complex. Then our theorems are:

Theorem 1. Two A}-complexes are of the same homotopy type if
and only if their cohomology systems are properly isomorphic.

Theorem 2. Let P, P be A3-complexes. Amny proper homomorphism
f*: FH(P)—>FH(P) can be realized by at least one homotopy class of maps
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f: P-P. That is to say, there exists a map f: P—P such that the
proper homomorphism induced by f is the same as f*.

It is verified as follows that Theorem 2 implies Theorem 1. Now
let K and L be finite simply connected complexes of arbitrary dimen-
sionality and let f: K—L be a map which induces an isomorphism of
each cohomology group H"(L), with integral coefficients, onto the corres-
ponding group H"(K). Then J.H.C. Whitehead proved in [2] that K
and L are of the same homotopy type and f is a homotopy equivalence.
If we use this, it is easily seen that Theorem 2 implies Theorem 1. In
virtue of Theorem 2 there exists at least one map f : P—P which induces
the proper isomorphism FH(P)—FH(P). If we utilize the above mentioned
result of Whitehead, it is seen that P and P are of the same homotopy
type, when their cohomology systems are'properiy isomorphic. The con-
verse of this is obvious. If P and P have the same homotopy type, there
exist maps f: P—P and g: P—P such that fg~e’ and gf~e, where ¢, ¢’
denote the identical transformations of P, P respectively. Let us denote
the proper homomorphisms induced by f, g by f*: FH(P)—»FH(P) and
g* : FH(P)-FH(P) respectively. Since f*g*: FH(P)>FH(P) and g*f*:
FH(P)—FH(P) are proper isomorphisms, f* is an proper isomorphism.
Thus our aim is to prove Theorem 2.

5. Reduction of A2-complex to a reduced complex.

This section was proved by G. Takeuti. Before we perform this
reduction, we give here some notations, definitions, and essential Lemmas
for subsequent discussions.

Let X, R be topological spaces and let Y be a closed subset of X.
Attaching X to B by a map f: YR, we have a space (R+X, f, Y),
which may be simply denoted by (R+X, f). More generally, we
designate by (B+X,+-+X,, f1, ..o, fn» Y1, ..., Y,) Or merely (R+X,+
s+ X,, f1, ..., fo) @ space attaching X(i=1, ..., n) to R by a map f,:
Y,—R, where Y, is a closed subset of X,. In case where R is a space
of a point O and Y /(i=1, ..., m) consists of a single point O, of X,, the
space (O+X,+-++X,, fi, ..., fn) will be often denoted by (O, X, ...,
X, O, ..., 0,) or, as usually designated, by X,V X,V...VX,, where
f{0)=0 is evidently assumed. Particularly, if X, is an oriented » sphere
'S?, the n-th homotopy group =,(S?V ...V S») (n>1) of a space S"V ..,V SE
may be regarded as the m-dimensional vector space with free base
§SyY, ..., Smi, where S} denotes an element of the homotopy group as
well as an » sphere. In the sequel we shall often use the notation
A~B, when two spaces 4, B have the same homotopy type.
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Lemma 2. (J. H. C. WHITEHEAD [5], p. 239, Lemma 2) If two spaces
P, Q are of the same homotopy type and [ : P—Q is @ homotopy equivalence,
and if @ map «: OE"*'=8"-P is given, (P+E"*Y, a) has the same
homotopy type as (Q+E™*!, fa), where E™*! is an (n+1) element.

Let P be a space attaching E7*(i=1,...,, m) to P one by one by a
map f,: 9E"*1->P. Then the homotopy type of P is completely determined
by the homotopy elements B, (i=1, ..., m) of =,(P) represented by maps
f,, so that without confusion we may represent P by the symbol (P;
B, ..or Bm)- This is seen from Lemma 5, [3]. It is also verified that
the following three operations, called elementary operations

i) (Bl, ooy Biv csey Bm)_')(ﬂlp cony _BM ceey Bm)
ii) (Bl, ceey Bto ceey Bh ceey Bm) - (Bl, coey 18.7’ seey Bz, ceey Bm)
iii) (Bp ceey Bi! ceey Bh ceey Bm) - (Bl: ceey 18t +Bh ceey B.h ceey Bm)

do not alter the homotopy type of P. That is to say, we have

i) (P9BI) ceey 1319 ceny Bm)~(P;181; ceey ""Bu eney Bm)
ii) (P;Bli ceey Bt’ ceey :8}’ Y Bm)~(P;Bl’ ssey 181’ Y] :81’ cees Bm)
iii) (P;IBD ceey Bt; ceey Bh ey Bm) ~(P;:81’ YY) Bt+B]! seey B.f’ coey Bm)‘

Given P=(0; x,, ..., ,;ay, ..., a,), where n spheres z,(i=1, ..., p)
have a point O in common and E}+! (=1, ..., \) are attached to , V --- V2,
by the maps f,: 0K} >z, V...V x,, which represent the homotopy elements
ai—Zch, Consider two maps f, g between Po_(O %1, ..., &,) and

-«(0 %1, ..., Z,) such that f: w,—»Z]”a,x, and g: x,—»Zb,kxk, where (@),
(b, ) are reciprocal unimodular matnces Then it is ObVIIOUS that f, g are

homotopy equivalences. In virtue of Lemma 2, we have
P~Q=(O;£1y ceny Zép;falp ceey faA) v

) — e e e e
= (O s 5’1, ceny ‘?p; g clj (2 ajk:—v_k)p ceey jE c)\.l (Z ajjék)) .

To get @ from P is said to carry out the transformation x,—Z byx,.

Especially, when this transformation is an elementary transformatlon, Q
is said to be made from P through an elementary operation with respect
to z. In the sequel these terminologies will be often used.

