
Osaka Mathematical Journal,
Vol. 2, No. 1, Match, 1950

A Topological Characterization of fljfine

Transformations in E2

By Hidetaka TERASAKA

The problem of the topological characterization of the group of
congruent transformations in the Euclidean space En is solved com-
pletely for the plane by D. HILBERT [6] and S. S. CAIRNS [4] and for
the 3-dimensional space by B. VON KEREKJARTO [7] and D. MONTGO-
MERY and L. ZIPPIN [9]. For the general case of n dimension the
problem was also approached by the author [11]. On the other hand
no attempt seems to have been made for the affine transformations.
The object of the present paper is to characterize topologically the
group of affine transformations in the plane, leaning upon the notion
of linear dependency introduced by H. WHITNEY [12] G. B.RKHOFF [1],
T. NAKASAWA [10] and O. HAUPT, G. MODELING, C. PAUC [5].

§ 1. For every p-ple of points xλ, x2, ..., xp of En we assume
that either A [x^, x*., ..., xp] -— xλ, x», ..., xp are dependent or
its negative U [ x l f xs, ..., xp] x^, x2) ... f xp are independent
holds, A and U satisfying the following axioms:

I. AXIOMS FOR LINEAR DEPENDENCY [5].
(i) AXIOM OF COINCIDENCE. For every x, A[x, x].

(ii) AXIOM OF INDUCTION.

// A[xl9 x>>, ..., xp], then A[xl9 x«, ..., xp, y] for all y.

(iii) AXIOM OF EXCHANGE.

// U [x,, x2, ... , xp], A [XL, x,, ... ,xp , y]

and A [ x λ , xs, ... , xp , z ] , then A [ x 2 , ..., xp , y, z ] .

To these we add further

(iv) U [x] for all x, and U [x, y] for all x, y with x y.

II. // U [aλ, a*, ..., aJ , provided that l<±p<,n, there exists for
any point a and any neighborhood V (a) of a at least one point x G U (a)
such that U [a1 , a», ... 9 ap , x ] .

III. // t7[αj , a*, ... 9 an+1] there exists some neighborhood U (αj of
c & j , such that for any point x^U(a^ the relation U [ x y a», ..., αw4]]
holds.
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Now let ξ> be a continuous group of homeomorphisms of En on
itself, which satisfies the following basic axiom :

IV. AXIOM FOR TRANSFORMATIONS. // U[al9 a2, ... 9 an+}] and
U [bί, b2, ... , bn+l] there exists one and only one transformation T e φ
such that T (a,, a*, ... , an+1) = (bl9 62, ... , 6n+1)*).

It is most probable that the group ξ> is topologically equivalent to
the group of affine transformations of En onto itself. In the follow-
ing we shall show that it is indeed the case when n = 2, viz., when
En is a plane.

To this end we prove first that there passes through each pair of
distinct points a and b one and only one " L-line" L (a, 6), namely
an open line, which is by definition a closed, topological image of a
straight line, and which is transformed by the transformation of the
group under consideration into another L-line. These L-lines are then
proved to form a family of curves which can be transformed by a
suitable homeomorphism of the plane into the family of all straight
lines on it, and thus our theorem follows.

§ 2. If a triple of points (α, b, c) can not by any T e φ be trans-
formed into another triple of points (V, &', c') with U [af, b f , c'], the
points (α, &, c) are said to be collinear or in the L-relatίon, written
L [α, 6, c] otherwise, (α, 6, c) is said to be non-collinear, written non-L
[α, 6, c].

1. // non-L [α, 6, c] and non-L [ar, b f , c f ] , there exists one and only
one transformation T of φ. such that T (α,. b, c) = (a', b f , c').

For on account of the definition of non-L and Axiom IV (AxiOM
FOR TRANSFORMATION) there exist transformations Tl and T, of § and
a triple of points (p, q, r) with U [p, q, r] such that Tl (α, 6, c) =
(p, Q, r) = T* (af, b f , c'), whence the existence of the transformation
Γ-'Γ, (a, 6, c) = (af, b f , c') follows. Conversely if T (α, 6, c) = (af, b', c'),
then Γ2 T T~l (p, q, r) = (p, q, r), hence by Axiom IV T = T;1 T19

proving the unicity of T in question.
2. // aφb, then x's with L[α, 6, x] are by threes collinear.
Proof. Let

L [a, b, x] and L [a, b, y].

