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A Class of Topological Spaces

By Taira SHIROTA

1. Introduction. It is well known that the Cech’s bicompactification
B(X) for any completely regular space X can be regarded as the com-
pletion of X in the uniform structure over X with the basis made up
of all “finite” normal covering of X. In this point of view the following
question naturally arises: What is the space which is obtained by the
completion of the structure over X whose basis consists of all “countable”
normal coverings of X ? '

In the present paper we are concerned with the space mentioned in
the above problem. First of all we establish the relation between it
and the Q-space introduced by E. Hewitt?, then investigate the con-
nections between our space and other important spaces. Moreover we
discuss the relations between our space and the algebraic systems of the
set of all continuous real valued functions on it.

2. Definition. Let us call the structure over a completely regular
space X with the basis made up of all countable normal coverings of
the space X the e-structure over X and denote by eX. Moreover we
say the space with the complete e-structure to be e-complete and let us
call a cardinal number m e-complete if the discrete space with the
potency m is e-copmlete.

Remark. The notation “eX” was introduced by Tukey?’, but he
said ‘if the enumerable normal coverings are a basis for a uniformity,
then we denote the uniformity by “eX”’. Thereby we shall show
that the countable normal coverings are always a basis for a uniformity
agreeing with the topology. To see that let X be a completely regular
space and let 1 be a countable normal coverings of X. Then we show
that there exists a countable normal covering ¥ such that B2 1.
Let U={U,}. Then since 11 is normal, there exists an open covering
U, such that ,>U. For any i, let F,=X—S(X—U, 1,). Then {F,
is a closed covering of X such that F,CU; for any i and such that

1) Cf. (5)
2) Cf. (8, p. 57)
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S(F,, UDN\(X—U,)=¢>. Hence there exists a function f,€C(X.RE)"
such that f(a)=1 for x€F, f(2)=0 2¢U, and 0<f(x)<1 fcr any
x€X. Now we define a continuous mapping # of X into the Hilbert
cube I, as follows. For any 2 € X, A(a)={i ' -f (%)} €I,. Moreover let
Y=~n(2) and let V,={h(x)|f(2)==0}. Then {V,} is an open covering of
Y, because for any € X there exists an F, such that a € F,, hence
f{x)==0, therefore A(xz)€V,. Obviously 2 (V) U,. But since Y is
separable, hence there exists a countable normal covering ¥, of Y such
that 8,2{V,}. Let $={A V)|V & B,}. Then B=-1 and ¥ is a countable
normal covering of X. Now let {11} be the family of all countable
normal coverings of X. Then obviously for two U, U+, € {11} there
exists a ., € {U.} such that U< U, A U, and by the above fact there
exists a ., such that M., U,. Thus we see that {l.} is a basis for
some uniformity. Obviously this uniformity agrees with the topology.

3. The relations between the e-complete space and the Q-space.

Theorem 1. For a completely regular space X, the following condi-
tions are equivalent :

i) X is e-complete,

ii) for any CZ-mawximal family” of X, the tlotal infersection is

non-void,

iii) X is homeomorphic to a closed subset of a Cartesian product of

the space of rea! numbers with the usual topology.

Proof. a) We show first that i) implies ii). Let X be an e-complete
space and let A be a CZ-maximal family of X. Then we have only to
prove that % is a Cauchy family of eX. To see it let 11 be a countable
normal covering of X. Then we show that there exists a Z €9l and a
Uell such that FCCU. Let U={U,}. Then as we have seen in the
above remark there exists a closed covering ¥={F,} such that for
any i F,C U, holds and such that F, and U:(=X—U) are conpletely
separated. Hence there exists a Z-set Z, such that F, Z, U,. If for
any i Z,¢ 9 holds, there exists by the properties (¢) and (d) of A a
Z; €U such that Z;~Z=¢. Then 11, Z,=1LZ, 3%, Z,=3Z;~Z:)=0¢,

3) We denote by ¢ the void set.

4) Cf. (5). Let C(X, R) be the set of all real-valued continuous functions of X and let
f be a function in C (X, R). Then the set of points in X for which f vanishes is said to be
a Z-set and is dencted by Z (f). Finally let Z (X) be the family all Z-sets of X. Then a
subfamily 9( of the family Z (X) is said to be a CZ-maximal family if 9( enjoys the following
four conditions: a) 9( is not empty, b) 9 does not contain a void set, c) Y[ never contains
countable subfamilies with total void intersection and d) 9( is maximal with respect to (a),
(b) and (c).
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which contradicts the property (c) of 2. Hence there exists a Z, such
that Z,€ 2. Thus we see that % is a Cauchy family of eX and since
eX is complete there exists a limit point of %A, which is the total inter-
sectioa of .