Theorem 3. Let {m,, ..., m,} be the invariant system of the n-th
homology group H,(P) of a given A}-complex P and let N be the (n+1)-th
Betti number of P. Then we have

P~@prl e + @t ST 4 e £ S371,

where Q;’Ji’z(a;?;miw;’) (=1, ..., 1) and S;*'(i=1, ..., N) have a point in
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common, xi(i=1, ..., |) denoting n spheres.

Proof. This theorem can be easily proved by a Theorem due to
Hurewicz [8] and by Lemma 2.

Lemma 3. Let P be a connected simply connected polyhedron. (P+x ;
a +2"mx) denotes @ complex P+x+e€**1, where e**' is attached to P+
by @« map f: 0" ' P4z, which represents an element o +2'mx of
7,(P+x). «a¢€r,(P), 2a=0, and x is an n sphere. Moreover, m is odd
and p is an integer. Then we have ’

{P+x; a+2"me}~{P+y+z;a+2"y, mzi,

where y, z are n spheres and x, y, z are attached to P at a point.
Proof. It is obvious that {P+x; a +2"ma}~{P+a + ' ; a +2mz, x'}
where 2/ is an » sphere. Now we define homotopy equivalences f, g of
two complexes P +x +«', P+y+z such that
i) f|P=g|P is the identical map,
ii) f(x)= Ay+ Bz,
iii) f(x) = —2y+me,
iv) g(y) = mx—Bz/,
v) g(z) =2%x +Ax/,
where A, B are integers satisfying mA +2?B=1. Then it is easily seen
that fg ~ gf ~ e (identical map). Applying Lemma 2 and elementary
operations to the following arguments, we have

{P+x, a+2"me}~{P+x+2/, a+2"mzx, &'}
~{P+y+z, a+2"m(Ay + Bz), —2"y +mz}
={P+y+2, a+2°mAy +2"mBz, —2"y +mz}
={P+y+z, a+2°(mA +2’B)y, —2%y+mz}
={P+y+z, a+2%y, —2"y+mz}
={P+y+z, a+2%, a+2°y—2°y+mz}
={p+y+2, a+2%y, a +mz}

If we put «+2=2, in virtue of Lemma 2 we have
{P+y+z;a+2"y, a+me}~{P+y+2; a+2%, a+ma+mz}
~{P+y+Z; a+2%y, mz},

where z is an ©# sphere and « +ma=0 from 2a=0. This proves the

Lemma 3.
Now we refer to the polyhedra of the following types as elementary

A2-polyhedra :
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i) @q=S"(r=mn, n+l, n+2),
ii) Q,=S"VYe"*!, where e"*! is attached to S® by a map f : 9e¢"**1—-S"
of degree odd,
iii) @, =S"Ve"*?, where e"*2? is attached to S” by an essential
map [ :0e"*2 8",
©oiv) Q,=(S"VS"*t1)Ver+2 where e"*? is attached to SV .S"*! by a
' map f:0e"*2—>S"V S**1 of the form a+b; o is an essential
map: S**'—S" and b denotes a map: S"*1—S"*! of degree 27,
v) Q;=8"Ve*1Ve 2 where ¢"*! is attached to S® by a map f:
2e"+*1»S" of degree 2° and e”*2 is attached to S™ by an essential
map : oe”*2-5"%,
vi) Q4=(S"VSr+1)Ver+1\e"+2 where e”*! is attached to S” by
~ a map: 9e”*1—S" of degree 2¢ and e"*? is attached to S”V S**!
by a map of type iv),
vii) @Q,=8"Ve"*!, where ¢"*! is attached to S” by a map : 9¢"*1—-S"
of degree 2¢,
viii) Qs =S8"*'Ve"+2, where e”*? is attached to S"*l by a map:
2e”+2—>S"*1 of degree odd,
ix) Q,=S"*'Ve"*?, where e"*? is attache_d to S**! by a map:
oe*+*2—->S"*1 of degree 2°.

Then we have }

Theorem 4. If P isan (n+2) dimensiona! finite connected polyhedron
which is aspherical in dimensions less than n, P is of the same homotopy
type as a reduced complex which consists of a collection of elementary
polyhedra of the above mentioned types, where the elementary polyhedra
have o point in common.

Proof. In virtue of Theorem 3, the (»+1) skelton P"*! of P has
the same homotopy type as the complex

n+1 n+l n+1 n+1 +1
{Qge1 V Qo22 Voo V Qozg VQn V... VQ’;Z VSrV.. V SBV SV LV Setig

where 7,, ..., 7, are odd, and 1<{q,<{q,<C ... <g, are integers. Thus we
have

n+1 +1 . +1 +1 P Antl
P~{Q511 V Q52 V -V Qo Voo VQ;”I Ve VUV SEV . VSRV SV
...VSﬁ"'l; Rl, vees Rm}’

where R,, ..., B, are all the relations. Denoting by , the homotopy
element represented by a map S**1—S}?*! of degree 1, we have

R, =12”' i+ (=1, ..., m),
=1
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where «, (i=1, ..., m) are homotopy elements of =,,, (@)Y VS
By elementary operations with respect to {S7*%, ..., Si*'} and {R,, ..., R}
we have
P~§Q§3T Voo VSBL 0 A+ X1y vy Xy + Ty QDT o DTS Vs e Ve
+S7+1 ., +S”+l,

where b,,, (v=0, ..., j—1) are intégers greater than unitif, and v, (=1, ..., k)

are homotopy elements of ,nnﬂ(Q;;;V - V.8™. Since 7, (Qp)=0 (\=1,
, ), we have ’

P QLY -V QudV SV . VSTV STV LV SE a a,

Q5 bEsy Vs ees Vied A8 e £8P QP 4 QT

ceey

Then it is obvious that we have

P~{Q§(.;11 V. VSZ-H[; at"f‘blxiy cee 9y a] +bjxj, Irlr RXTY 7p}‘+sn+1‘+ g +Sn+l
+Qr;1+"'+Qn+lr '

where v, (i=1,..., p) are homotopy elements of 7rn+l(Q2”V VS,
Utilizing Lemma 3, and changing suffixes, we have '

