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Abstract
Generalized eigenfunctions of the odd-dimensional (n � 3) relativistic Schrödinger

operator
p�1+V(x) with jV(x)j � Chxi�� , � > 1, are considered. We compute the

integral kernels of the boundary valuesR�(�) = (
p�1� (�� i 0))�1, and prove that

the generalized eigenfunctions'�(x, k) := '0(x, k)�R�(jkj)V'0(x, k) ('0(x, k) := ei x �k)
are bounded for(x, k) 2 Rn � fk j a � jkj � bg, where[a, b] � (0,1) n �p(H ). This
fact, together with the completeness of the wave operators,enables us to obtain the
eigenfunction expansion for the absolutely continuous spectrum.

On consid̀ere les fonctions propres géńeraliśees de l’oṕerateur relativiste de
Schrödinger

p�1 + V(x) où jV(x)j � Chxi�� en dimension impaire (n � 3). On
calcule les noyaux intégraux associés aux valeurs limitesR�(�) = (

p�1 � (� �
i 0))�1, et on prouve que les fonctions propres géńeraliśees '�(x, k) := '0(x, k) �
R�(jkj)V'0(x, k) ('0(x, k) := ei x �k) sont borńees pour(x, k) 2 Rn � fk j a � jkj � bg,
où [a, b] � (0,1) n �p(H ). Ce ŕesultat, associé à la compĺetude des oṕerateurs
d’onde, nous permet d’obtenir le développement en fonction propres pour le spectre
absolument continu.

Introduction

This paper considers the odd-dimensional (n � 3) relativistic Schrödinger operator

H = H0 + V(x), H0 =
p�1, x 2 Rn

with a short range potentialV(x).
Throughout the paper we assume thatV(x) is a real-valued measurable function

on Rn satisfying

jV(x)j � Chxi�� , � > 1.

When we deal with the boundedness and the completeness of thegeneralized eigen-
functions, � will be required to satisfy the assumption� > (n + 1)=2 and n to be an
odd integer withn � 3.
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In general, the Schrödinger operator is written as�1 + V(x), x 2 Rn. In [6], the
completeness of the generalized eigenfunctions for operator �1 + V(x) was proved.
However, it was considered in 3-dimensional case. In the relativistic case, the
Schrödinger operator is written by

p�1 + m + V(x), x 2 Rn, where m is the mass
of the particle. But, like the photon, the zero mass particleexists. Then, the rela-
tivitic Schrödinger operator is written byH =

p�1 + V(x), x 2 Rn. H is essential-
ly self adjoint on C1

0 (Rn) [23]. And in the paper [24], T. Umeda considered the
3-dimensional case and proved that the generalized eigenfuctions'�(x, k) are bounded
for (x, k) 2 R3�fk j k 2 R3, a � jkj � bg, [a, b] � (0,1) n �p(H ). In [25], T. Umeda
announced that he will deal with the completeness of the generalized eigenfunctions,
although the full proof has not been published yet.

In the present paper, we show the boundedness of generalizedeigenfunctions for
odd demensionsn � 3. As is seen in the formula of the resolvent kernel ofH0 in
Theorem 2.2, our computation is more complicated whenn > 3 than the casen = 3,
and the key estimate is Lemma 3.8 based on theL p�estmate in Lemma 3.6.

From V. Enss’s idea (see V. Enss [3]), we obtain that the wave operatorsW� de-
fined by

W� = lim
t!1 ei t H e�i t H0

are complete. Finally, by the idea of H. Kitada [10] and S.T. Kuroda [13], we obtain
the completeness of the generalized eigenfunctions as follows. Moreover, we deal with
the even dimensions case in [27].

Theorem. Assume the dimension n(n � 3) is an odd integer, � > (n + 1)=2, s>
n=2 and [a, b] � (0,1) n �p(H ). For u 2 L2,s(Rn), let F� be defined by

F�u(k) := (2�)�n=2 Z
Rn

u(x)'�(x, k) dx.

Then for an arbitrary L2,s(Rn)-function f(x),

EH ([a, b]) f (x) = (2�)�n=2 Z
a�jkj�b

F� f (k)'�(x, k) dk

where EH is the spectral measure for H.

The plan of the paper. In Section 1, we construct generalized eigenfunctions
of
p�1 + V(x) on Rn. We compute the resolvent kernel of

p�1 on Rn in Sec-
tion 2. Section 3 proves that the generalized eigenfunctions are bounded in the case
of odd-dimensionn � 3. We study the asymptotic completeness of wave operators in
Section 4. In the last Section 5, we deal with the completeness of the generalized
eigenfunctions.
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NOTATION. We introduce the notation which will be used in the present paper.
For x 2 Rn, jxj denotes the Euclidean norm ofx and hxi =

p
1 + jxj2. The Fourier

transform of a functionu is denoted byFu or û, and is defined by

Fu(� ) = û(� ) = (2�)�n=2 Z
Rn

e�i x ��u(x) dx.

For s and l in R, we define the weightedL2-space and the weighted Sobolev space by

L2,s(Rn) = f f j hxis f 2 L2(Rn)g, H l ,s(Rn) = f f j hxishDil f 2 L2(Rn)g
respectively, whereD stands for�i �=�x and hDi =

p
1 + jDj2 =

p
1�1. The inner

products and the norm inL2,s(Rn) and H l ,s(Rn) are given by

( f , g)L2,s =
Z

Rn

hxi2s f (x)g(x) dx, ( f , g)H l ,s =
Z

Rn

hxi2shDil f (x)hDil g(x) dx,

k f kL2,s = f( f , f )L2,sg1=2, k f kH l ,s = f( f , f )H l ,sg1=2,

respectively. Fors = 0 we write

( f , g) = ( f , g)L2,0 =
Z

Rn

f (x)g(x) dx, k f kL2 = k f kL2,0.

For a pair of f 2 L2,�s(Rn) and g 2 L2,s(Rn), we also define (f , g) =
R

Rn f (x)g(x) dx.
By C1

0 (Rn) we mean the space ofC1-functions of compact support. ByS(Rn)
we mean the Schwartz space of rapidly decreasing functions,and byS 0(Rn) the space
of tempered distributions.

The operator
p�1ei x �k is formally defined byZ

Rn

ei x �� j� jÆ(� � k) d� ,

whereÆ(x) is the Dirac’s delta function. As the symbolj� j of
p�1 is singular at the

origin � = 0, giving a definite meaning to
p�1ei x �k is one of the main tasks in the

present paper.
For a pair of Hilbert spacesH and K, B(H, K) denotes the Banach space of all

bounded linear operators fromH to K. For a selfadjoint operatorH in a Hilbert space,� (H ) and �(H ) denote the spectrum ofH and the resolvent set ofH , respectively.
The point spectrum, the essential spectrum, the continuousspectrum and the absolute-
ly continuous spectrum ofH will be denoted by�p(H ), �e(H ), �c(H ), and �ac(H )
respectively. EH denotes the spectral measure forT , and EH (�) = EH ((�1, �]),
EH ((a, b]) = EH (b) � EH (a). The continous subspace and the absolutely continuous
subspace ofH will be denoted byHc, Hac, respectively. ByF(t > A), F(t < A),
F(t � A) and F(t � A) we mean the characteristic functions of the setsft j t > Ag,ft j t < Ag, ft j t � Ag and ft j t � Ag, respectively.
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1. Generalized eigenfuction

We construct generalized eigenfunctions of
p�1+V(x) on Rn in this section, and

show that they satisfy the equation

'�(x, k) = '0(x, k)� R�
0 (jkj)V'�(x, k),

where R0(z) is the resolvent ofH0 =
p�1 defined by

R0(z) := (H0 � z)�1 = F�1(j� j � z)�1F ,

and '0(x, k) is definded by

'0(x, k) = ei x �k.