b) Next we show that ii) implies iii). Let X be a completely regular
space satisfying the condition ii). Evidently by the mapping 4 : A(x)=
§f(2)}, X is homeomorphically mapped into the Cartesian product space
P,R,. where R/(=R) is the space of reals and the index f¢€ C(X, R).
Now identifying the point # of X with the image A(xz), we may assume
that X P,R,. Moreover let gX be the substructure of the usual
product structure over P.R,. Then we shall show that gX is complete
and that therefore X is closed in the product space. To see it we have
only to prove that any Cauchy family of ¢gX is equivalent to a Cauchy
family of gX which is a CZ-maximal family of X. Let 2’ be a Cauchy
family of gX. Then assuming that 2’ is a subfamily of the family Z(X),
we can find a maximal subfamily 2 of Z(X) containing 2’ with respect
to the finite intersection property. Now we shall show that % is CZ-
maximal. Suppose, on the contrary, that there exists a countable
subfamily {Z,} of 2 such that II,Z,=¢ . For any ¢ there exists an
f.€ C(X, R) such that Z,=Z(f,). Let g,=\//-1|f:| where \/i_,|f;|(®) is
the maximum of the absolute values of f,(«) for i=1,2,...,n. More-
over assuming that for any i 0<f(x)<1, let g==%,2""g,. Then for
any 2 € X, g(&)>0. Hence g Ya)(=1/g(«)) is continuous. Now obviously
A is a Cauchy family of gX which is equivalent to 2. Therefore for
every positive number & there exists a Z €9 such that the diameter of
the set g 1(Z) is less than ¢. But if a € Z(g,) then g(x)<2™""%, hence
for sufficiently large =, g’l(w)>r§1£xg"1(y) for any x € Z(g,). This implies

that Z(g,)~nZ=¢. But Z(9,)=Z(f,)A...AZ(f,), hence Z(g,)e A, and
since Z €, A does not satisfy the finite intersection property, which is
a contradiction. Thus we see that 9 is a CZ-maximal family. There-
fore by the condition ii) of X there exists the total intersection of A
which is a limit point of A, and so of A’'. This implies that gX is
complete and that X is a closed subset of P R,.

c) We show finally that the condition iii) implies i). Let X be a
closed subset of a Cartesian product. P,R,, where B,= R, then the sub-
structure ¢g’X of the usual product structure over P,R, is complete, since
the structure over P, R, is complete. And obviously we can find the
basis for the structure g’X consisting of countable normal coverings, since
we can find a basis with the same property for the product structure.
Hence the identity mapping from eX to ¢’X is uniformly continuous.
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This implies that eX is complete. Thus the proof of our theorem is
complete.

From iii) of Theorem 1 we have evidently

Corollary. A closed subspace of an e-complete space is e-complete.

E. Hewitt’s @-spaces is nothing other than the space satisfying the
condition ii) of Theorem 1. Therefore we have

Theorem 2. A completely regular space is e-complete if and only
if it is @ Q-space.

Remark. If for two totally bounded structures over a completely
regular space their equivalent relations of Cauchy families are equal, they
are isomorphic. But the eX and the ¢gX in the proof of Theorem 1.
b) are not always isomorphic in spite of their equivalent relations of
Cauchy families being equal.

4. The relation between the e-complete space with complete struc-
ture. In this section we consider the following problem: On which kind
of spaces are there a complete structure? This problem was considered
by® A. Weil, J. Dieudonné, J. W. Tukey, K. Morita and the author.

Lemma 1. Let U be a CZ-maximal family of a completely regular
space X and let f be a mon-constant function in C(X, R) such that
F,=Z(f)eA. If F, is a set {z|f(x)<a}, where a is a positive number,
the family

N =1{Z(g)|Z(g)e Z(F\) & Z(9)DZAF,+¢ for some ZcUj
is @ CZ-maximal family of F,.

Proof. -Obviously 2’ enjoys the condition (c), hence we have only
to prove that A’ is a maximal family of Z(F,) with respect to the finite
intersection property. Let Z(g) be compatible with %', where g € C(F,, R)
and let F{=2Z(g9)~F,. Then Fi=-¢ since F,c?'. Here we may suppose
that a is equal to 1. Now for any rational number - in [0, 1], let
G, ={o|f(&)<r}, G'={z|g(x)<r}, F,={z|f(x)<r} and let Fi={z|g(x)
<r}. Furthermore let G/=G,~ G, and let F;=F_~F;. Then F!isa
closed subset of X and G/ is an open set, since G, F, and G is open
in X. Moreover if < o F/C G/CF;. Hence for any 2€X we set
g’(m)=s¢u£7¢. Then ¢'€ C(X, R) and Z(X)>Z(¢9")=M,F/=11,(F,AF;)

TE T
=Fy~Z(g)=F{. Therefore Z(g9')e, consequently by the definition of
A, Z(g)eW'. Furthermore A’ has obviously the finite intersection

5) Cf. [5, Theorem 50].
6) Cf. (7), (8), (9], (10) and [12).
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property, hence 2 is maximal with respect to this property.

By A. Tarski’s definition, Ulam’s® and Hewitt’s Theorem® and
Theorem 1 we have immediately

Lemma 2. If a cardinal number m is weakly accessible from R, in
A. Tarski’s sense, m is e-complete.

From above two lemmas we have

Theorem 3. If the character® of « completely regular space X is
weakly accessible from R, and if there exists a complete structure over
X, X is e-complete.

Proof. Let X be a completely regular space with a complete structure
¢9X and let the character m of X be weakly accessible from R,. Then
the potency |X| of X is also weakly accessible from R, since |X| <2m.
Hence X is e-complete. Moreover let {ll;| D} be the uniformity of gX
and let A be a CZ-maximal family of X. Then we have only to prove
that U is a Cauchy family of gX.