P~§Q"H’1’V S”+1 0’1 +2 lxl, ooy ay.+2 ‘xy.,rYl’ XTE) 'Yp} S”+1 '+'"'+Sn+l
+Qn+1+ +Qn+l

so that it is sufficient for us to try to reduce

1_{Q‘“V VQ"Z“;;VS;“V---VS,’(VSQ“”V VS + 2715, ..., @+ 2P

Z., 7...7} to a normal form. Without loss of generality it may be
assumed that v,, ..., v, are linearly independent with respect to integer
coefficients mod. 2. Here a number of S"*2 may be removed from bracket.
If we denote by v, i=1,..., x) the homotopy element represented by a
map f;,: S*—»S? of degree 1 and by z; (i =1, ..., ) the homotopy element
represented by a map f,: S"—S? C Q3! of degree 1, and if, for example,

=)t ()t
it is seen by means of the following operation
.y—l — yl+"’ +zz+-..
Y=y (GE=2,..,2\)

that v, = (v, 5), where 5 denotes an essential map S”*'—S”. If we change
notations, and if {a,,, ..., @r,; Yeys -ees ¥5,} CONtain v, = (, ), we change
them, by elementary operations, to



154 H, UEHARA

a‘l'1+711 cen sy a‘l's.,':y_ls 7°1+;1 ’ cee ’ '7%""71-
Then we have

P~{Qp1V .. V Qi VPV .. VEIV SV LV St O +2MTy, ey A

+2p"‘xll-’ r;;y Y] ;p} ’

where a;(i= 1,..., u) and 7,(i= 2,..., p) do not contain (y,7)="7,.
It follows that :

P1~{Q§;1’.V b VS’:".I ; a_;+2p1wl, e &-,;,+2p#w oy —(;2, cee y ;p} +(_S—7fueﬂ+2) »
where e"*2 is attached to S? by an essential map: 0e"+2—S?. By the
same process all the v, involving at least one (y,7) may be deleted from the
interior of the bracket together with S7%, so that, changing notations, we have

P1~{Q§,;11 V..V QE;’: VSIV ...V SV StV LV Srtl s ) 4271y, ..,

W+ 2" Tuy Y1y s V) +H(S"UE D)+ -+ (S ?), where Vi, s Vs do

not contain any (y,) ¢=1, ..., o).

Putting
P, = {Qfé;;:v Y/ 'éq+,cle’1' V.V SEVSMHIY LV S+ 20, .,

a+2pﬁ‘x,1,, ')’1, ceey ')’,} »
we proceed to reduce P, to a normal form. Let p, <p, < ... <p. and
let «,+2%x, be the term of the greatest p, among all the terms containing
at least one of (y,m)( =1, ..., o). Then, for instance,
a,+ 2%, = (i o;)P- (2 )+ e+ 20,
If we carry out the operation '
Yo=Y+ 2+ 20
—y—nzyp (f =2’-us0')
Ep':zp (f—:—l,.ootlc)
we have a, =(y, 5). If there exist «, containing (y,7), we substract
(a,+2%wx,) from (a;+2% x;) by elementary operations. Then we have
(as+2% x;)—(at, + 2" ) =(ats — ;) + 272, — 2"~ *s2,), where p; << p,. Again
by elementary operation

@, =xj—2”d”1xt
a?,,:xp‘ (P_——]-, vee s j’ ces y Iu')’

it follows that the relation «, +2"2;, an # sphere S7, and an (#+1) sphere
Sy+1 are deleted from the contents interior the bracket { } and that

Py~ { Q5 V.. V@IV SV VSTV STV VSTV STV VSt
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QA+ 2"y yenny Q20T Qo F 271X 1y ey Q2 Ty Viy eee s Vil
+(STvSpryvet+?, where (S7v Sph)ue2=@Q,.

By the same procedure P, can be reduced to a complex
P3 = {Qg;; V..V Q%{‘;kl \VZ S;"“I V..V S?"‘l N CKI +2”1x1, ceny ax + 2” xg, 71) .o ’vr}
-+ Q4 B i Q4 .
If, for example, v, = (2, 7)+..., by elementary operations
z_l _— zl + see
;;zzt (i=2, cee y IC)
we have 7, = (2,3). Then, if @, ..., @,;7; ...7; containv,, we change
them, by elementary operations, to
Wy + Y1y e ,7,-1+?1, Vg
Then it is seen that, changing notations,
P3~§Qg;21 V..V Qg;kl \% S7lz+1 ViV Srels o 4 2%, .., a + 2%, Yoy een sVl
+Q§,T1‘ verte,

where Q’éz} vert?2=Q,. Repeating the same process and changing
notation, we have

Py~{Qgad V.. V@IV STV VST 4 27, Ly @+ 27 T} Q5 e
+Q;.

Now we arrive at the finial stage of reduction. Let a:+2%x; be the
term of the greatest p, among the terms containing at least one of (z,3)
(G=1,..,1). I, for instance, ‘

at+2pix¢ = (2177)+ A +2P‘xz ’
by the elementary operation
—;1 - zl + ces
_z—i=zt (i=2,.u,l)

we have a; = (z,9). If there exist some a; containing (z,7), we substract
a + 2", from a,+ 275z, by elementary operation. Then we have (a; +2"z))
—(ag+2%2x,) = (a;— ) +2"s(x;— 2" "s2;), where p;<<p,. Again, by the
elementary operation

bi_, = x,— 2% "z, .