Similarly R(z) is the resolvent ofH =
p�1 + V(x) on Rn and we assume thatV(x)

is a real-valued measurable function onRn and satisfiesjV(x)j < Chxi�� for � > 1.
To show the above equation for eigenfunctions, we use two theorems demonstrated by
Ben-Artzi and Nemirovski. (see [2, Section 2 and Theorem 4A])

Theorem 1.1 (Ben-Artzi and Nemirovski). Let s> 1=2. Then
(1) For any � > 0, there exist the limits R�0 (�) = lim�#0 R0(�� i�) in B(L2,s, H1,�s).
(2) The operator-valued functions R�0 (z) defined by

R�
0 (z) =

�
R0(z) if z 2 C�
R�

0 (�) if z = � > 0

are B(L2,s, H1,�s)-valued continuous functions, where C+ and C� are the upper and
the lower half-planes respectively: C� = fz 2 C j �Im z> 0g.

Theorem 1.2 (Ben-Artzi and Nemirovski). Let s> 1=2 and � > 1. Then
(1) The continuous spectrum�c(H ) = [0, 1) is absolutely continuous, except possibly
for a discrete set of embedded eigenvalues�p(H )\ (0,1), which can accumulate only
at 0 and1.
(2) For any � 2 (0,1) n �p(H ), there exist the limits

R�(�) = lim�#0
R(�� i�) in B(L2,s, H1,�s).

(3) The operator-valued functions R�(z) defined by

R�(z) =

�
R(z) if z 2 C�
R�(�) if z = � 2 (0,1) n �p(H )

are B(L2,s, H1,�s)-valued continuous functions.
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The main results of this section are

Theorem 1.3. Let � > (n + 1)=2. If jkj 2 (0,1) n �p(H ), then the generalized
eigenfunctions

'�(x, k) := '0(x, k)� R�(jkj)fV( � )'0( � , k)g(x)

satisfy the equation

(
p�1x + V(x))u = jkju in S 0(Rn

x)

where'0(x, k) is definded by'0(x, k) = ei x �k.

Theorem 1.4. Let � > (n+ 1)=2. If jkj 2 (0,1)n�p(H ) and n=2< s< � �1=2,
then we have

'�(x, k) = '0(x, k)� R�
0 (jkj)fV( � )'�( � , k)g(x) in L2,�s(Rn).

First, we investigate the propeties of'0 = ei x �k. It is easy to prove the next lemma.

Lemma 1.1. Let � > 1 and n� 1.
(1) If s < �n=2, then '0(x, k) 2 L2,s(Rn

x).
(2) If s < � � n=2, then V(x)'0(x, k) 2 L2,s(Rn

x).
(3) If s + t � � , then V(x) 2 B(L2,�s(Rn

x), L2,t (Rn
x)).

Proof. Using the following formulas, we can get this lemma. If V(x) � Chxi�� ,
then

k'0(x, k)kL2,s = khxiskL2,

kV(x)'0(x, k)kL2,s � C2khxis��kL2,

kV(x)ukL2,t � C2khxis+t��ukL2,�s.

Next, to prove the main Theorem 1.3, we make the next preparation.

Lemma 1.2. Let � > (n + 1)=2.
(1) For all k 2 Rn, '0(x, k) satisfies the pseudodifferential equation

p�1x'0(x, k) = jkj'0(x, k) in S 0(Rn
x).

(2) Let � 2 (0,1) n �p(H ), s> 1=2, if u 2 L2,s then u satisfies the equation

(
p�1x + V(x)� jkj)R�(�)u = u in S 0(Rn

x).
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Proof. From Lamma 1.1 (1), we have that'0(x, k) belongs toL2,s(Rn
x) for ev-

ery s < �n=2, This fact, together with T. Umeda [23, Theorem 5.8], implies thatp�1x'0(x, k) makes sense. Then, we can prove (1) similarly to T. Umeda [24, Lem-
ma 8.1]. To prove (2), we see T. Umeda [24, Theorem 7.2 (ii)].

We now prove the main Theorem 1.3.

Proof of Theorem 1.3. Using Lemma 1.2 (1) and Lemma 1.2 (2), weget

(
p�1x + V(x))'0 = jkj'0 + V'0,

(
p�1x + V(x))fR�(jkj)fV( � )'0( � , k)g(x)g = jkjfR�(jkj)fV( � )'0( � , k)g(x)g.

From the definition of'�, we have

(
p�1x + V(x))'� = jkj'0 � jkjfR�(jkj)fV ( � )'0( � , k)g(x)g = jkj'�.

Then we have the theorem.

Next, in order to prove Theorem 1.4, we make the next preparation.

Lemma 1.3. Let � > 1. If 1=2 < s < � � 1=2 and z2 C� [ f(0,1) n �p(H )g,
then

(I � R�(z)V)(I + R�
0 (z)V) = I on L2,�s(Rn),

(I + R�
0 (z)V)(I � R�(z)V) = I on L2,�s(Rn),

whereC+ and C� are the upper and the lower half-planes respectively.

C� = fz 2 C j �Im z> 0g.
Proof. In view of Lemma 1.1 (3), Theorem 1.1, Theorem 1.2 and Lemma 1.1 (3),

we can get Lemma 1.3 similarly to T. Umeda [24, Lemma 8.2]

Using this lemma, we can prove the main theorem 1.4.

Proof of Theorem 1.4. According to the definition of'�(x, k)

'�(x, k) := '0(x, y)� R�(jkj)fV( � )'0( � , k)g(x) = fI � R�(jkj)Vg'0(x, k),

and Lemma 1.1 (1), we see that ifn=2< s then'0(x, k) 2 L2,�s(Rn
x). We use Lemma 1.3,

and get

fI + R�
0 (jkj)Vg'�(x, k) = fI + R�

0 (jkj)VgfI � R�(jkj)Vg'0(x, k)

= '0(x, k) in L2,�s,
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for jkj 2 (0,1) n �p(H ) and n=2< s< � � 1=2. Then, we obtain

'�(x, k) = '0(x, k)� R�
0 (jkj)V(x)'�(x, k) in L2,�s(Rn).

2. The integral kernel of the resolvents ofH0

This section is devoted to computing the resolvent kernel ofH0 =
p�1 on Rn,

wheren = 2m + 1, m � 1 andm 2 N. Then we compute the limit ofgz(x) as� # 0,
wherez = � + i� and � > 0, and study the properties of the integral operatorsG�� . In
this section we suppose that (cf. [4, p.269, Formula (46) and(47)])

n = 2m + 1, m� 1 andm 2 N,(1)

Mz(x) =
Z 1

0
etz 1

t2 + jxj2 dt =
1jxj fci(�jxjz) sin(jxjz)� si(�jxjz) cos(jxjz)g,

Nz(x) =
Z 1

0
etz t

t2 + jxj2 dt = ci(�jxjz) cos(jxjz) + si(�jxjz) sin(jxjz),

(2)

m�(x) = ci(�jxj) sin(�jxj) + si(�jxj) cos(�jxj),
n�(x) = ci(�jxj) cos(�jxj)� si(�jxj) sin(�jxj).

(3)

Where ci(x) and si(x) are definded by

ci(x) =
Z 1

x

cost

t
dt, si(x) = � Z 1

x

sin t

t
dt, x > 0.

We see that si(x) has an analytic continuation si(z) (see [4, p.145]),

(2.1) si(z) = ��
2

+
1X

m=0

(�1)m

(2m + 1)! (2m + 1)
z2m+1.