First let α, 6, x and T/ be all distinct. If non-L[6, x, y}, there would
exist some T eξ> with T (6, x, y} = (bf, x f , if), where b f , x f , yr are some
points with U [bf, xr, y']. Then it follows from Axiom of Exchange
that for four points T (a), 6', x f , y f , either U[T(a), b f , x'} or U[T(a),

Instead of T (βj) — &!, T (a2) — 62 , ... we write briefly T (#j , a?, ...) = (
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br, yf] or both must hold, whence we have either non-L [α, b, x] or
non-L [α, δ, y] or both, contrary to hypothesis. Hence we have
L|>, x., y].

If α, 6, x, and y are not all distinct, L[6, x, y] is a direct conse-
quence of the hypothesis. In any case we have therefore the following
implication :

a φ 6, L [α, 6, α;] , L [α, b, y] -> L [6, α, , <//] .

The required implication

L [α, 6, a;] , L [α, b, y], L [α, 6, 2] -> L |#, #, «]

is then immediate. -
If αΦδ, the set of all points x with I/[α, 6, a;] will be called an

L-line and denoted by L (α, 6) . From Proposition 2 we have then
3. // α', 6' are £wo distinct points of an L-line L (a, 6) , ίλew

L (a', 60 = L (a, 6) .
The following proposition is also clear.
4. An L-line is transformed by a transformation T 6 & again into

an L-line.
From Axiom III we see easily
5. An L-line is a closed set.
6. Every point of an L-line L is accessible from each of the com-

ponents of E2 — L.
Proof. Let x be a given point of L and let a be any one of the

points of L which is rectilinearly accessible from a given point p of
' E* — I/, so that the segment p a with end-points p and a has no point
in common with L except for p. We may suppose xψa. Then, since
non-L [x, a, p] , there exists by Proposition 1 a transformation T e ξ>
such that T(α, x, p) = (χ, a, p) . T(pa) is then the arc from p to x
in E' — L except for x, which proves the proposition.

7. An L-line contains no bounded component.
Proof. Suppose on the contrary that the L-line L contains a

bounded component A. Construct a polygon Π having no point in
common with L and containing A in its interior. Let a and c be
points of A and Π respectively and let γ be an arc from c to some
point b of L distinct from a having no point in common with L except
for 6.

Since for every point x of 11 non-L [α,.b, x] holds, there exists by
Proposition 1 one and only one T of § such that T (a, b, c) = (α, 6,
x] . Such T form therefore a continuous family of transformations
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depending upon the parameter x, and Γ(γ) form in their turn a con-
tinuous family of arcs joining b to all points x of Π. On account
of a well-known theorem we see then that T (γ) pass through every
point of the interior of Π, in particular through α, which is evidently
a contradiction. Thus the proposition was proved.

8. // L is an L-line, every component of E-—L is unbounded.
Proof. Suppose on the contrary that E — L contains a bounded

component D. Since L is unbounded by the foregoing proposition,
there exists a point a on L lying wholly without D. If p is an arbi-
trary point in D and if b is a point on the boundary of Z>, such that
the segment pb has no point in common with the latter except for 6,
there exists a transformation T€ξ > such that T (a, 6, p) = (b, a, p).
Then T (p 6) would be an arc from p to a having no point in common
with L except for α, which involves a contradiction.

9. // L is an L-line, there exists for each pair of distinct points a
and b of L a bounded subcontίnuum K of L containing a and b.

Proof. L has evidently a bounded subcontinuum. By a suitable
transformation T of ξ> we can bring this into a continuum containing
a and b, which proves the proposition.

If αφδ, we shall denote by K (a, 6) an irreducible bounded subcon-
tinuum of L(α, 6) which contains α and b.

10. // U [a, &, c], then the transformation T of ξ> with T (α, b, c)
—(b, a, c) is involutorial and orientation-reversing.

Proof. That T is involutorial is obvious from Axiom IV.

To prove that T is orientation-reversing, suppose the contrary.
Then by a well-known theorem of v. KEREKJARTO [8] T must be
topologically equivalent to the half-rotaticn of the plane with center
at c. Denoting K (a, b) by K for brevity, K + T (K) C £ would then
enclose a bounded domain. To show this let h be a homeomorphism
of the plane on itself such that the transform Tf — h T h~λ of T
becomes a half rotation about cf = h (c). Then we assert that C =
h(K) 4- hTh~l. h(K) = h(K + T(K$ would separate c' from the point
at infinity (which is a contradiction) for if not, let p be a half ray
from a point p having no point in common with (7, and join p to cf

by a polygonal line π which has no point in common with C. (π+p)
+hTh~λ(π+p) has in general double points; however it is a matter
of no difficulty to obtain a subray pf of p beginning from c' such that
Pr+hTh~l (/»') = I becomes an open line. I divides then the plane into
two domains which interchanges themselves by T. Now since br =

^ (αr) and since a1 and bf do not lie upon /, af lies in the one
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domain and bf in the other, while the continuum h (<7) contains both
af and br and has no point in common with I, which is impossible.
These contradictions show the absurdity of the original assumption
that T should be orientation-preserving, and the proposition was thus
proved.