T,=2, (P=1 .., 7.0, i)
It is seen that, changing notation,
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P, = (@Y. V@AV SIIV eV SE @y 420, . s @+ 200
A A
~ {Q§;11V ngzl VeV Q%IVS}'”V e VSTV VSIS + 2P, L,
&i+21’1x;, cee ax_'_szx“} +(S"\/S"+1)Uen+1uen+z s

where (S”v S**)ue*ttue®t? = @,. Repeating the same process, we have
Pi~Qu+ - +Qs+Q+ -+ +Q; + Qg+ + Qg+ Qg+ +Qy +S" 1 +-00 +8"+1.
This completes the proof.

6. Reduced complexes

A?-complexes K is referred to as a reduced complex when it satisfies
the following conditions; |

i) K°=K!=.-=K"!=¢ a single point,

ii) K" = S}+---+S", where n spheres S;(i =1, ... «x,) are attached
at a point ¢°, and S7—e® = €}(i =1, ... k) are n-cells,

iii) K**'=K"+el* 1+ +ertt 4 eril+ - +eiil, where e} (i=1,..., k)
is attached to S? by a map f,: 2e}*'—>S? of odd degree a@,’and el
(i=1,..., I) is attached to S¢,, by a map f,: oepi}—Sp,, of degree 2%,

iv) K*+2=K""l4epti+ .. +eptitepi?, \+-o+et™ 4814244 8772,
where e2i2(i =1, ..., 1) is attached to Sz,; by an essential map: Oei;?
—Sr,,, and e?2,,(i=1, ..., «-k-I) is attached to S2,,,; by an essential
map : 068t i—>Skires -

v) If K,=K"2—(et*"'uSt++-+e;*1uSy), a finite number of (n+3)
cells er*3(i =1, ..., @) are attached to K, by maps f,: Qe?**—K, .

Notice that er+**uS% (i=1, ..., k) are not bounded, and that #-spheres
S2(i=1, ..., «) are all bounded. Of course, the case where k=0, or
k=0, or t =0, may be possible, but the most general reduced complex
of A3-complex is the cell complex of the type just referred to above.

Theorem 5. Any A3-complex P is of the same homotopy type as
some reduced complex.

Proof. Let P*+2 be the (n+2) skelton of P, then =,(P"*?)=0 for
each ¢<_n. In virtue of Theorem 4, P"*? is of the same homotopy type
as a cell complex @"+2 consisting of a number of elementary A2-complexes.
It is evident that =,,,(P)~~,,,(P"*?), and =, ,(Q"*?)=x=,,,(P"**?), so that
we have 7,,,(@"*?)=0. By the recurrent use of a result of G.W.
Whitehead [ 9] or a slight generalization of a lemma of Blakers and Massay
[10], we have =,,, (Q”*z)gégznﬂ(@:), where the upper-suffix x of Qj,
indicates the number of elemehtary polyhedra of the type Q,. It follows

that if ,,,(Q}) + 0, such polyhedra Q; are deleted from Q"+2. As =,,,(S™)
=~ I, for n >2, and =,,,(S"*') =~ 1, S, S"*! must be deleted from Q"+2.
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It is verified that we have =,,, (Q,) = I,»+1. For we have a+b =0, so
that 2b = 0. Thus the element represented by a map S*+*'—S”** @, of
degree 1, is the generator of =,,,(Q,), whose order is 2.27 = 27*!,
" Therefore all the Q% are deleted from @"+2. From the same arguments
and from =,,,(e**'uS") =~ =,,,(S"), we have =z,,,(Q,) = I,»+1, so that all
the Qi are deleted from @"*% Since =, (Q;) = I,, 7,.,(Q) =1,, and
7Tar1(Qy) == Iy, all the Q%, Q:, Q%are deleted from Q"2 From the verifi-
cations just referred to above and from the vanishing (% +1) homotopy
groups of S”*2, @, @, Qs, it is concluded that P"*2 is of the same homotopy
type as K"*2 in the definition of a reduced complex. Let f: P*+2>K"+2
be a homotopy equivalence, and let o7**® be an (n + 3) simplex of P. Then
from Lemma 2, P is of the same homotopy type as a cell complex, (n+ 3)
simplexes o?**(i =1, ..., «) of which are attached to K"*? by maps f.e:
oo7*® K2, where e is the identical map of P. However, the element
of =,.,(K"*2) represented by a map fe may be regarded as an element
of z,.:(K,), so that from Lemma 5,[3], P is of the same homotopy type
as a reduced complex defined above. This completes the proof.

7. a(K"42).
Let us consider K”+2 satisfying i), ii), iii), iv) in § 5. It is easily
verified that

t
77n+2(Kn+2) = 2 2(Sn+2)+2 ”n+2(snuen+l)+2 ”n-w(skﬂuelwt Uekiiz)

Kk—k—1

+ Z Tnro(Sprrsi\Vrit), for n>3.

It is also verified (for example, see [11]) that

Taee(Stuert)=0, for 1 =1, ..., k,

Tpeo(Sparivenit)=1I, for i=1, ..., «—k—1,

Tro(Spverilvent) ~1+1,, for i =1,, ..., 1.
Now, let us denote by Sp*? the generator =,.,(S?*?), which is represented
by a map S”*2S»*2 of degree 1. The generator o,.,,; Of 7,.,(Sg.;1.:
veri?,) is represented by a map w,, .. : S**2>Sp,,.,verid, as follows.
Denote the northern hemisphere of S”+2 by V22 and the southern hemi-
sphere by V=%, then S**?=V2{*UV2;! and the equator of S"*2 is
represented by V&2 N V2 =S"+1. Then the partial map w,,,,; | V2N V22
represents 27 : S"*1 = VuEnVi2—-Sp,,.,, where 5 is an essential map of
S**1 onto S”. Since w,,,.;|0V%Z is inessential, we have an extended
map: V<Z2—-St,,.;. From these considerations that oept? ,—S%..., repre-
sents an essential map » and that w,.,..|V%¢ represents 27, it follows
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that we have a map: V%&¢—Sy,,., ves?, of degree two. It is proved in
[11] that the map w,,,,; thus obtained represents the free generator of