The cosine integral function ci(x) has an analytic continuation ci(z), which is a many-
valued function with a logarithmic branch-point atz = 0 (see [4, p.145]). In this paper,
we choose the principal branch

(2.2) ci(z) = � � Log z� 1X
m=1

(�1)m

(2m)! 2m
z2m, z 2 C n (�1, 0],

where is the Euler’s constant. The main theorems are

Theorem 2.1. Let n� 3, Rez< 0. Then

R0(z)u = Gzu
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for all u 2 C1
0 (Rn), where

Gzu(x) =
Z

Rn

gz(x � y)u(y) dy, gz(x) =
Z 1

0
etz cnt

(t2 + jxj2)(n+1)=2 dt,

cn = ��(n+1)=20�n + 1

2

�
, 0(x) =

Z 1
0

sx�1e�s ds.(2.3)

Theorem 2.2. Let n = 2m + 1, m � 1 (m 2 N) and s> 1=2, u 2 L2,s(Rn). Let
[a, b] � (0,1) and � 2 [a, b].
(1) There exist polynomials aj (�), b j (�), c j (�), j = m, m + 1, : : : , 2m, such that,

R�
0 (�)u(x) = G�� u(x) =

Z
Rn

g�� (x � y)u(y) dy,

g�� (x) := lim�#0
g��i�(x) = fa2m(�) + b2m(e�i�jxj + m�(x))gjxj�2m

+
2m�1X
j =m

a j (�)jxj� j +
2m�1X
j =m

b j (�)(e�i�jxj + m�(x))jxj� j

+
2m�1X
j =m

c j (�)(e�i (�jxj+�=2) + n�(x))jxj� j ,

where R�0 (�) := lim�#0 R0(�� i�).
(2) There exist positive constants Cabj for j = m, m + 1, : : : , 2m such that

jR�
0 (�)u(x)j = jG�� u(x)j � 2mX

j =m

jD j u(x)j,
D j (�)u(x) := Cabj

Z
Rn

jx � yj� j u(y) dy.

Let the resolvent ofH0 =
p�1 be denoted byR0(z) := (H0 � z)�1 = F�1(j� j �

z)�1F . If Re(z) < 0, we take the Laplace transform ofe�t H0 = F�1e�t j� jF to getZ 1
0

etze�t H0 dt = (H0 � z)�1 = R0(z).

Lemma 2.1. If t > 0 and u2 C1
0 (Rn), then

e�t H0u(x) =
Z

Rn

Pt (x � y)u(y) dy,

where

Pt (x) =
cnt

(t2 + jxj2)(n+1)=2 , cn = ��(n+1)=20�n + 1

2

�
, 0(x) =

Z 1
0

sx�1e�s ds.
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Proof. Using the idea of Strichartz [21, p.54], we get

F�1 �e�t j� j� =
Z 1

0

t

(�s)1=2 e�st2F�1(e�j� j2=4s) ds

=
2n=2t

(t2 + jxj2)(n+1)=2
r

1� 0
�

n + 1

2

�
.

Since the Fourier transform of convolution satisfiesF ( f � g) = (2�)n=2F ( f )F (g), we
get e�t H0u(x) = F�1e�t j� jF (u(x)) = Pt � u.

Lemma 2.2. If Re(z) < 0, then the integral

Z 1
0

etz

�Z
Rn

�Z
Rn

Pt (x � y)u(y) dy

�v̄(x) dx

�

is absolutely convergent and is equal to(R0(z)u, v)L2 for all u, v 2 C1
0 (Rn), where

n 2 N and n� 3.

Proof. Forn = 3, see T. Umeda [24, Theorem2.1]. Forn > 3, if the integration
in Lemma 2.2 is absolutely convergent, then

(R0(z)u, v)L2 =
Z 1

0
etz(e�t H0u, v)L2 dt

=
Z 1

0
etz

�Z
Rn

�Z
Rn

Pt (x � y)u(y) dy

�v̄(x) dx

�
dt.

We consider thet-integration

����
Z 1

0
etzPt (x � y) dt

���� �
����
Z 1

0
et(Rez) cnt

(t2 + jx � yj2)(n+1)=2 dt

����.
Now we put

In =
Z 1

0
et(Rez) cnt

(t2 + jx � yj2)(n+1)=2 dt.

Since

d

dt

�� 1

n� 1

1

(t2 + jx � yj2)(n�1)=2
�

=
t

(t2 + jx � yj2)(n+1)=2 ,
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using the integration by parts, we see thatIn is equal to

In = � cn

n� 1

1jx � yjn�1
+

cn Rez

n� 1

Z 1
0

et Rez 1

(t2 + jx � yj2)(n�1)=2 .

Then

jInj � cn

n� 1

1jx � yjn�1
+

cnjRezj
(n� 1)jx � yjn�1

Z 1
0

et Rez dt =
2cn

n� 1

1jx � yjn�1
.

Thus we get

j(R0(z)u, v)L2j � Z Z
R2n

jInu(y)v̄(x)j dx dy

=
Z

Rn

jv(x)j dx

�Z
jx�yj�1

jInu(y)j dy +
Z
jx�yj�1

jInu(y)j dy

�

� Z
Rn

jv(x)j dx

�
2cn

n� 1
kukL1 +

2cn

n� 1
kukL1 Zjyj�1

1jyjn�1
dy

�

<1.

Therefore we obtain the lemma.

Theorem 2.1 is an immediate consequence of Lemmas 2.1 and 2.2.
We continuegz(x) analytically to the regionC n [0, 1) by using integration by

parts.

Lemma 2.3. If Rez< 0, then there exist polynomials aj (z), b j (z), c j (z), j = m�
1, m, : : : , 2m� 1, such that

(2.4)

Z 1
0

etz 1

(t2 + jxj2)m
dt = bm�1(z)Mz(x)jxj�(m�1)

+
2m�1X
j =m

(a j (z) + b j (z)Mz(x) + c j (z)Nz(x))jxj� j .

Proof. We will prove this lemma by induction.
(i) For m = 1, since

R1
0 etz1=(t2 + jxj2) dt = Mz(x), (2.4) is obviously valid.

For m = 2, noticing that

1

(t2 + jxj2)2
=

1jxj2
�

1

t2 + jxj2 � t2

(t2 + jxj2)2

�
d

dt

��1

2

1

t2 + jxj2
�

=
t

(t2 + jxj2)2
,
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and using integration by parts, we getZ 1
0

etz 1

(t2 + jxj2)2
dt =

1

2
Mz(x)jxj�2 � z

2
Nz(x)jxj�2.

Then (2.4) is valid too.
(ii) Thus we assume that (2.4) is also valid form � l where l � 2 and l 2 N.

Now we will prove the casem = l + 1.
For the casem = l + 1, we have

(2.5)
Z 1

0
etz 1

(t2 + jxj2)l+1
dt = jxj�2

�Z 1
0

etz 1

(t2 + jxj2)l
dt�Z 1

0
tetz t

(t2 + jxj2)l+1
dt

�
.

Noticing that

d

dt

�
1�2l

1

(t2 + jxj2)l

�
=

t

(t2 + jxj2)l+1

d

dt

�
1�2(l � 1)

1

(t2 + jxj2)l�1

�
=

t

(t2 + jxj2)l
,

and Rez< 0, we make integrations by parts. Then we get

(2.6)

Z 1
0

tetz t

(t2 + jxj2)l+1
dt

=
1

2l

Z 1
0

d

dt
(tetz)

1

(t2 + jxj2)l
dt

=
1

2l

Z 1
0

etz 1

(t2 + jxj2)l
dt +

z

2l

Z 1
0

etz t

(t2 + jxj2)l
dt

=
1

2l

Z 1
0

etz 1

(t2 + jxj2)l
dt +

z

4l (l � 1)

�jxj�(2l�2) + z
Z 1

0
etz 1

(t2 + jxj2)l�1
dt

�
.