For this we shall show that if 11 is an arbitrary element of {U;| D},
there exist a Z¢€ A and a U€l such that ZC 1.

Now since 11 is a normal covering of X there exists a normal
sequence {U,} such that U311, >U,~> .. Ju, . Yu,3u,,>.... Let
U={U,| A} where A is assumed to be a well ordered set of indices.
Then, as A. H. Stone'*" showed, there exists a family {Fn,«|n=1,2, ...
& a € A} satisfying the following conditions :

i)y {F,,} is a closed covering of X,

ii) every element of 1,,, does not intersect two elements of
F,={F, ,Ja€ A} at the same time, and

iii) S(F, 4 U, ) Ua.

Now, let F,=3,F, ,. Then by i)and ii) {F,|m=1,2, ...} is a closed
covering of X. Since A satisfies the condition c), there exists a set
F,e {F,} such that F, is compatible with 2. Let f be a positive
continuous function such that f(2)=0 for 2 € F', and f(z)=2 for x ¢ S(F,,
1,.,). Moreover let Z,=f{z|f(#)<0} and let Z,={x|f(#)<1}. Then
since Z, OF,, Z,€ and hence by Lemma 1 the family '={Z(g)|g €
C(Z, R) & Z(9)>Z ~Z, for some Z €A} is a CZ-maximal family of Z,.
As in the proof of Theorem 1, (a), A’ is a Cauchy family of eZ,.

Now let Z,=Z,~S(Fy 4 U,.,). Then Z,CS(F,,1,.,) and by ii)
S(F, 4s Wy )AS(F, 6, U,.,)=10, hence there exists a continuous function

7) Cf. (13, (2) and (3, p. 133).

8) Cf. (6, Theorem 16).

9) The character of a space X is the smallest cardinal number of basis for open sets.
10) Cft. (4). The proof of Theorem 1.
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f, such that f,(z)=f(z) for x € S(F, ,, U,.,) and f(x)=2 for a ¢ S(F, 4,
1,,,). Then f,€C(X,R), {z|f(2)<1}{=2Z,, i.e., Z,€ Z(X), 2Z0="21, 24
NZg=1¢ for «, B(a==B) and by ii) S(Zas Wi g) N\ S un+4)<S(Fn,w 0,.s)
AS(F, 4 ,,)=¢. Accordingly if Y is the discrete space {a|Z,}-¢}
and /4 is the mapping from Z, to Y such that if € Z,, h(z)=«, & is
a uniformly continuous mapping of eZ into eY.

Since |Y|<|A|<X, Y is e-complete and %(A’) is a Cauchy family
of ¢Y. Thereby there exists the limit point « of A(2). This implies
that for any Z' W(Z">«,i.e., Z' ~Z,=¢. Since forany Z €A, Z~Z, €,
ZAZy HZAZ)AZy1-p. Thus Z, is compatible with 2. Therefore by
(c) and (d) of A Z,€A and hy iii) Z,SF,, 4 W,.,)U,. Since 1 is
arbitrary, 2 is a Cauchy family of gX.

By Theorem 1 and Theorem 3 we have

Covollary 1. The following three statements ave equivalent :

a) every completely regular space with complete structure is homeo-
morphic to a closed subset of a Cartesian product of the reals,

b) every cardinal number is e-complete,

C) every discrete space admits no measure completely additive on
all subsets, vanishing for every point, assuming only values 0 and 1 and
equal to 1 for the whole space.

Proof. Every discrete space is metric, hence its a-structure is
complete, therefore by Theorem 1 a) implies b). Next by Hewitt theorem®’
and by Theorem 2 b) and c) are equivalent. - Finally by Theorem 2 b)
implies a).

Corollary 2. Let X be o fully normal T,-space. Then if |X| is
accessible from 8, X is e-complete. ‘

For any fully normal space admits a complete structure.

4. The e-completion. The completion of the structure eX is an
e-complete space. In this section we show that such e-completion is
unique in the same sense that 8(X) and «(X) are unique.

Theorem 4. Let X be any completely regular space. Then there
exists a space e(X) which admits the following conditions :

i) e(X) is e-complete,
ii) e(X) contains X as a dense subset,

iil) if Z,€Z(X) for i=1,2, ..., U . Z=Ilp,Z,, where Z is the
closure of Z in e(X).

Such an e-completion is completely determined wup to homeonior-
phisms.

Proof. We prove first that the completion ¢X of e¢X satisfies the
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conditions i) ii) and iii). Obviously eX satisfies i) and ii), hence we
have only to prove that eX admits the condition iii).

Let Z, € Z(X) for i=1, 2, .... Then obviously Ilx,Z, >IIx,Z,. Hence
we show that I1,Z,TL,Z,. Let %, be the Cauchy family of eX such that
the limit point is contained in II,Z,. Then we may assume, as we
have shown in the proof of Theorem 1 (b), that 2, is a CZ-maximal
family of X. And since for any ¢ the limit point of 2, is contained in
Z,, Z,~Z+¢ for any Z €.