oo Sts vepid,). Notice that the free generator itself will be also
denoted by o,,.,; . Next, the free generator of =,.,(Sk.;\verilveri?) is
represented by a map w,.,;: S"*—Sp,,veri? of the same property as
referred to above, and the generator v,,,(i=1, ..., 1) of order two are
represented by maps v,.,: S**2—-Sp,,ueri} as - follows. Remember here
that eﬁ{ is attached to Sz., by a map: 9e: 1Sz, of degree 2%, Let
T7+1 = S*e"*1, where e**! is attached by a map 0e"*1—-S" of degree 1.
Construct a map 771> S"—Sz,, of degree 22!, we can extend it to a map
fi: T"*18%, ,welt! such that ¢**! of 7”+! is mapped homeomorphically
onto e3tl. For epi} is attached to Si,; by a map Zdertl—Sz., of degree
2% If the equator VNV = S*+! is mapped onto the n-sphere S”
of T"+1 by an essential map » and if we construct a suspension &(7)
[13]: V¥E—T"*1 of 4, then fi- &(5)| OV¢ is inessential because 27 = 0.
Thus £, - &(3)| 0V can be extended toa map: V2—Sz,,. If we define
Vst |[VEE=[,-&() and v, |V%¢ is the map: V2'2—S:,, constructed
above, it is verified that this map v,,, is essential and of order two.
Then in the reduced complex K we have the homotopy boundary

o E+l

212:3\1 "+2+2 Mjwj"'z v”v;+2 '?u w; (for each i < a).

If we carry out two operations, referred to in §5, with respect to
{5772, ..., Sz*2} and {Ber*, ..., Be**}, we have a slightly modified
reduced complex L of the same homotopy type as K in § 6 such that

L**? = K"*2, and

' E+1 CE*l
Bep+t =)\, Sr2 4 is @ +Z uu’vj+ 2 REES (for each i < a).

J=k+1

Notice that in this reduced complex L, e7** bounds Only one (% +2)-sphere
or bounds none. In the sequel we shall refer to L as a reduced complex.

8. Cohomologiéal properties in a reduced complex L.
Referring to § 7, § 8, we have

iy e, (i=1,..., ) are cocycles mod 27,
i) er(i=k+1+1,..., x) are absolute cocycles ,

iii) Sept? = ;ﬁz,% ey (i=Fk+1,..., k+1) and
=1

Sen+e :jz'}zyﬂ e (i =k+1+1,..., «),
=1
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iv) ertt(i=Fk+1, ..., k+1) are absolute cocycles.
It should be noted that “ 2” in the terms Se?*? come from the degree of
the maps o and that e}*2 ({=£k+1,..., ) are cocycles mod. 2. Then
we have

Theorem 6. »

a) Joel x2 700" = ja€0"? (i=k+1+1, ..., «),
b)  Jomeisi 2, Jori€ici =7'267£* - G=1.., 0,

c) J.ertt vjoe"‘” Zu,,yze, (G=k+1,.., k+1),
d) q,_sj.€r = Efyﬂyoe (t=k+1+1, ..., x),
e) qn_ayzniem = 2 By prido€s Gt=1.., 0.

Proof. Putting M L"+? and considering the injection «: M—L, we
have a proper homomorphism «* : FH(L)—»FH(M) induced by «. Put

K+l

joe“l_zyoe" E 8,72e’;+2+ 2 8,72e7+2 (i=k+1+1,..., «),

where & =0 or 1 (mod. 2).
k41
(G o€} x2,0067) = Z} éﬂc*heé’”+ 2 éﬂc*yze}”“’
/C*Joei /0*706” Ejl&x*he}”z +;&1x*]26’}+2
. - k+l . i .
.706?“\_/2.706?= 20 &85+ 2 &iyentt
J=k+1 J=k+(+1
k47 *

'26;”'2 — 8 2en+2+ 2 8;,723"+2
J=k+1 =k+i+1

It follows that &=0 (F=Fk+1, ..., k+I), &=0 (G=k+1+1, ...,
E+l+i—1,k+14+i+1,...,«)and &,,,,, =1 (mod. 2). This proves Theorem
6 a).

Similary we have Theorem 6 b).

Let M = S**'v e*+3, where e”*® is attached to S”*! by an essential
map 5: 0e"**—S"+*1, Then M is regarded as a cell complex composed
of three cells, a point e° an (n+1) cell e"*}, and an (n+3) cell e**3. Let
us define a cellular map «: L—M such that

i) «(Sp*)=e® (i=1,..., t)

i) «(S;vert)y=e® (i=1,.., k),

iii) «(Sruert?)=e" (i=k+I1+1,..., &)

iv) «(Stuertluer*?)

=e (i=k+1,..., k+i—1, k+i+1,..., k+1),

V) «(Si.vedfluegii) = 8",

vi) if u;,.,=F0, €i*® is mapped by « topologically onto e*+3, and

otherwise, e7*3 is mapped t0 e° by «.
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It is verified in the following way that this map « can be constructed.
v) is constructed such that « maps Si,,veii; into ¢ and elsewhere
topological. Let «': ¢(M)—c(L) be a cochain map induced by « and let «*:
FH(M)-FH(L) be a proper homomorphism induced by «. In M we have
Joe" ! et Foe"tt = j,e"*?,
s0 that
(G0 2 oY) = wjpe™
K*y'oen+l ;:1 K*j06”+1 — jleen+3
jo,clen+1 n\—/l jlclen+1 — jlee”h"

Since we have «'e**! = e}+l, and «'e"*3 =jﬁ vy, €743, we have
=1
Fol ki 2 o h = S w23
This relation holds true for each i=1, ..., I, so that c) is completely
established.