From (2.5) and (2.6), we have

(2.7)

Z 1
0

etz 1

(t2 + jxj2)l+1
dt = � z

4l (l � 1)
jxj�2l + jxj�2 2l � 1

2l

Z 1
0

etz 1

(t2 + jxj2)l
dt

� jxj�2 z2

4l (l � 1)

Z 1
0

etz 1

(t2 + jxj2)l�1
dt.

Then using assumption of the casesm = l and m = l � 1, we obtain that (2.4) is valid
for m = l + 1.

Finally, using (i) and (ii), we can finish the proof of (2.4) for any integerm� 1.

Then by the definition in the Theorem 2.1 we can compute the resolvent kernel
gz(x). We give the next lemma.
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Lemma 2.4. If Rez < 0, there exist polynomials aj (z), b j (z), c j (z), j = m �
1, m, : : : , 2m� 1, such that

gz(x) =
cn

2m
jxj�2m + bm�1(z)Mz(x)jxj�(m�1)

+
2m�1X
j =m

(a j (z) + b j (z)Mz(x) + c j (z)Nz(x))jxj� j ,

where cn, gz(x) are the same as inTheorem 2.1.

Proof. From (2.3), noticing that

d

dt

�� 1

2m

1

(t2 + jxj2)m

�
=

t

(t2 + jxj2)m+1

and making integration by parts, we get

gz(x) =
Z 1

0
etz cnt

(t2 + jxj2)(n+1)=2 dt =
Z 1

0
etz cnt

(t2 + jxj2)m+1
dt

=
cn

2m
jxj�2m +

cnz

2m

Z 1
0

etz 1

(t2 + jxj2)m
dt.

Thus using Lemma 2.3, we obtain the lemma.

Making analytic continuation of si(z) and ci(z), we can get the next theorem.

Theorem 2.3. Let n= 2m+1, m� 1 (m 2 N) and z2 Cn [0,1). If u 2 C1
0 (Rn),

then there exist polynomials aj (z), b j (z), c j (z), j = m� 1, m, : : : , 2m� 1, such that

R0(z)u(x) = Gzu(x) :=
Z

Rn

gz(x � y)u(y) dy,

gz(x) =
cn

2m
jxj�2m + bm�1(z)Mz(x)jxj�(m�1)

+
2m�1X
j =m

(a j (z) + b j (z)Mz(x) + c j (z)Nz(x))jxj� j .

Proof. From Theorem 2.1 and Lemma 2.4, we get

R0(z)u = Gzu,

for all u 2 C1
0 (Rn) and Rez< 0. From (2.1) and (2.2), (Gzu, v)L2 is a holomorphic

function of z in C n [0,1] for any test functionv 2 S(Rn). Then (R0(z)u, v)L2 is also
a holomorphic fuction ofz in C n [0, 1].
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Next, let z = � + i� and � > 0. We study the limit ofgz(x) as� # 0. From (2.1)
and (2.2), we get

si(�z) !�� � si(�), ci(�z) !�i� + ci(�),

as� # 0. Then we get

lim�#0
M��i�(x) = jxj�1fe�i�jxj + m�(x)g,

lim�#0
N��i�(x) = e�i (�jxj+�=2) + n�(x).

This fact together with Lemma 2.4 yields that there exist polynomials a j (�), b j (�),
c j (�), j = m, m + 1, : : : , 2m such that

(2.8)

g�� (x) := lim�#0
g��i�(x)

= fa2m(�) + b2m(e�i�jxj + m�(x))gjxj�2m

+
2m�1X
j =m

a j (�)jxj� j +
2m�1X
j =m

b j (�)(e�i�jxj + m�(x))jxj� j

+
2m�1X
j =m

c j (�)(e�i (�jxj+�=2) + n�(x))jxj� j .

Checking the properties ofg�� (x), we get the next lemma.

Lemma 2.5. Let [a, b] � (0,1). If � 2 [a, b], then there exist positive constants
Cabj , j = m, m + 1, : : : , 2m, such that

jg�� (x)j � 2mX
j =m

Cabj jxj� j .

Proof. It follows from the definition of ci(t) and si(t) that

j ci(t)j � const.

�
t�1 if t � 1,
1 + jlog t j if 0 < t < 1,

and the integration by parts yields thatj si(t)j � const.(1 +jt j)�1. Since limt#0 sin t(1 +jlogt j) = 0, andjxjÆ(1+jlog(�jxj)j)! 0 (jxj ! 0) for all Æ > 0, we getjm�(x)j � Cab,
n�(x)j � Cabjxj�1. This fact, together withje�i�jxjj = je�i (�jxj+�=2)j = 1 and (2.8), gives
the lemma.

Then, we can give the next theorem.
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Theorem 2.4. Let n = 2m + 1, m � 1 (m 2 N) and � > 0. If u 2 C1
0 (Rn), then

there exist polynomials aj (�), b j (�), c j (�), � for j = m, m + 1, : : : , 2m, such that

R�
0 (�)u(x) = G�� u(x), G�� u(x) :=

Z
Rn

g�� (x � y)u(y) dy,

where R�0 (�) := lim�#0 R0(�� i�), and g�� (x) are defined by(2.8).

Proof. Let u and v belong toC1
0 (Rn). Noticing that if c > 0, then there exists

a positive constantC�uvc such that

��g��i�(x � y)u(y)v(x)
�� � C�uvcjx � yj2mju(y)v(x)j

for all 0 � jxj < c, we can prove this theorem similarly to T. Umeda [24, Theo-
rem 4.1].

Next, we will consider the action of the resolvent on the functions in L2,s(Rn) for
s> 1=2. It follows from Lemma 2.5 that if [a, b] � (0,1) and � 2 [a, b], there exist
positive constantsCabj , j = m, m + 1, : : : , 2m, such that

(2.9) jG�� u(x)j � 2mX
j =m

jD j u(x)j, D j u(x) := Cabj

Z
Rn

jx � yj� j u(y) dy.

We will consider the properties ofD j . At first, we make the next preparations.

Lemma 2.6. Let n2 N and8(x) be defined by

8(x) :=
Z

Rn

1jx � yj�hyi dy.

If 0< � < n and � +  > n, then8(x) is a bounded continuous function satisfying

j8(x)j � C�n

8<
:
hxi�(�+�n) if 0<  < n,hxi�� log(1 +hxi) if  = n,hxi�� if  > n,

where C�n is a constant depending on�,  and n.

For the proof of this lemma, see T. Umeda [24, p.62, Lemma A.1].

Lemma 2.7. Let s> 1=2. If u(x) belongs to L2,s(Rn), then there exists a positive
constant Cabs such thatjDmu(x)j � CabskukL2,s.
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Proof. Lettings > 1=2 and using the definition ofDmu(x) and the Schwarz in-
equality, we have

jDmu(x)j � Cabs

�Z
Rn

1jx � yj2mhyi2s
dy

�1=2kukL2,s.

Applying Lemma 2.6 with� = 2m and  = 2s> 1, we get this lemma.

Lemma 2.8. Let s> n=2. If u(x) belongs to L2(Rn) then there exists a positive
constant Cabjs such that for all m+ 1� j � 2m, kD j ukL2,�s � CabjskukL2.