For if Z,~Z=¢, then there exist two f,, f,€ C(X, R) such that

Z(f)=7, and Z(f)=7. Let f= ix,f,, Then f(x)=0 for € Z, and
1 J2

f(a)=1 for z<cZ, ie, Z, and Z is completely separated. Hence there
exists a countable normal covering 11 of X such that S(Z,,1)~S(Z,1)
=¢, therefore S(Z,, W*)~S(Z, U*)=¢ where UW*={U*|Ucll} and U*
consists of all the Cauchy equivalent classes {A} where A € {A} implies
that there exists a Z €2 such that U >Z. Then since Z,CS(Z,, U*)
and ZC S(Z,0%), Z,~Z=¢. This implies that the limit point of %, is
not contained in Z,, since it is contained in Z, which is a contradiction.

Thus by the condition (c) and (d) of A, Z,€9. Hence I1Z,€¥,
i.e. the limit point of 2 is contained in 11Z,. Thus we have 11.Z,=11Z..

To show the uniqueness, let Y satisfy the conditions i), ii) and iii).
Then we show that eY is the completion eX. For this we have only to
prove that every countable normal covering of X is extended to a countable
normal covering of Y. Let Ul be a countable normal covering of X.
Then as we have shown in the remark of I, there exists a countable
normal sequence {%,} such that ¥,< 1 and such that for any Ve 3, X—-V

is a Z-set. Now for Uell we set w(U)=Y—Y—U and let p(1)={u(U)|

U c1}. Then obviously u(%8,)< (1) and by the condition iii) IT (Y — (V)
S — ) VeBn
=11 Y-V=II (Y-V)=¢=¢. Hence n(®,) is a covering of Y and
V € QST[ V € %77/ *
thereby so is p(11). Furthermore since ¥,>9,.,,, #3B,)" «(3,,,). Hence
#(1) is a countable normal covering of Y. Thus we see that eX is the
substructure of eY and by the uniqueness of the completion, Y is

homeomorphic to e(X).

Covollary. In Theorem 4 we may replace the condition iii) by the
following condition :

iii") every continuous function in C (X, R) can be continuously
extended on e(X).
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Proof. Obviously the completion eX of eX satisfies iii’) since every
continuous function in C(X, R) is a uniformly continuous function of eX
into the usual structure of the reals I.

Hence we have only to prove that if Y satisfies the conditions i), ii)
and iii’), Y enjoys iii). For this let f, € C(X, R) such that Z(f,)=2Z, and
such that |f,| <1, moreover y € 11Z,—11,Z,. Then there exists a Z-set
Z of X such that Z>y and Z ~11Z,=¢. Now let f € C(X, R) such that
Z(f)=7Z and let g=33.,9, where g,=(|f,|+|f])-27*. Then g is strictly
positive, i.e., g(x)>>0 for any € X. Let g be the extension of g over
Y. Then g(y)=0, because g| X =3,9,==.g;| X, hence by the condition ii)
g=3,0: and also ¢g,<|f,|+|f|. But there exists %€ C(X, R) such that
h(z)-g(x)=1 for any x€ X since g is strictly positive. Since %.g|X
=h-g=h-g|X,h-g=h-g=1. Hence g(y)--0, which is a contradiction.
Hence 11Z,=11 Z, .

Remark. The above Theorem shows that the e-completion e(X) is
characterized by the internal-topological properties, as the Shanin’s
bicompactification (o, Z(X))'* is such one. The corollary shows further
that our e(X) and Hewitt’s »(X) is one and the same thing, and that
Ble(X))=B(X).

5. The combination of topologies.

Theorem 5. A completely regular space X is e-complete if and only
if any closed proper subsets of X are e-comiplete.

Proof. From the corollary of Theorem 1 the necessity is obvious.
Therefore we have only to prove the sufficiency.

Let X be a space with the potency >1 satisfying the condition of
Theorem 4 and let A be a CZ-maximal family of X and moreover let
Z be a Z-set in A such that Z=-X. Then there exists a function f
such that Z(f)=Z, and such that for some pc X f(p)=2. Now let Z,=
fo|f(2)<1}. Then by Lemma 1, the family W'={Z(g)|gcC(Z,,R) &
ZHDZ(f)~Z(f) for some Z(f)eA} is a CZ-maximal family of Z,
and Z, is a proper closed subset of X, hence by our assumption Z, is
e-complete. Thereby there exists the total intersection of A’ which is
obviously also the total intersection of . Thus we see that the space
X is e-complete.

From Theorem 5 the following question arises: What is the space
whose subsets are always e-complete ? For this we have

11) Cf. (13) and (14).
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Theorem 6. The following conditions on & completely regular space
X are equivalent :

i) if a completely regular space Y is the domain of a continuous
one-to-one mapping onto X, then Y is 2-complete,

ii) every subsel of X, is e-complete,

iii) for any point p of X, the complementary X —p is e-complete,

Proof. First we will prove that i) implies ii). For this, suppose
that a space X satisfies the condition i) and let F' be an arbitrary subset
of X. Moreover let Y be the space such that the set of points of Y is
the same as X and such that the topology of F in Y is the same relative
topology of F in X and every point belonging to Y —F is isolated point
in Y. Then obviously the topology of Y is finer than the topology of
X. Hence by the condition i) Y is e-complete and since F' is a closed
subset' of Y, F' is e-complete by the corollary of Theorem 1.