Though d), e) will not be used in the sequel, we prove them here
for the completeness and the convenience of our discussions. They are
essentially used in solving the (n+3) extension cocycle and corresponding
classification problem, which N. Shimada and I will discuss in our forth-
coming paper [11]. From a) we have

e o € =(—1)’e}** +2c"**+8c"*t for each i=Fk+I+1, ..., where
¢"*2, ¢"+1 are cochains. Considering the coboundary of both sides, we have

o
2 —1)"e} s et = 2(—1)" 3 v} 3+ 28" 2
J=1
€ im0 = 2 vue T+ (— 1) 8o,

By the definition of g,-operation, in case where m = 0, we have
Ghose] = 5] 74e7 " +(—1)80" %,
so that ’
Oneslo€? = 2\ Yufoe*® for each i =k+1+1, ..., «.
J=1

This proves d).
The proof of e) is analogous to that of d). For the completeness
of discussions we prove e).
From b), -
vy ) €y = (—=1)"ept? +2¢™+2 +3¢™+1
S(ezﬂn\_/z et.) = (—1)"8exi? +23¢" 2
2:(—1) € iy et +2Pent] g et +( 1) 2P e, o et}

— 2(—1)"-Ji:pj,weg+3+28c"+2. .................. )
=1
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Since  8(eitl eivi) = (— 1) et ekl +(—Deitl b+ 2P epil el
we have

ertlng, eh = (—1)etr, o etth + 2P ept] entl —8(et
Substituting ii) for the term e} ei., of i), we have
20(— 1), ko + A —1)" 27 €3, et} + 2P ep ] ent]— 2P (el ey

n—3

=2(—1) ,Z [, 13,870 + 25672

). i)

Thus it follows that
n bDi 7 ’ n ”zﬂi 7 pn n = 7+3
iy o €k T 2 e’“+¢,,\_/2821>iek+_t +(—=1) 9 INA ,}_’132”{ ek+tmj=21 M, r41 €5
From the definition of q,- operation it is proved that
q;_aeywzﬂ} nn€}*® for each i=k+1,..., k+1.
J=1
This proves

a
Unslopi€is = szlf‘f'w joe;t? for eachi=1,..., 1.

9. Proof of Theorem 2.

In virtue of Theorem 5 there exist reduced complexes I, L which
are of the same homotopy type as P, P respectively. Let w: L—P
and v: P— L be homotopy equivalences such that vu ~e and uv ~e.
If w*: FH(P)— FH(L) and v*: FH(L)—-»FH(P) are proper homomor-
phisms induced by u, v respectively, we have
w¥p* =1 and ov*u* =1,

from vu ~ ¢ and uv ~ e. Suppose that w*f* : FH(P) — FH(L) is realized
by a map 4#: L —P. Then the proper homomorphism induced by the
map hv: P — P, is v¥h* = v¥(u*f*) = f*, so that it is sufficient for us
to prove this.Theorem in case where two reduced complexes L, L take
the place of two given complexes P, P respectively.

In virtue of Lemma 1 the proper homomorphism H(L) — H(L) induced
by f*: FH(L)— FH(L) is realized by a cochain map g*: ¢(L)— c¢(L).

If a chain map g: ¢(L)— c(L) dual to g* [12] is realized by a cellular
map f: L — L, the proper homomorphism induced by f is the given
proper homomorphism f*. Thus we intend to construct step by step a
cellular map f: L — L, which realizes the chain map g: ¢(L)— c(L).
In performing this, we utilize a lemma of J. H. C. Whitehead, which is
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of great importance and of use together with lemma 5, [3].

The lemma is stated as follows;

Lemma 4 (J. H. C. WHITEHEAD [3] Lemma 7).

Let K, L be simply connected complexes and let ¢" be a principal
cell, where n_>2. Suppose that g: ¢ (K)—c,(L) be a chain map such
that the map g|c¢.(K,)(r =0, 1,...) can be realized by a cellular map f,:
K, — L, where K, =K—e¢". If f,8¢"=[Bge", then f, can be extended to
a map f: K — L, which realizes the chain map g.

Since f*|H%L) is an isomorphism onto, we have g(eo)— e°. Thus
gleo(L) can be realized by a map f: L" ! =¢° —>¢° = L"L. Next, let

I 4
g|c,(L) be given such that g(e}) :an,L e i=1,...,«). Then a cellular
=1

map f: (S7, e) —(L", &), for each i — ‘1,'... , k, can be constructed such

K/

that f represents a homotopy element 3'a,, S7, where S} denotes also a
J=1

homotopy element represented by a map : S” — S7 of degree unity. Then

it is obvious that the cellular map f: L™— L" thus constructed realizes

the chain map g|c(L). Since =,(L")~ H,(L"), and =, (L") ~ H (L"), we

identify elements corresponding by these isomorphisms. Then we have
,@ge"+1 = 90ger*l = goer*! = foer*! = foer** for each 1 =1, ... k+1,

so that 1n virtue of Lemma 4 glcnﬂ(L) can be realized by an extended

cellular map fo Ly s Ire,

Now we are going to extend this cellular map f: L"*' —L**! to a
map f: L** 1 +er*(t >1>1) —> L*+2 such that this extended map f realizes
v o
the chain map g|c(L**1+e?*?). If ge?*? = 310,65 2+ 0/, 14q 8033
. =y Q=1
IC/

+ 3 byert?, we have b ..,=0and b/,=0 mod. 2. This 1sproved

Pkt +1
in the fpllowing way. va‘idently‘ we have
(9. 5] | GRELE = oo 4 by 1 €] +- for eachg=1,..., 1.
From Lemma 1 -
yzg el = f*yzéé’i%, for each ¢q=1,,... I,
and from b), Theorem 6,
et = ]zﬂqek 2 vyzvqek +q for each q= 1..10.
By the property of f* we have

f*]Ze;CE‘:zQ - f (.72”(1616 +4 “\_{ .72 qek/w)
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= f:kjgpqég'+qn\_;/2 f*jzf'qél?'w .
Again, from f*j,», = jyr,g* it is seen that
Jig*enty = fzpqg*é;’c‘/wn\_/jzpqg*?%‘f+_‘q = .. +b:’k+qj26?+2+ o
Fopi 8 80 32, Ty 98 0 = TG B 10 12,07 1)
= 52l 2 o) 32, (2 Gurvr e}

K
=72(. E a?:k’ﬂ,ey;h) .
J=k+1

We have

DY @) ol €} = U] wgafalt (8 21 1),
1

J=k+
The left side of the last equation does not contain any e3*?(i=1, ..., ?),
so that we have
9.2) b},./+q =0 mod. 2 for each ¢ =1, ..., I’ and
foreach i=1,..., t.