Proof. First, lettingu 2 L2,s(Rn), we prove that

(2.10) kD j ukL2 � CabskukL2,s,

where Cabs is a positive constant. WithB = fx j jxj � 1g and E = fx j jxj � 1g, we
decomposejxj� j into two parts

jxj� j = hBj (x) + hE j (x),

hBj (x) :=
F(x � 1)jxj j , hE j (x) :=

F(x � 1)jxj j ,

where F(x � 1) and F(x � 1) are the characteristic functions of the setsB and E
respectively. It is easy to prove thathBj (x) 2 L1(Rn), hE j (x) 2 L2(Rn) for all m +
1 � j � 2m. Then we can prove (2.10) for alls > n=2 similarly to T. Umeda [24,
Lemma 5.1 (i)].

Next, let u 2 L2,s(Rn). Then the lemma follows from (2.10) similarly to T. Umeda
[24, Lemma 5.1 (ii)].

Proof of Theorem 2.2. In view of Theorem 2.4, (2.9), Lemma 2.7and Lemma 2.8,
we obtain the theorem.

3. Boundedness of the generalized eigenfunctions

In this section, we assume thatn, V(x) and k satisfy the following inequalities:

n = 2m + 1 (m 2 N) and m� 1,(1)

jV(x)j � Chxi�� , � > n + 1

2
,(2)

k 2 fk j a � jkj � bg and [a, b] � (0,1) n �p(H ).(3)
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Applying Theorem 1.4, we see that generalized eigenfuction'�(x, k) defined by

(3.1) '�(x, k) = '0(x, y)� R�(jkj)fV( � )'0( � , k)g(x),

satisfies the equation

(3.2) '�(x, k) = '0(x, k)� R�
0 (jkj)fV( � )'�( � , k)g(x),

where'0(x, k) = ei x �k.
In this section, letfD j V( �)'�( � , k)g(x) be denoted byD j V(x)'�(x, k). Moreover,

let V(x)D jr V(x)D jr�1 � � � V(x)D j1 V(x)'�(x, k) be denoted by

 
rY

p=1

V(x)D j p

!
fV(x)'�(x, k)g.

The main theorem is

Theorem 3.1. Let n = 2m + 1, m � 1 (m, n 2 N), and [a, b] � (0,1) n �(pH).
Then there exists a constant Cab such that generalized eigenfunctions defined by'�(x, k) := '0(x, y)� R�(jkj)fV( � )'0( � , k)g(x) satisfy

j'�(x, k)j � Cab,

for all (x, k) 2 Rn � fa � jkj � bg, where'0(x, k) = ei x �k.

First, in order to use Theorem 2.2, we have to prove thatV(x)'�(x, k) belongs
to L2,s for s> 1=2.

Lemma 3.1. If s > n=2, then V( � )'�( � , k) are L2,��s(Rn
x)-valued continuous

fuctions onfk j jkj 2 (0,1) n �p(H )g.
Proof. The lemma follows from Lemma 1.1 and the definition (3.1) similarly to

T. Umeda [24, Lemma 9.1].

From Lemma 3.1 with� > m + 1, Theorem 2.2 and (3.2), we get

(3.3) j'�(x, k)j � j'0(x, k)j + jR�
0 (jkj)fV( � )'�( � , k)g(x)j � 1 +

2mX
j =m

jD j V(x)'�(x, k)j,
where D j are the same operators as those in Theorem 2.2. We now give some lemmas
concerning the properties ofD j .
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Lemma 3.2. There exists a positive constant Cab, such thatjDmV(x)'�(x, k)j �
Cab, for all (x, k) 2 Rn � fa � jkj � bg.

Proof. From Lemma 3.1, we getkV(x)'�(x, k)kL2,s � C0
ab, for (x, k) 2 Rn�fa �jkj � bg, whereC0

ab is a positive constant. This fact, together with Lemma 2.7, gives
the lemma.

Lemma 3.3. Let m� j � 2m ( j 2 N) and C0ab is a positive constant. If ju(x, k)j �
C0

ab for all (x, k) 2 Rn � fa � jkj � bg, then there exists a positive constant such that

jD j V(x)u(x, k)j � Cab,

for all (x, k) 2 Rn � fa � jkj � bg.
Proof. From definition (2.9), the assumption andjV(y)j � Chyi�� , we get

jD j V(x)u(x, k)j � C0
abCabj

Z
Rn

jx � yj� j jV(y)j dy

� CC0
abCabj

Z
Rn

jx � yj� j hyi�� dy.

Since j � m and� > m+ 1, we get j +� > n. Then applying Lemma 2.6 with� = j , = � , we obtain the lemma.

Lemma 3.4. Let m+1� j � 2m ( j 2 N) and p> n=(n� j ). If u(x,k) 2 L2(Rn
x)\

L p(Rn
x), and ku(x,k)kL2 � C0

ab, ku(x,k)kL p � C00
ab, (C0

ab and C00ab are positive constants)
for all (x, k) 2 Rn � fa � jkj � bg, then there exists a positive constant Cab, such that

jD j u(x, k)j � Cab,

for all (x, k) 2 Rn � fa � jkj � bg.
Proof. From definition (2.9), we get

(3.4)

jD j u(x)j � Cabj

Z
Rn

jx � yj� j ju(y, k)j dy

� Cabj

Z
jx�yj�1

jx � yj� j ju(y, k)j dy + Cabj

Z
jx�yj>1

jx � yj� j ju(y, k)j dy.

The assumptionku(x, k)kL2 � C0
ab, together with the Schwarz inequality, yields

(3.5)
Z
jx�yj>1

jx � yj� j ju(y, k)j dy� C0
ab

�Z
jx�yj>1

jx � yj�2 j dy

�1=2
.

Since j � m+ 1, we have 2j > n, so that the function ofx defined by the integral on
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the right hand side is bounded. The assumptionku(x, k)kL p � C00
ab, together with the

Hölder inequality, gives

(3.6)
Z
jx�yj�1

jx � yj� j ju(y, k)j dy� C00
ab

�Z
jx�yj�1

(jx � yj� j )p=(p�1) dy

�(p�1)=p

.

Since p > n=(n � j ) > 1 (m + 1 � j � 2m), we have j p=(p � 1) = j =(1 � 1=p) <
j =(1� (n� j )=n) = n. So the function ofx defined by the integral on the right hand
side of (3.6) is bounded. In view of (3.4), (3.5) and (3.6), weobtain the lemma.

Lemma 3.5. Let r, j p 2 N and s> 1=2. If m + 1� j p � 2m for 1� p � r , then

 
rY

p=1

V(x)D j p

!
fV(x)'�(x, k)g 2 L2,s(Rn

x)

for all r 2 N. Moreover, there exits a positive constant Cab such that


 

rY
p=1

V(x)D j p

!
fV(x)'�(x, k)g


L2,s

� Cab

for all (x, k) 2 Rn � fa � jkj � bg.
Proof. Applying Lemma 3.1, we see that there exists a positive constantC0

ab

such that

(3.7) kV(x)'�(x, k)kL2 � C0
ab.

For m + 1� j1 � 2m, by Lemma 2.8, we have that if� � 1=2> t > n=2, there exists
a positive constantCabj1s such that

kD j1V(x)'�(x, k)kL2,�t � Cabj1tkV(x)'�(x, k)kL2 � Cabj1tC
0
ab.

Noticing that jV(x)j < Chxi�� , � > (n + 1)=2, and� � t > 1=2, whereC is a positive
constant, we get

kV(x)D j1V(x)'�(x, k)kL2,��t � CCabj1sC
0
ab.

Similarly, we can prove this lemma by induction.

Lemma 3.6. Let 0 < � < n, 1< p < q < 1 and f 2 L p(Rn). Let I� f (x) be
definded by I� f (x) :=

R
Rn jx� yj�n+� f (y)dy. If 1=q = 1=p��=n, there exists a positive

constant Cpq such that

kI� f kLq � Cpqk f kL p .
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For the proof of the lemma, see [20, p.119].