11. An L-lίne L is an open line.

Proof. Let α, 6 be two distinct points of L and let S be an invo-
lutorial and orientation-reversing transformation of ξ> leaving bcth a
and b fixed such an S may be obtained by transforming the transfor-
mation T considered in Proposition 10. Again by the theorem of v.
KEREKJARTO [8], the set of fixed points under S consists of an open
line passing through a and 6. Call this L*. We assert, that L* = L.
For first, if L* —L contains a point c, since S(α, 6, c) = (α, 6, c) and
U [a, b, c], S must be equal to the identical mapping, which is absurd.
Therefore L*ζ^L. If on the other hand L—L* contains a point c,
let p be a point lying on the other side of L* with respect to c and
not on L. Then the point c on L is not accessible from the component
of E2 — L in which p lies, contrary to Proposition 6. Thus we have
indeed L*-L.

§ 3. In the foregoing paragraph we have shown the existence and
the uniqueness of the open line L(α, 6) through every pair of points a
and b of E2. We now proceed to investigate the general behavior of
the family of these L-lines and then establish the affine geometry based

on them.

We know already that two different L-lines have at most one
point in common. From this we infer easily that they " intersect",
when they have one point in common. Furthermore, from the assump-

tion of continuity of the group ξ> and from the fact that L-line is
transformed by a transformation of ξ> again into L-line, we can
deduce without difficulty that the totality 2 of L-lines forms a uni-
formly continuous family : that is, if an —» α, bn —> b and α=φ=6, then
K (an , 6J -> K (a, 6) and L (an , &„) -> L (α, 6). We are thus led to the
proof of the following proposition:

Given a continuous group ξ> of homeomorphίsms and a continuous
family 2 of open lines on E2, such that i) through each pair of distinct
points passes one and only one line of 2 iϊ) for each pair of triple of
points (α, 6, c) and (a1', b f , cr) which do not lie respectively on any
single line of 2 , there exists one and only one element T of § with
T (a, &, c) = (ar, b f , c'} and Hi) each T G ξ> carries 8 onto 2 . Then 8
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is topologically equivalent to the family of straight lines and § is iso-
morphίc to the group of affine transformations of the plane.

In the first place let a be an L-line and 6 a point outside of it.
We assign on a a positive direction, and let a point x move in the
positive direction along a as far as oo. Then L(α, x) will converge
to an L-line β, which we shall call the asymptote [3] to a in the posi-
tive direction through 6. Likewise we can define the asymptote β* in
the negative direction. In reality however β and β* coincide.

Suppose on the contrary that β and β* are different. Then for
every L-line af the two asymptotes through a point δ' outside of it
are also different, since a transformation of ξ> can be found such that
a and b are transformed respectively into af and bf. Now let a be a
point on a above considered and let a point x move along a toward oo
in the other side of β with respect to a and denote by 7 the asymptote
obtained as the limit of L (a, x). Then 7 must have a point in com-
mon with β, for otherwise 7 would be asymptotic to β and coincide
with a if S is the transformation of ξ> which leaves b fixed and which
interchanges two different points on a, then β and β* interchange
themselves by S and 7 would again be asymptotic to β, but now in
the opposite direction. Therefore the asymptotes through a to β would
coincide, which is absurd. Thus 7 and β has a point, say c, in com-
mon. Take now on a two points af and a" such that af lies between
a and a", and let T be the transformation of ξ> with T (δ, α, α') = (6,
α, α / x ). By Γ the L-lines a, β, β*, and 7 are mapped respectively
on themselves, and consequently c must be a fixed point under T,
which involves a contradiction, since T would leave three points α, δ,
c fixed while it is not evidently an identical transformation.

Thus we have shown that the asymptotes to an L-line through a
point outside of it in both directions coincide. Hereafter we shall call
the asymptotes parallel L-lines.

Any triple system of parallel L-lines constitutes a hexagonal texture
(Sechseckgewebe) in the sense of W. BLASCHKE [2].