Through analogous arguments we have

93 b/, =0 mod. 2 for r =k’ +1'+1, ..., «" and
for i=1,.., ¢.

From (9.2) and (9. 3) it is easily seen that

=kl e +i

e/ b4 P
Bge;Hz = 2 bi,p Bé;‘i+2 + -Ebt/,kluz Béﬁ:qz + 2 b'i’,?'leéir‘l+2
p=1 a=1
144 N — . —
7
= + qgl bi,kz+q(ak;+q7])+ r=k§l+1b,',,,(a,_77) =0 N

where 5: S**1 — S" denotes an essential map a,: S">S" (i =k +1, ...,
«') of degree unity, and (a;)i=k'+1,..., «') are homotopy elements

represented by maps «,7: S"*‘—LS"&S;‘. On the other hands we
have

fBeri2 =0 for each i=1, ..., ¢,
so that

Bgey** = fBep** for each i =1, ..., t.
" t
- This shows the existence of the desired extended map f: L"+>)er*2 —
i=1
L*+2,

In the next place we intend to extend 7 to a map f: L"*%— L2
such that f realizes the chain map g|c,.,(L). It is easily seen that
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9.4) fBe2=3a.(am)= 3 a.lam) for each i=k+1,..., «
- =1 =K’ +1 . .
for =, (S;ve!*)=0(G=1,..., k). Putting

(9.5) gert? = Zci p€P2 +Z} Ci 1 el + E c/.e;*?, we have

r=k/ +{/ +1

(9' 6) Bget”” = 2 c;,k'+4(ak’+ q77)+ E cz”,r(ar'ﬂ) .
a=1 =K+ +1

If the following relations

i =k + , kK+1
1) @ pree Eci’vlc"i‘-q mod. 2 ( ;—-— 1,. )
(1\) .. o, d 2 1= k ) k'+
ii) @;,,=¢j, mod. & ( q=1FK +l'+1 ves >
t = k+1 ’
i) @;, 57 +q Ecz,,k'w mod. 2 ( ' -—1+ +1 i >
(B) . ey 4 2 z—k+l+1 .
11) a‘zr,q:ci’q mod. ( q=FK+U'+1, ..., >

are proved, we have fBe;*2 = Bger+2 from (9.4) and (9. 6).
From (9.1) and (9.5) it is seen that

T N L3
(9. 7 greri= 2] bi/,k’+q?e+2 + 23 Cise€; 2 for each ¢ =1, ..., I
i=1

i1=k+1

It is also verified that

Jag*ertl = f*fzercnrq = f*(jz”qélyc"w ij”qé;cl'w)
= *)or€ T va, N [¥Tore@ % 1q
2 w02
= jz"qg*ek'mn\_‘_/z.h"qg*éﬁ'w
= jz(g*éﬁ,wwx_{zg*éﬁ,w)
K LS
= ]2§(i_21 (R A Z]lai,mef)i
L3
(9.8) = 3V @} korof2€) 2
. J=k+1

From (9.7) and (9.8) we have

i=k+1, .., k+l, ..., «
q=1..,10 )
This proves (A) i) and (B) i). By analogous arguments we have (A) ii)

and (B) ii). Thus, in virtue of Lemma 4 there exists the deblred map f:
L?+2 s Ln+2

7 R —
Cix +q :“3’k+q=a:i,k:+q mod. 2. <
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Now we are at the last stage of proving this theorem. An easy
example shows that fBe;*® = Bge;*® (for each i=1, ..., a) is not always
possible, so that we shall modify the map f, which has been established .
in L™*2, to a map f,. In this modification of f we nolice that f,|L"** =f
and f is modified in all the (n+2) cells of L. From the last part of § 7
we have

k+1 k+1 L3 .
(9.9)  Ber*® =, S7H + 1,509 + v Ui+ 23 Yse; (=1, .. a)
J=k+1 J=k+1 J=k+l+1
From (9.1) we have
I I . P . ..
gertt =31b,, €02 + Zb:‘k,,rqég.*}q + b” ert? (i=1,..., t).
r=1 =1 r=k’+1’' +1

Then we may define f,|S;** (for each i=1, ..., ?) such that

x’ "

e B -
(9. 10) £,(Sp+?) = z: 0755 +j<_}-t'—k Mot 3 e

where b;,..,=0, and b}, = 0 mod. 2, are utilized here. This modification
does not alter g. From (9 5) we have

4

gert? —201-p62+2 "4‘201 K’ +qekf+q+ 2 09’ et (=k+1 .., «).

+17+

Thus it can be also defined that
(9. 11)  foo;= 2 201,p5"+2 + Z c! k/+qa)k +q+ Z cJ Twr** (1=k+1.., ")

=k 4+ +1
I l/

If we define ge}*'= 2 0,,,€2*1, we have

(9.13) for=SY 0,3, (G=Fk+1, ..., k+0)
: Pk’ +1
From (9.9), (9.10), (9.11). and (9.13), it follows that
t Tkt x —
FoBer™ =31 (\ibuy+2 33 st 2 3 00i0)S3'?