Lemma 3.7. Let r 2 N. If m + 1 � j p � 2m (1 � q � r ), and 2
Pq

p=1 j p >
(2q � 1)n for all q � r , then

 
rY

p=1

V(x)D j p

!
fV(x)'�(x, k)g 2 L2n=(2

Pr
p=1 j p�(2r�1)n)(Rn

x)

for all r � n� 1. Moreover, there exits a positive constant Cab such that

(3.8)


 

rY
p=1

V(x)D j p

!
fV(x)'�(x, k)g


L

2n=f2Pr
p=1 j p�(2r�1)ng � Cab

for all (x, k) 2 Rn � fa � jkj � bg.
Proof. For r = 1, sincem + 1 � j1 � 2m, we get 0< 2 j1 � n < n. Let � = 2,� = n � j1,  = 2n=(2 j1 � n). Then 0< � = 2 <  , and 1= = 1=� � �=n. SincejV(x)j < Chxi�� < C (C is a positive constant), we apply Lemma 3.6 withp = �,

q =  , and we get that there exists a constantC� such that

jV(x)D j1 V(x)'�(x, k)j � CCabj1

Z
Rn

jx � yj�n+�V(y)'�(y, k) dy.

Therefore we have

kV(x)D j1V(x)'�(x, k)kL � CCabj1C� kV(x)'�(x, k)kL� .
This fact together with (3.7) gives (3.8) forr = 1. Similarly, we can prove this lemma
by induction.

Lemma 3.8. Let r 2 N and r � n. If m � j p � 2m for all 1� p � r , then there
exists a positive constant Cab such that

(3.9)
X

2
Pr

p=1 j p<(2r�1)n

�����D jr

 
r�1Y
p=1

V(x)D j p

!
fV(x)'�(x, k)g

����� � Cab,

for all (x, k) 2 Rn � fa � jkj � bg.
Proof. We will prove this lemma by induction.
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(i) For r = 1, sincem� j1 � 2m, then 2j1 < n ) j1 = m, so

X
2 j1<n

D j1V(x)'�(x, k) = DmV(x)'�(x, k).

Applying Lemma 3.2, we see that (3.9) is valid forr = 1.
(ii) Thus we assume that (3.9) is also valid forr � l where l � 1 and l 2 N.

Now we will prove the caser = l + 1.
From the assumption of casesr � l , there exist positive constantsCabr such that

(3.10)
X

2
Pl

p=1 j p<(2l�1)n

�����D jr

 
r�1Y
p=1

V(x)D j p

!
fV(x)'�(x, k)g

����� � Cabr

for r � l .
For the caser = l + 1. Let

A = f( j1, j2, : : : , jl ) j m � j p � 2m for all 1� p � l g,
B = f( j1, j2, : : : , jl ) j m + 1� j p � 2m for all 1� p � l g,
C = A\

(
( j1, j2, : : : , jl )

����� 2
qX

p=1

j p > (2q � 1)n for 1� q � l

)
.

Since n is an odd integer, there does not exist (j1, j2, : : : , jl ) satisfying 2
Pr

p=1 j p =
(2l � 1)n, for r � l . Then, we get

X
j1, j2,:::, jr

�����D jr

 
r�1Y
p=1

V(x)D j p

!
fV(x)'�(x, k)g

�����
=

X
2
Pr

p=1 j p>(2l�1)n

�����D jr

 
r�1Y
p=1

V(x)D j p

!
fV(x)'�(x, k)g

�����
+

X
2
Pr

p=1 j p<(2l�1)n

�����D jr

 
r�1Y
p=1

V(x)D j p

!
fV(x)'�(x, k)g

�����
for all r � l . By this fact together with assumption (3.10) and Lemma 3.3,we get that
there exists a positive constantC0

ab such that

(3.11)

�����Dl+1V(x)

(X
AnC D jl

 
l�1Y
p=1

V(x)D j p

!
fV(x)'�(x, k)g

)����� � C0
ab.
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From Lemma 3.2, Lemma 3.5, Lemma 2.7 and Lemma 3.3, we see thatthere exists a
positive constantC00

ab, such that

(3.12)

�����Dl+1V(x)

(X
AnB

D jl

 
l�1Y
p=1

V(x)D j p

!
fV(x)'�(x, k)g

)����� � C00
ab.

For (j1, j2, : : : , jl ) 2 B \ C, applying Lemma 3.5 and Lemma 3.7, we see that
there exists a positive constantCabl such that

 
lY

p=1

V(x)D j p

!
fV(x)'�(x, k)g


L2

�

 

lY
p=1

V(x)D j p

!
fV(x)'�(x, k)g


L2,s

� Cabl,


 

lY
p=1

V(x)D j p

!
fV(x)'�(x, k)g


L

2n=f2Pl
p=1 j p�(2l�1)ng � Cabl,

where s > 1=2. For 2
Pl+1

p=1 j p < (2l + 1)n, we get 2n
Æ�

2
Pl

p=1 j p � (2l � 1)n
� >

n=(n� (l + 1)). It follows from Lemma 3.4 that there exists a positive constantCab,l+1

such that

(3.13)

�����Dl+1

X
B\C

 
lY

p=1

V(x)D j p

!
fV(x)'�(x, k)g

����� � Cab,l+1

for 2
Pl+1

p=1 j p < (2l + 1)n. Collecting (3.11), (3.12) and (3.13), we obtain that (3.9)is
valid for r = l + 1.

Finally, using (i) and (ii), we finish the proof of (3.9) for any integer r � 1.

In view of the lemmas and (3.3), we will prove the main theorem3.1.

Proof of Theorem 3.1. From (3.3), we getj'�(x,k)j�1+
P2m

jn=mjD jn V(x)'�(x,k)j.
Applying (3.3) again, similarly, we see that there exists a positive constantC0

ab

such that

(3.14) j'�(x, k)j � C0
ab +

X
j1, j2,:::, jn

�����
 

nY
p=1

V(x)D j p

!
fV(x)'�(x, k)g

�����,
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wherem� j p � 2m for 1� p � n. Noticing that 2
Pn

p=1 j p < 2n� 2m = 2n2� 2n <
(2n� 1)n, we get

X
j1, j2,:::, jn

�����
 

nY
p=1

V(x)D j p

!
fV(x)'�(x, k)g

�����
=

X
2
Pn

p=1 j p<(2n�1)n

�����
 

nY
p=1

V(x)D j p

!
fV(x)'�(x, k)g

�����.
This fact together with Lemma 3.8 withr = n yields that there exists a positive constant
C00

ab such that

X
j1, j2,:::, jn

�����
 

nY
p=1

V(x)D j p

!n
V(x)'�(x, k)

)����� � C00
ab.

From this inequality together with (3.14)), we finally have the theorem.

4. Asymptotic completeness

We investigate the asymptotic completeness of wave operators in this section. We
assum that the potentialV(x) is a real-valued measurable function onRn satisfying

(4.1) jV(x)j � Chxi�� , � > 1.

Under this assumption, it is obvious thatV is a bounded selfadjoint operator inL2(Rn),
and thatH = H0 + V defines a selfadjoint operator inL2(Rn), whose domain isH1(Rn)
(see T. Umeda [23, Theorem 5.8]). MoreoverH is essentially selfadjoint onC1

0 (Rn)
(see T. Umeda [23]). SinceV is relatively compact with respect toH0, it follows from
Reed-Simon [18, p.113, Corollary 2] that

�e(H ) = �e(H0) = [0, 1).

In this section, we prove the next main theorem with V. Enss’sidea (see V. Enss [3]
and H. Isozaki [7]).