Second ii) implies evidently iii). Finally we prove that iii) implies
i). For this purpose suppose that a space X enjoys the condition iii)
and let Y be a space which is the domain of a continuous one-to-one
mapping % onto X. Then we show that Y is e-complete. Let 2 be a
CZ-maximal family of Y. Then U is a Cauchy family of eY and % is
a uniformly continuous mapping of eY onto eX, hence #(N)={A(Z)|Z € A}
is a Cauchy family of eX. Since X is e-complete by Theorem 5, A()
has a limit point x, in X. Suppose that Z-!(x,)=y is not a limit point
of A. Then there exists a Z-set Z¢€U such that Z=Z(f) for some
f€C(Y, R) and such that f(y)=2. Let Z,={y|f(y)<1}{. Then by Lemma
1 the family W=4{Z'|Z'€Z(Z,) & Z' >Z~Z, for some ZcU} is a
CZ-maximal family of Z,. As we have shown above, the family A(2’) is
a Cauchy family of ei(Z,) and eh(Z,) is finer than the substructure over
h(Z,) of eX' where X'=X—{x,}. Hence #(") is a Cauchy family of eX’.
Since X —{w,} is e-complete by the assumption, (') has a limit point
@, in X—{a}. But A D{ZAZ,|Z €A} hence xO:Zﬁgz;(Z)zzﬁ‘%[(Z’)le,

€ 7eN

which is a contradiction. Thus we see that ¥ is a limit point of 9. Since
A is an arbitrary CZ-maximal family, Y is e-complete.

Corollary 1. If X is e-complete and if every point of X is a Gj-set,
then X satisfies the equivalent conditions of Theorem 6.

Proof. Let X be a space satisfying the assumptions of Corollary 1.
Then we show that X enjoys the condition iii) of Theorem 6. Evidently
if p is an isolated point of X, X —{p} is e-complete. Hence let p be an
interior point of X and let U be a Cauchy family of eY where Y=X— {p}.
Then as we have seen in the proof of the above theorem,  is a Cauchy
family of eX. Since X is e-complete, there exists a limit point ¢ of ¥A.
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Now we will show that p=-q. Since p is a G;-open set of X, it is
Z -set, consequently there exists a function f € C(X, R) such that Z(f)
={p}. Then there exists a g € C(X— {p}, R) such that g(z)- f(#)=1 for
xeX—{p} and g(p)=oco. Since A is a Cauchy family of eY, there
exists a Z, € A such that 8(g(Z,))< &. Hence for some n Z, {2 |g(@) >n}
=¢. This implies that Z,#p, and Z,>¢q, i.e, p-q. Thus ¢ is a limit
point of ¥ in X—{p}. Since A is arbitrary, we see that X satisfies the
condition iii).

Corollary 2. Separable spaces and bicompact spaces with the first
axiom of countability enjoys the conditions of Theorem 6.

Finally we shall consider the weaker topology than the e-complete
topology.

Theorem 7. The following conditions on a fully normal space X
are equivalent :

1) X possesses the Lindelof property,

ii) if @ completely regular space Y is an image of a continuous
one-to-one mapping of X, then Y is e-compleie.

Proof. When a regular space X possesses the Lindel¢f property, X
is a fully normal space!?’ and if a regular space Y is an image of a
continuous mapping of X, then Y possesses also the Lindelof property,
and obviously the regular space possessing this propefty is e-complete.
This shows that i) implies ii).

Now we will show that ii) implies i). For this, let X be a fully
normal space without the Lindeléf property. Then there exists an open
covering whose subcoverings are always uncountable. Since X is a fully
normal space, there exists an open covering 11 whose subcoverings are
always uncountable. Since X is a fully normal space, there exists an

open covering T such that U W. Accordingly there exists a subset A
of X with potency >R, such that for any point p of X there exists at
most an a€A such that S(p, W)~ S(a, W)=¢. Then we may suppose
that A is a subset {a,|l1<p==w,} of X.

Using this set A, we will construct a space Y such that Y is an
image of a continuous one-to-one mapping of X and such that Y is not
e-complete. Let points of Y coincide with those of X. For each p,
let {U,,,lacl, & U,,,S(a,, W)} be a complete system of neighbour-
hoods of @, in X where I', is a set of indices. Now let a complete
system of neighbourhoods in Y of points which are not in A be the same
as in X. For a point a,, let U(a., A\, £))=2 001 oUx»o Where A(N, u)

12) Ct. (11).
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is a one-to-one correspondence from an interval (A, ] into S, ¢, wDy
such that A(\, z)(M)€'y,. Then, let a complete system of neighbour-
hoods in Y of a, be {U(a,, A(\, »))} where A(\, #) runs over all corres-
pondences described above.

" "Obviously Y is a T;-space and Y is an image of a continuous one-
to-one mapping of X.