-

K+l

b ¥ : , [3 ’ —
+ 2(7\' ! +q+ M4, 1€ +a T , kZ}m%; Ci i +a)Oy +q
=k+

J=k+1
x bjr K+l " L3 o
(9. 14) + E o 1A i, 5Ch et Z Vt’jci,f)w"
r=k/+1/+1 s J=k+1 J=k+i+1

* As we have often referred to, it should be noticed that homology and homotopy are
distinguished adequately according as the place where they are used.

** From the following reasons we can modify f to fy. Let us denote S}|Jje}** by II;,
then there exists'a map ¢: IT-II;\/II; such that ¢ maps S™ of II to SP\/S% with degree (1,1)
Besides this, let a map Y : IIII be given such that & maps S of IT to S» of IT with degree
a, and a=c mod. 2. Then we can construct a map f‘g: I - I1 by modifying ¥ such that
tﬂS"——-!]S" and «17 maps e”+2 of II to en+2 of II) with degree ¢. We use, in the above
modification of f to fo, the relations (A), (B) on the previous page and also m,+2(S”|_e”+1)==0,
where e”+1 is attached to S” by a map 0e”+1—S” of degree odd. It is clear that this
modification does not alter the realization of a chain map g.
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Putting
o
(9.15) gerts = ;:_“lpt,pé?ﬁs
we have
o’ — = S K
'Bge?+3= Zp”()quv;w_i_ 4 Mpq e+ Z ”p,qvq + 2 Vp:ow"
p=1 g=k'+1 =k’ +1 =k +V +1
o’ . _ k, 14 P2 +
(9' 16)" = Z_ll(Php?\'Pq)Sg” +q‘ e <Zpt,m“p:q>wq ;ﬂ(EPtm qu)

<2 Ptrpr'q>wq
=K/ ¥’ +1

Proving the following relations

. k+
.1) A‘tjblm E 2/"’taJcIm+ E 27i,ch:n - pi,ﬂ\j.p (p = 1; ceny tl) ’

J=k+

-

. b ., K+l
ii) xw‘zj’iﬂ"‘ Ha15€5, "'+q+, 2 ‘Yt,jcjkwq

J=k+1 =k
o’ —
- p=1ptml‘p:k’+q @=1,.., 1",
» b+l <
i) Nyol+ 20 msc) -+ Vir 3 r
2 J=k+i+1 J=k+1 ’
o —
=1t21ptvp7p:r (v=FK+UI"+1 .., «),
. k4l o’ —
1v) 0,995, 5 = 2'P¢,jv;,p mod. 2. (p=Fk+1,..., K'+1),
J=k+1 J=1

we have fRe}** = Bge;*? (for each i =1, ..., «) from (9.14) and (9. 16).
From (9.1), (9.5) we have

grent? =31 b, el + ZK} c;,,e7** for each p=1, .., t.
t>=1 i=k+1
Taking the coboundary of both sides of this equation,
r+l L
dg¥eyr? = 2 (btmle)ejw +Z < M 2ct:r/l’q:t>eﬂ+3 +2< 2 20hzz'>'q:t>e<7f+d .

=1 \i=k+ t=k+i+

It is also seen that
dg*ert? = g*det'? = g*(xjpé}”a) = ijg*é;”s

= 7\—%(;(%,) e?”) = ;(ijpiyj>e?+3 .
It follows that

K

—_— K+
NjpPis 3= Ny 05 p + J§+120’wl‘m+ 2¢5,,%.5 w=1,..,t).

J=k+(+1
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This proves i). Again, from (9. 1) and (9.5) we have

k+1

t «
ot ’ 5
g*?j?/+2q E ik +qen 24+ cj,k'+q67+2 + Z Chra€d'? .
i=1 J=k+1 J=k+i+1

Considering the coboundary, we have

J=k+i+1

’ [
sgeetty = 31 W aes + 33, 3 2000}

a
E( 201,k+17i:1> HAR

J=Kk+1+

It is seen that
Sg*entl, = g*denl = <2Z Moy 4q€D > = E 27"mk’+qg*é2+3
@ o~
= §<§12pt,pﬂpyk’+q>e?+3 .

Thus it is concluded that

o b k+l %
— Jrk/+a / ’
pzlpi:p/‘p:k'w = 7\'U_"Z' - +Jz_]1 Wi, 5C 50 +q T Z V4,5Ct5+q -

J=k+i+1

This proves ii). Similarly iii) can be proved. Lastly we proceed to prove
iv). From (9.15) we have

a
grert =21p;, 0"
i=1
Thus

pgg yl’rqeg+3 - z(gpirz’;}?:(l)e:“-a(q': k,+1! cee s k,+l,),

(9' 17) Z]Zg yp’qe"+3 E(E Pirl’uf'ﬂl>-72en+3

i=1
2, * 3 * =
C v opes . . . . .
1;1.729 Vp,e€3 = f Igl”p,qyze‘?)“ = f*(]062/++ljnﬁ/l .7oel'c°'++lj> (.7 =1,..., )
= fkjo E%;’+1J":1f*joég/++1j
= Jog™ei/}s = Jog*eRrl,
Ry sA .1 k+l
=yo(;;1 0,0, )v yo<20i,k,+,e”+1> from (9.12)

kt

-

9},,6'”(2 vp,iize”z‘fa) from iii) of Theorem 6
1 =

n K+l
(9.18) = 3 (500 mn) dues.

p=
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From (9.17) and (9. 18) we have

=
+

a’ 11 kt+1
2PV = 3 O vy = 05,pv,; mod. 2 (p=Fk'+1,..., K'+1).

J=k+1 J=k+1

+

L
[
S

This completes the proof.

Added in proof: I could read [4], and I hope, I shall come back
soon to some subjects related to this paper (refer to my paper of the
same title in this issue).

(Received November 22, 1951)
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