Theorem 4.1. Let H0 =
p�1, H = H0 + V(x) and V(x) satisfies(4.1). Then

there exists the limits

W� = lim
t!�1 ei t H e�i t H0,

and the asymptotic completeness holds:

R(W�) = Hac(H ).
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Lemma 4.1. Let H0 =
p�1, H = H0 +V(x) and V(x) satisfies(4.1). Then there

exists the limits

W� = lim
t!�1 ei t H e�i t H0.

Proof. The proof of this lemma is similar to H. Kitada [8, p.60, Theorem 6.2].

It is obvious thatR(W�) � Hac(H ) (see [7, p.70 Lemma 1.2]), then we just need
to prove thatHac(H ) � R(W�).

Let '(t) 2 C1
0 ((a, b)), a > 0, ��(t) 2 C1

0 (R) satisfy �+(t) + �1(t) = 1, �+(t) = 0
for t < �1=2, ��(t) = 0 for t > 1=2. Let �(x) 2 C1

0 (Rn) satisfy�(x) = 0 for jxj < 1,�(x) = 1 for jxj > 2. We put!x = x=jxj and!� = �=j� j. Let p�(x, � ) be defined by

p�(x, � ) = ��(!x � !� )�(x)'(j� j),
and P� is the psendodifferential operator with symbolp�(x, � )

P�u = (2�)n=2 Z
Rn

ei x �� p�(x, � )û(� ) d�
and P�(A) = �(x=A)P� (A > 0). Let F(t > A) and F(t < A) be the characteristic
functions of the setsft j t > Ag and ft j t < Ag, respectively.

Lemma 4.2. If u 2 Hac(H ), then e�i t H u converges weakly to0 as t!1.

Proof. Let EH (�) be the spectral measure onH . For everyv 2 L2(Rn), we have

(e�i t H u, v) =
Z 1
�1 e�i t� d(EH (�)u, v).

Since (EH (�)u, v) is absolutely continuous on�, there exists a functionf (�) 2 L1(R),
such that

(e�i t H u, v) =
Z 1
�1 e�i t� f (�) d�.

Lemma 4.2 now follows from Riemann-Lebesgue’s lemma.

Lemma 4.3. Let d> 0, s� 1. Then

sup
t>d

k(1 + t + jxj)sP�e�i t H0hxi�skL2 <1,(4.2)

sup
t<�d

k(1� t + jxj)sP+e�i t H0hxi�skL2 <1.(4.3)
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Proof. We will prove (4.2). The proof of (4.3) is similar. Using the interpolation
theorem, we just need to prove the casess 2 N. Let û(� ) be the Fourier transform of
u(x). The definition ofP�e�i t H0 is

P�e�i t H0u = (2�)�n=2 Z
Rn

ei (x���t j� j) p�(x, � )û(� ) d� .

Let

L = �i jr� (x � � � t j� j)j�2r� (x � � � t j� j) � r� .
We haveLei (x���t j� j) = ei (x���t j� j). Since suppp� � f!x � !� < 1=2g and t > 0, we get

jr� (x � � � t j� j)j2 = jx � t!� j2 = jxj2 + t2 � 2t x � !� > jxj2 + t2 � t jxj � 1

2
(jxj2 + t2).

Noticing that t > d > 0, we have that there exists a positive constantC such that,

(4.4) jr� (x � � � t j� j)j > C(jxj + t + 1).

Then using integration by parts, we have

P�e�i t H0u = (2�)�n=2 Z
Rn

ei (x���t j� j)L�fp�(x, � )û(� )g d� ,

whereL� is adjoint operator ofL. Notice that suppp� � fa < j� j < bg and� > 2. Then
we see that there exists a positive constantC1 such thatjP�e�i t H0uj < C1(1 + t + jxj)�1.
Thus we get (1 +t + jxj)jP�e�i t H0uj < C1. Then, we use integration by parts again and
we get that there exists a positive constantC2 such that (1 +t + jxj)2jP�e�i t H0uj < C2.
Similarly, for s 2 N, we get (1+t + jxj)sjP�e�i t H0uj < Cs, whereCs is a positive constant
depending ons. Then, we can finish proving this lemma.

Lemma 4.4. Let d> 0. Then

sup
t>d

k(e�i t H � e�i t H0)P+(A)�k ! 0,(4.5)

sup
t<�d

k(e�i t H � e�i t H0)P�(A)�k ! 0,(4.6)

as A!1, where P�(A)� is the adjoint of the operators P�(A), respectively.
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Proof. We will prove (4.5). The proof of (4.6) is similar. Noticing that

d

dt
fei t H e�i t H0g = i Hei t H e�i t H0 � iei t H e�i t H0 H0

= iei t H (H � H0)e�i t H0 = iei t H V e�i t H0,

we have

e�i t H � e�i t H0 = e�i t H (I � ei t H e�i t H0) = �ie�i t H
Z t

0
eisHV e�isH0 ds.

Sincee�i (t�s)H is uniformly bounded int � s 2 R, we have by (4.1)

(4.7) k(e�i t H � e�i t H0)P+(A)�k � C
Z t

0
khxi��e�isH0 P+(A)�k ds.

Since P+(A)� = P�
+�(x=A), we have

khxi��e�isH0 P+(A)�k
� khxi��e�isH0 P+(A)�(1 + s + jxj)�kk(1 + s + jxj)�� F(jxj > A)k
� C0(1 + s + A)��k(1 + s + jxj)� P+(A)eisH0hxi��k,

whereC0 is a positive constant. Then applying (4.3) and (4.7) and noticing that� > 1,
we get this Lemma.

Lemma 4.5. If u 2 Hac(H ) then kP�e�i t H ukL2 ! 0, as t!1.

Proof. Let d > 0. It follows from Lemma 4.4, for every" > 0, there exists a
constantA > 0, such that

(4.8) sup
t>d

�
�

x

A

�
P�(e�i t H � e�i t H0)u

 < ".
Since u 2 L2(Rn), for every " > 0 there exists a functionv 2 S(Rn), such thatku � vkL2 < ". Noticing that P�e�i t H0 is uniformly bounded int 2 R, we getkP�e�i t H0(u�v)kL2 < ", for all t . It follows from Lemma 4.3 thatkP�e�i t H0vkL2 ! 0,
as t !1. So, we get

(4.9) kP�e�i t H0ukL2 ! 0,

as t !1. The integral kernelK�(x, y) of the operator (1� �(x=A))P� is

K�(x, y) = (2�)2n

�
1� �� x

A

���(x)
Z

Rn

ei (x�y)����(!x � !� )'(j� j) d� .

Noting thathx� yi�2(1�1� )ei (x�y)�� = ei (x�y)�� , we make the integration by parts, and
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get jK�(x, y)j � C(1� �(x=A))hx� yi�2n. So K� 2 L2(Rn �Rn). Then we have that
(1� �(x=A))P� is a compact operator, ande�i t H u converges weakly to 0 ast !1
(Lemma 4.2). Then we get

(4.10) lim
t!1


�

1� �� x

A

��
P�e�i t H u

 = 0.

Collecting (4.6), (4.9) and (4.10), we getkP�e�i t H ukL2 ! 0, as t !1.

Lemma 4.6. If u 2 Hac(H ) then limt!1 ke�i t H'(H )u� P+(A)e�i t H ukL2 = 0, for
all A > 0.

Proof. The equation of resolvent is (H � z)�1� (H0� z)�1 = �(H � z)�1V(H0�
z)�1. Noticing thatV(H0 � z)�1 is a compact operator (see H. Isozaki [7, p.27, The-
orem 4.8]), we get that'(H )� '(H0) is a compact operator. This fact, together with
Lemma 4.2, implies

(4.11) lim
t!1 k'(H )e�i t H u� '(H0)e�i t H uk = 0.