We must prove that Y is a completely regular space. For this we
show, for example, that if x,€U there exists a continuous function
feC(Y,R) such that f(a.,)=1 and f(y)=0 yeY—-U(a., A\, p)) for
some U(a,, A(\, w))CU. Suppose U=U(a,, A\, #))=2=U;’,x. Then for
any M, A< \<pu, there exists an fi,€C(X, R) such that f(x\)=1,
fv(y)=0 for yeX—-U;’,», and 0<fy <1. Let f be the function
Sa<n =ufr, then obviously f(a.)=1 and f(y)=0for y€¢ Y—-U. Now we
must prove that f€C(Y,R). For any point x ¢ A, there exists at most
one ¢, such that S(z, W)~ S(ar, W)==¢, hence f|S(x, W) is equal to
f1S(ar, W) or to 0. For a,:a_>por a<), f|U(a,, Ala’, a))=0 for some
neighbourhood of a,, which implies that f is continuous at « ¢ {a,})\<«
<wp}. Finally for a,:Ax<a<p and for an arbitrary positive number
e>1, let Unryyorny=1x|fr () >1—¢&} and let AQ\, @) (W)=a(&, \) for
N A< M<Za, then |f(y)—f(a,)|< & for yeU(a,, A(\, @)). This implies
that f is continuous at a,. Thus we see that Y is a completely regular
space.

Finally we will show that the set A is a closed subset of Y and
that A is not e-complete. Since for any a ¢ A there exists a neighbour-
hood U such that UC S(», W) and U~ A=¢, A is closed in Y, and by
our construction A is homeomorphic with the space [1, »,) of ordinal
numbers with the usual order topology, but the space [1, »,) is not
e-complete since the space admits no complete structures.

Corollary. A metrizable space X is separable if and only if any
continuous one-to-one image of X has a complete structure.

6. Translation lattice C(X, R). In the remaining section we in-
vestigate the relation between the topological properties of the e-complete
space and the algebraic systems of C(X,R) and we shall give certain
extension of results'®’ in case of bicompact spaces.

We first begin with the translation lattice'®. By a translation lattice
I. we shall mean a lattice where for every « € L. and for real numbers «
a sum «+« is defined and which satisfies the following conditions :

13) Cf. (173, (19, (20) and (21).

14) Cf. (20).
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1. ¢+0=aqa,

2. (a+a)+BR=0a+(a+/3),

3. If =0 then e+a>=a,

4. If a=b then a+a=b+« .

Obviously C(X, R) can be considered as a translation lattice by setting
(f+a)(@)=f(x)+a for a real number « and for a function f¢€ C(X, R).

By a homomorphism of L into the reals we shall mean a mapping
¢ such that

1) ¢(aVVb) = max [¢(a), x(b)],
2) glanb)=[gla), ©(b)],
3) gle+a)=qgle)+«a.

Lemma. Let ¢ be o« homomorphism of C(X, R) into the reals such
that ¢(0)=0, where X is a completely regular space and 0 in ¢(0) is the
function such that 0(x)=0 for every x€X. Then Z(p *0)=1{Z(f)|f¢€
P Y 0} is @ CZ-maximal family of X.

Proof. We show first that every function f € ¢ %0) is not strictly
positive. Suppose, on the contrary, there exists a function f such that
f €9 Y0) and f is strictly positive. Then there exists a g € C(X, R) such
that g(x)- f(2)=1 for every x € X. Let ¢(g9)=«. Then a=-0. For suppose
w(g9)=0, then ¢(fVYg)=0. But fVYg=1, hence ¢(fVYg)=1, which is a
contradiction. Now ¢(g—«a)=0, therefore ¢((g—a)Vf)=0. But, for
&>2a let $=min («, &). Then (g—a)~ =8 hence p((g—a)A f)=80,
which is also a contradiction.

Therefore for any f€ @ %0), |f|€»~%0), where |f|(x)=|f(x)| for
every v €X. Accordingly we see that the subfamily Z(e %0)) is a
maximal family of Z(X) with respect to the finite intersection property,
since for two f, g€ X0), Z(HAZ()=Z(f)AZ(|g)=Z(|f|V |g])
[fI1VY1g] € 97X(0), and Z(f—a)~ Z(f)=0.

Finally we prove that Z(p~%(0)) satisfies the condition (c). Suppose
on the contrary that there exists a countable subfamily {Z(g.)} of
Z (p~1(0)) without the total intersection. Setting g,=2"".g., let
g=2%.9,. Then g is strictly positive, hence there exists an f € C(X, R)
such that g()-f(#)=1 for all x€X. Then, as we have seen above,
9¢ 9 %0)-and f¢ 9 %(0). Now let ¢(f)=«a_>0 and let »n be the integer
such that 2">a«. Then o(f—a)=0, hence (f—a)Y0ecqp *(0). If
z € Z((f —a)~0) f(2) < «, hence glo)=>a1. This implies that = g,()=0,
ie., that Z(3,9,)# 2. Thus Z(g\)A ... A Z(9) A Z((f —a) YOY Z(3%19,)
AZ((f—a)Y0)=¢. This contradicts the finite intersection property of
Z(p2(0)).
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Theovem 8. Let X be e-complete and let ¢ be a homomorphism of
the translation lattice C(X, R) into the reals. Then there exist a point
reX and a real number « such that for eny < C(X, R)

o(f)=f@)+a .