To show this let a, β, 7 be three different L-lines through a point
α, and let αA be a point on a different from a. Draw parallel L-lines
βj. and 7j through aλ to β and 7 respectively and put b = βf\j! , c =
β\ A 7 2 ). Draw parallel L-lines al and a* to <* through 6 and c res-
pectively 'and put 61 = n^ /°\ & , δL> — #2 /\yj Finally draw parallel In-
line & to /3 through δ2 and put α, = a f\ β,. It is to show that L (a*,
δj is parallel to 7. To this end consider the transformation Teξ?:

« Π β denotes the intersection of α and β .
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T (a, 6, c) = (α, c, 6). Since b and c
L (α, 6) and L (α, c) are respectively
interchanged by T, the parallel L-
lines L(c, αj and L(6, αj are inter-
changed by T. Therefore αA is fixed
under T, and hence L(α, c&J is a fixed
line of T. Then, since 6A and 62 are
interchanged, α2 is fixed, and L (6L>, aj
is parallel to L (alf bj = A , L (αj, 60

must be parallel to L (62, α^ = % , thus the hexagonal property of the
hexagonal texture was proved.

Starting from α, 6, c, α j ? 6 l f etc. we can construct after BLASCHKE
[2] by virtue of the hexagonal property a net of triangles 9c, made
up from triple system of parallel L-lines, whose intersections may be
denoted by zn, m with the double suffixes in integers n, m, setting in
particular:

^0 9 0 == *^0 === ?/0 ^̂ ^ ^> #J > 0 == *^*J ::::::r ^>

It will be seen that the whole plane is triangulated in this way.
We shall prove indeed that:

For any point x and y on L (α, 6) and L (α, c) respectively we can
find integers n and m such that xeK(xn, #M+1) and yeK(ym, ym+λ)
respectively.

Denote for the sake of brevity the parallel L-lines to L(x0, α ,)
through yn by ξn , the parallel L-lines to L (x0, y^ through xn by ηn

and finally the L-lines L (xn , ?/_??) which are parallel one another, by
ξn . Suppose now the proposition is false and suppose without loss
of generality that xn converge to a point x for n -> oo . Since by the
transformation S e ξ): S (x0, xγ , yj = (XQ , y± , α?0 , xn and yn are inter-
changed, we must have yn —> S (x) =*= y . Consider T G ξ>: Γ (α?0, x^, τ/j) =
(a?0, α?«, 2/2) In consequence of the preservation of parallelism under
T, we have successively the implications:

From T(ξ1ϊ = ξ.2, T(η,} = η. follows T(z11) = zz29 whence T (f0)
= fo - From T (ξ*0 = f2 and T7 (fj) = f 2 follows T7 ^2J) = 2:4L,, whence
T (f 2) - f 4 . Similarly Γ (,;,) = ,/4.

We have thus in general T (£w) = ^2w and Γ C^w):=r η»n Consequently
we must have T (x) = x and T (j/) = j / , which in connection with T (αr0)
= #o leads us to a contradiction, and the proposition is proved.

By the continuity property we can subdivide the original trian-
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gural net in smaller net of 1/2^-th size [2] and thus finally we can
assign for every point z of E1 its coordinates x and y: z = z.Λ9V.

It remains now to prove that L-lines can be analytically expressed
in linear equations. This will be done by introducing the " transla-
tion". Let T be the transformation of ξ> with T (x0, x^, 2n) = (̂  , x2,
z21). Again by virtue of the preservation of parallelism we see easily
that T (f,) = ξl9 T (ft) = ξ,, hence T (x,, x2, zsl) = (x,, x,, z30 and
furthermore T (^0) = η,, T fo) = ^, T (f_j) = f 0 , whence T (y,, zn , z12)
= ten, ZLΊ y ^22). From these we see that the triangural net sJί is
transformed by T into itself, and we can conclude by the consideration
of subdivision of triangles and continuity of transformations again,
that every point z = zx,v of E'1 is carried by T into the point zf =
z/ , / such that

X* = x + 1 y yf = y .

Every L-line is carried therefore by T into an L-line having no point
in common with itself, so that λ and 5P(λ) are parallel to each other.

The same is also true for the transformation S of ξ> with
S (α?0, 7 / j , Zn) = (?/!, 2/0, z12), which maps 9Ϊ on itself, and may be
expressed analytically by

xf = x, y> = y + 1.

Combining T and S we get the general "translation" SmTn which
carries a point x0 into the point z.n, m with coordonates w, m in integers.
On account of the preservation of parallelism snTn maps L(x0, zn9m)
on itself, whence we see that z,n, 2m is a point of L (x0, zn, w), and
generally, 2> being integers, the points zx, j, with α; = pn, y = pm are
all points of L(x0, zntm). The principle of subdivision of triangles
leads us immediately to the conclusion that whenever r are rational
numbers, the points zx,y with. x = rn, y =rm are also points of L(xQ,
zntm) and we obtain finally by the consideration of continuity the
required linear expressions for L-lines in general.

The isomorphism of the group of affine transformations and §
results immediately from this.
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