Since (1� �(x))'(H0) is a compact operator (check the integral kernel similarlyin
Lemma 4.5), ande�i t H u converges weakly to 0 ast !1 (Lemma 4.2), we get

(4.12) lim
t!1 k(1� �(x))'(H0)e�i t H uk = 0.

Noting that�(x)'(H0) = P+ + P�, we get

(4.13) lim
t!1 k'(H0)e�i t H u� (P+ + P�)e�i t H uk = 0.

Collecting (4.11), (4.12), (4.13), and Lemma 4.5, we have

lim
t!1 ke�i t H'(H )u� P+(A)e�i t H ukL2 = 0.

Lemma 4.7. Let u 2 Hac(H ), d > 0. For every " > 0, there exists s> 0 and
A> 0, such that, supt>d ke�i t H us�e�i t H0 P+(A)e�isHukL2 < ", where us = e�isH'(H )u.

Proof. By the definition ofp+(x, � ), we get

����x ��� p+(x, � )
�� � C��hxi�j�jh�i�m�j�j,

for all m > 0, whereC�� is a positive constant. Since��x �(x=A) = A�j�j(��x �)(x=A),
we have ����x ��� p+(x, � )

�� � C�� A�1h�i�m�j�j,
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for all j�j � 1. Then we get the symbolq(x, � ; A) of P+(A)� � P+(A) satisfying

����x ��� q(x, � ; A)
�� � C�� A�1h�i�m�j�j.

Then

kP+(A)� � P+(A)k � C

A
,

where C > 0 is a constant. This fact together with (4.5) yields supt>d k(e�i t H �
e�i t H0)P+(A)k! 0, asA!1. From Lemma 4.6, we get that there existsA> 0, s>
0 such that, supt>d ke�i t H us�e�i t H0 P+(A)e�isHukL2 < ". Then we get the lemma.

Proof of Theorem 4.1. From Lemma 4.1, we get that there existsthe limits

W� = lim
t!�1 ei t H e�i t H0.

Then we just need to prove that

u ? R(W+) ) u = 0

for all u 2 Hac(H ). (The caseW� is similar.)
Let 0< a < c < d < b, '(�) 2 C1

0 ((a, b)) satisfy

'(�) = 1 (c < � < d).

Let us = e�isH'(H )u. It follows from Lemma 4.7, that

kusk2 = (e�i t H us, e�i t H us) = (e�i t H0 P+(A)e�isHu, e�i t H us) + O(")
! ('(H )eisHW+e�i t H0 P+(A)e�isHu, u) + O(")

as t !1. Since

('(H )eisHW+e�i t H0 P+(A)e�isHu, u)

=
Z 1
�1 '(�)eis� d(EH (�)W+e�i t H0 P+(A)e�isHu, u)

=
Z 1
�1 '(�)eis� d(W+(EH0(�)e�i t H0 P+(A)e�isHu, u)

= ('(H0)eisH0e�i t H0 P+(A)e�isHu, W�
+ u)

= (W+'(H0)eisH0e�i t H0 P+(A)e�isHu, u),

we getkusk2 = (W+'(H0)eisH0e�i t H0 P+(A)e�isHu, u)+ O("). Applying thatu ?R(W+),
we getkusk = O("). So '(H )u = 0. Since'(�) is an arbitraryC1

0 ((0,1)) function,
we getu = 0.
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5. Eigenfunction expansions

In this section, we assum that the dimensionn is an odd integer,n � 3, and� > (n + 1)=2. We consider the completeness of the generalized eigenfunction in this
section. The main idea is the same as the idea in H. Kitada [10]and S.T. Kuroda
[13], besides, in this section, we use the method in T. Ikebe [6, Section 11]. It is
known that

�e(H ) = �e(H0) = [0, 1).

We need to remark that�p(H ) \ (0,1) is a discrete set. This fact was first proved
by B. Simon [19, Theorem 2.1]. Moreover, B. Simon [19, Theorem2.1] proved that
each eigenvalue in the set�p(H ) \ (0,1) has finite multiplicity.

The main theorem is

Theorem 5.1. Assume the dimension n(n � 3) is an odd integer, � > (n + 1)=2,
s> n=2 and [a, b] � (0,1) n �p(H ). For u 2 L2,s(Rn), let F� be defined by

(5.1) F�u(k) := (2�)�n=2 Z
Rn

u(x)'�(x, k) dx.

For an arbitrary L2,s(Rn)-function f(x),

EH ([a, b]) f (x) = (2�)�n=2 Z
a�jkj�b

F� f (k)'�(x, k) dk,

where EH is the spectral measure on H, and '�(x, k) are defined inTheorem 1.3.

Lemma 5.1. Let [a, b] � (0,1) n �p(H ). Then (W�'0( � , k), g) = ('�( � , k), g)
for all g 2 C1

0 (Rn) and k2 [a, b], where'0(x, k) = ei x �k, and W� is the same as in
Theorem 4.1.

Proof. Noticing that

ei t H e�i t H0 = I + i
Z t

0
ei �H V e�i �H0 d� ,

and lettingt !�1, we get

(W�'0( � , k), g) = ('0( � , k), g) + i
Z �1

0
(ei �H V e�i �H0'0( � , k), g) d� .

Putting f = ei x �k, we have

i
Z �1

0
(ei �H V e�i �H0 f , g) d� = i lim"#0

Z �1
0

e�"� (ei �H V e�i �H0 f , g) d�
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= i lim"#0

Z �1
0

e�"� ( f , ei �H0V e�i �H g) d� = i lim"#0

Z �1
0

e�"� ( f , F�1ei � jkjFV e�i �H g) d�
Sinceg 2 C1

0 (Rn), k 2 [a, b], and'0(x, k) is bounded for (x, k) 2 Rn�fk j a � k � bg,
we can interchange the� -, x-, and k-integrations. Then we get

i
Z �1

0
(ei �H V e�i �H0 f , g) d� = i lim"#0

Z �1
0

e�"� ( f̂ , FV e�i � (H�jkj)g) d�
= i lim"#0

Z �1
0

( f , V e�i � (H�(jkj�i "))g) d� = ( f , V R�(jkj)g) = (R�(jkj)V f , g).

So, by the definition of'�(x, k), and k 2 [a, b], we get (W�'0( � , k), g) =
('�( � , k), g).

Lemma 5.2. Let [a, b] � (0,1)n�p(H ), supp̂g(k) � fk j a � jkj � bg and f(x) 2
C1

0 (Rn). Then

(F� f , ĝ) = (FW�� f , ĝ),

whereF� are defined by(5.1).

Proof. By the definition ofF�1, we get

(FW�� f , ĝ) = ( f , WF�1ĝ) =

�
f , W� Z '0( � , k)ĝ(k) dk

�
.

Since f 2 C1
0 (Rn), suppĝ(k) � fk j a � jkj � bg, and'0(x, k) is bounded for (x, k) 2

Rn � fk j a � k � bg, we can interchange thex-, and k-integrations. Then, we have

(FW�� f , ĝ) =
Z

( f , W�'0( � , k))ĝ(k) dk.

Noticing supp̂g(k)� fk j a� jkj � bg and using Lemma 5.1, we obtain Lemma 5.2.

Finally, we start to prove our main Theorem 5.1.

Proof of Theorem 5.1. It follows from Theorem 3.1 and Theorem4.1 that the
wave operatorsW� are complete, and the eigenfunctions'�(x, k) are bounded for
(x, k) 2 Rn � fk j a � jkj � bg. Then, noticing thatC1

0 (Rn) is dense inL2(Rn), to-
gether with Lemma 5.2, and using the idea of S.T. Kuroda [13, p.160], we can obtain
Theorem 5.1.
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