Proof. Supposing ¢(0)=«, let ¢’ be a homomorphism of the reals
into itself such that ¢/(s)=s—a« for any real number s, and let ¢/ =q¢' .
Then ¢” is also a homomorphism of C(X, R) into the reals such that
¢"(0)=0. Hence by the above lemma Z(¢” %(0)) is a CZ-maximal family.
Since X is e-complete, there exists a point « which is the total inter-
section of Z(e” 10)). Thus if for any feC(X,R), ¢'(f)= 4, then
P"(f—B)=0, i.e., Z(f—pB)3x. Accordingly ¢"(f)=pR=f(x), hence ¢(f)
=f(z)+«. }

Theorem 9. Any two e-complete spaces X and Y are homeomorphic
if end only if the translation lattice C(X, R) is isomorphic to the transla-
tion lattice C(Y, R).

Proof. Let T(X, R) be the set of all homomorphisms of the trans-
lation lattice C(X, R) into the reals. Now we introduce a topology into
the set T(X, R) as follows. For a positive number & and for a finite
set f1, for ..., £, Of C(X, R)let Ulgp; fo, for oo, Fus E)={o'||p'(fi)—p(f)|< &
for i=1,2,...,n} where ¢, € T(X,R) and let {U(p; f, ... f,; &)} be a
-complete system of neighbourhood of ¢ in T(X, R). Furthermore choosing
an arbitrary function f,€C(X, R) let X3, be the subspace {p|p(f,)=0}
of T(X,R). Then we obtain by the usual methods that X}O is homeo-
morphic to X, and since X}O can expressed in terms of the translation
lattice C(X, R), the isomorphism between C(X, R) and C(Y,R) implies
that X and Y are homeomorphic.

Corollary. Let ® be a lattice automorphism of C(X, R) as the trans-

lation lattice. Then there exists a homeomorphism ® of X onto itself
and there exists a conlinuous function h e C(X,R) such that

O(f)@) = f( D)+ h(x),
where X is e-complete.

" Proof. For a fixed f,, let f, be ®(f,). Then for any x€X there
exists exactly one homomorphism ¢ such that ¢(f)=f(2)—f,(2). Then
by the proof of Theorem 8 we can find exactly a point x’ such that

of X onto itself. Furthermore (¢®)f=q(®f), hence F(D@)—11(D))
= @(f(x))—f,(x). Setting h(a)={,(x)—Ff(d(x)) we have the corollary.
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7. The lattice ordered group C(X, R).

Theorem 10. If for an e-complete space X, ¢ is a homomorphism
of the lattice ordered group C(X, R) onto the reals, then there exists a
real number a==0 and a point x of X such that ¢(f)=af(x) for any
feC(X, R). Moreover if ¢ is a homomorphism of the ring C(X, R) onto
the reals, there exists a point x such that ¢(f)=f(x).

Proof. We show first that @(1)==0. We assume on the contrary
that ¢(1)=0. Since ¢ is an onto mapping, there exists a g€ C(X, R)
such that ¢(9)==0. Let #=|g|+1. Then there exists a real number \
such that @(A?)=»xg(h). Obviously p(Aa)=\p(k). Hence ¢(h*—1h)=0.
Let f=h%*—\h. Then f=f/h=h-—X, ie., f+1x=h. Therefore \(f+1)
=q@(h), but (f+\)=¢(f)+¢(A)=0+0=0 since p(\) < p(n)=np(l)=0
for n(_>\). Thus we have ¢(1)=a==0.

Let @' be a homomorphism of the reals onto itself such that ¢'(u)
=p/a and let " =¢'+@. Then ¢”(1)=1 and hence for any real \ and
for any feC(X, R), ¢"(f+\)=¢"(f)+\. Accordingly, ¢” is a homo-
morphism of the translation lattice C(X, R) onto the reals such that
»"(0)=0. Hence there exists a point # of X such that ¢/(f)=/f(%).
Then obviously (f)=af(x). In the case of a ring ¢ is obviously a
homomorphism as the translation lattice and ¢(1)=1 and ¢(0)=0. Hence
there exists a point & of X such that ¢(f)=f(x).

Corollary 1. For an e-complete space X a proper subgroup M of the
lattice ordered group C(X, R) is ¢ maximal ideal if and only if there
exists a point x of X such that M consists of all functions satisfying
the condition f(x)=0.

Proof. If M is a maximal ideal there exists a homomorphism ¢
onto the reals such that @(1)=1 and ¢ %0)=M since the facter group
C(X, R)/M is isomorphic to the reals. Hence by Theorem 10 there exists
a point & of X such that ¢(f)=f(x), ie, feM if and only if f(x)=0.
The sufficiency is obvious.

Corollary 2. For a completely regqular space X a positive function
g€ C(X, R) is strictly positive if and only if g is not contained in any
maxzimal ideal of the lattice ordered group C(X, R).

Proof. If X is e-complete, it is obvious from the above corollary.
Since C(X, R) and C(e(X), R) are algebraically isomorphic, we have this
corollary in general as well.

Theorem 11. An e-complete space X is determined by the lattice
ordered group C(X, R), and accordingly is determined by the ring C(X, R).

Proof. If L(X, R) is the space of all homomorphisms of C(X, R)
onto the reals and if X} is the subset §plp(fo)=1} for a fixed but
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arbitrary strictly positive function f, of C(X, R), X}o is homeomorphic to
X by Theorem 10 and by the method used in the proof of Theorem 8.

Corollary. Let b be a automorphism of C(X,R) as lattice ordered
group or ring. Then there exists a homeomorphism @& of X onto itself
and there ewists a strictly positive function h such that O(f) (@)
:h(x)f(dg(x)) or O(f x)= f((])(x)) respectively.

Finally we consider the representation of the vector lattice in a
special type. Now the foregoing theorem shows that for a completely
regular space X the strictly positive function is characterized by the
following property : it is contained in no maximal ideals. Obviously for
any vector lattice an Archimedian unit enjoys this property. We consider
in the following the vector lattice with such strictly positive elements.

Theorem 12. Let L be o vector lattice which enjoys the following
conditions :

i) the intersection of the maximal ideals is 0,

ii) there exists an element e contained in no maximal ideals.

Then there exists the wumnique e-complete space X, satisfying the
following conditions: L is embedded in C(X,, R) in such o manner that
any point x and any closed set F not containing » are separated by some
element of L, that L contains at least one strictly positive function of
X, and that any maximal ideal of L can be extended to o maximal ideal
of C(X,, R).

Proof. Let X, be the space whose points are maximal ideals of L
and whose basis for open sets is {U(f)} where U(f)=={M| 3 f{. Obviously
U(HAU@=U(|f| A lg]) and U(H)=U(|f|). Moreover if M,+M, then
there exists a f € L such that f€ M,—M, hence U(f) % M, and U(f)> M,:
Therefore X is a T,-space. Further let ¢, be the homomorphism of L
onto the reals such that f¢ M if and only if ¢,(f)=0 and such that
p,(e)=1. Then f¥(M)=e,(f) is a continuous function of X,. For let
fA(M)=« and let g=|f—«ae| ~Ee—&e. Then obviously U(g)>M and if
M eU(g) |f*(M')—a|<é Thus for any f, f* is a continuous function
such that f*(M)=0 for M ¢ U(f) and f*(M)=+0 for M € U(f). Hence X
is completely regular and for any 2 and for any closed set F not
containing « there exists an f¢€ L such that f* separates « and F. By
the condition i) the correspondence: f to f* implies the isomorphism
between L and L*={f*|fe L}{. Now X is e-complete. To see this we
may assume that X, is contained in the product space PEyf* where f*¢ L*.
Then by the usual method'® every limit point of X, in PRs* corresponds

15) Cf. [18).
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to the maximal ideal of 1. and every maximal ideal of I. corresponds {o
a point of X,. Hence X, is closed in PEy~, i.e., X, is e-complete. More-
over obviously any maximal ideal of I. can be extended to a maximal
ideal of C(X,,R). Thus we see that X, satisfies the conditions of
Theorem.

To prove the remainder of the theorem let Y be the e-complete
space satisfying the conditions of Theorem. Now for any point y €Y
there exists the unique maximal ideal M, of C(Y, R) such that M,=
§f1f(y)=0 & feC(Y,R)}. Then M,~ L is a maximal ideal M(y) of L,
because, since L contains at least one strictly positive element, M ~ L==L.
Thus by the corresdondence: y to M(y), we have a mapping % of Y
into X,. Conversely for any point M € X,, considering M L_C(Y, R)
M can be extended to a maximal ideal M’ of C(Y, R) and Y is e-complete,
hence there exists a point y such that M,=M’. Then M = M(y). Thus
h is onto and obviously /% is one-to-one. Finally we show that 7% is
homeomorphic. If U(y) is a neighbourhood of y there exists an f€L
such that f(y)=-0 and f(2)=0 for 2 ¢ U(y). Then U(f)> M(y) and if
Wy)=M(y") e U(f), f(y")==0, i.e., ¥’ € U(y). Conversely let A(y)e€ U(f) and
let U(y)=1{y'|f(v")=-0}, then if ¢’ € U(y), M(y") 3T, ie. h(y)GU(f) Thus
the proof is complete.

Remark 1. If the last condition for X, is omitted in Theorem 12,
then any completely regular space satisfying the first three conditions is
topologically embedded in X, as a dense subset.

Moreover if L is the lattice ordered additive group satisfying the
conditions i) and ii) of Theorem 12 and if L contains the image of an
isomorphism of the reals where the unit 1 goes to the element e of the
condition ii), L can be represented as in Theorem 12.

Remark 2. If the element e in the condition ii) of Theorem 12 is
an Archimedian unit, then X is bicompact and in this case our theorem
coincides with Yosida’s Theorem!®.

Remark 3. Recently K. Fan'” has introduced the concept of the
direct extension of the partially ordered additive group and has charac-
terized the partially ordered additive group of (bounded) continuous
functions on a bicompact space. By the same method he used and by
Corollary of Theorem 10 we can characterize the lattice ordered additive
group which is a power of the reals as follow: For a lattice ordered
additive group L, if the potency of the set of all elements of L is weakly
accessible from ®,, it is a power of the reals if and only if it satisfies

16) Cf. (17).

17) Cf. (21).
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the following conditions :

i) the intersection of the maximal ideals is 0,
if) if L' is an extension of L such that there exists the one-to-one

correspondence between maximal ideals of L and L’ by the relation of
inclusion, then L=L'.

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.

(Received December 1, 1951)
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