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Abstract
Existence and58((3) x SQ3)-congruence of Lagrangian immersion from oriented
2-dimensional Riemannian manifold to the Riemannian pcodef 2-spheres are
studied. In particular, we will show that two minimal Lagggan immersions
are SQ(3) x SO3)-congruent if and only if the corresponding angle functiars
coincide.

1. Introduction

Lagrangian submanifolds in symplectic manifolds are ondhaf most important
object in geometry, and Hermitian symmetric spaces arendabexamples among
symplectic manifolds. To study Lagrangian submanifoldslefmitian symmetric spaces
from differential geometric viewpoint, the following prigms are fundamental: (i) Find
the condition for which there exists Lagrangian isometiit garticular minimal) im-
mersion fromn-dimensional Riemannian manifold to Hermitian symmetni@ace M.
(ii) For given two Lagrangian (minimal) isometric immers®x;, x, from a Riemann-
ian manifold M to Hermitian symmetric spackl, find the condition for whichx; and
X, are congruent by a holomorphic isometry f When M is a complex space form,
the results are already known (cf. [2]), but for higher ramses, it seems that there
are no such results. On the other hand, recently it was shé&mht totally geo-
desic Lagrangian torust x S* in &* x ? has Hamiltonian volume minimizing prop-
erty. In this paper we will obtain existence aff)3) x SQ(3)-congruence theorems
for Lagrangian isometric (minimal) immersions from 2-dims@nal oriented Riemann-
ian manifolds t0S? x $* with respect to complex structurd,(J), whereJ denotes the
complex structure or§® which is determined by an orientation.

With respect to submanifolds: M — M; x My in product manifolds, the almost
product structure® plays an important role (cf. [6]). For example if each tartggrace
of M is invariant underP, then M is decomposed as a product manifold ands a
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product immersion. For a Lagrangian surfadé in S* x S?, we introduceangle func-
tion ¢ on M2, by measuring the behavior of each tangent spagdd? under the action
of P. We note thatp is also described by the Kahler angle B in S x S? with
respect to another complex structur®, J) whose associated symplectic structure is
the twisted product form (cf. [7]§3.4).

We will show that two Lagrangian isometric immersions froadighensional ori-
ented Riemannian manifol1? to $* x % are SQ(3) x SQ3)-congruent if and only
if each second fundamental tensor and angle function aenfrheorem 2). Here we
note that the full holomorphic isometry group of S? x S? with respect to J, J) is
generated bysQ(3) x SO3) and the ma? x & — P x S, (X1, X2) — (X2, X1). Then
the above result does not hold f@& (Remark 1).

Next, we will show that when the Lagrangian isometric imrniards minimal, the
congruence class is determined by only the angle functitre@¢fem 4). For Lagrang-
ian submanifolds in Kéhler manifolds, Gauss and Codazzaggus are expressed as
intrinsic equations, because the second fundamental ferdescribed by a symmetric
(0, 3)-tensor fieldsT on the submanifold. But in general these equations do natagua
tee the existence of such Lagrangian isometric immersioeveNheless we will prove
(Theorem 5) that on a simply connected Riemannian 2-mahifdf, if certain two
equations with respect to the metric and a functiom M? hold, which are essentially
equivalent to Gauss and Codazzi equations, then theresexigtagrangian isometric
minimal immersion fromM? to S? x S? such thaty is the corresponding angle func-
tion. As a special case, wheM? is a domain ofR? and both of the metric and the
function ¢ are rotationally symmetric, Gauss and Codazzi equatiomsiaitten as two
nonlinear ordinary differential equations of second ardBy using a solution of the
equation, we can obtain non-trivial minimal Lagrangianfaces inS? x S?. Note that
minimal Lagrangian surfaces i6° x S are studied in [1] from different viewpoint.

The authors would like express their gratitude to the refdi@ his/her careful
reading of the manuscript and valuable suggestions.

2. Lagrangian surfaces inS x &

Let M be a Kahler manifold of complex dimension with Kahler form ¢ and
complex structureJ. Let M be a realm-dimensional submanifold and let: M —
M be a Lagrangian immersion, i.ex*6 =0 on M, or equivalently, for any tangent
vector X of M, J X is contained in the normal space kb. We denote the Levi-Civita
connection ofM by V and o is the second fundamental form ™ — M. Then we
have the following (cf. [2]).

(2.1) (0(X,Y),3Z) = (6(Y, Z), IX) = (6(Z, X), JY),
(2.2) Vx(JY) = IVyY,

for tangent vectorX,Y and Z of M whereV+ is the connection on the normal bundle.
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Let S? be a unit sphere ilR®. For anyp € &, we define a linear transformation
J of the tangent spacg,S? of S at p as

(2.3) Juv=pxuv

by the vector produck of R3, soJ is a complex structure of?. Then the special or-
thogonal groupSQ(3) acts naturally forS? and is the isometry group for the Riemann-
ian metric onS? which is induced by the standard inner productRY. Moreover
SQ3) preservesl). Standard symplectic form on S is given byéd,(u, v) = (p x u)-v,
whereu, v € TpS* and - is the induced Riemannian metric &8 by the inclusion
SR

We define a complex structurd on 2 x 2 by

(2.4) J(X1, X2) = (I X1, IX2)

for all tangent vectorsXy, X,) to > x S%. Let (, ) be the product metric o8? x S
defined by

(X1, X2), (Y1, Y2)) = X1 - Y1+ X5 - Ya.

Then( , ) is a Hermitian metric an®® x S is a Kahler manifold with respect to the
complex structure]. S x S is considered as a symplectic manifold with symplectic
form 6 = (pr,)*0 + (pr,)*0, where py, pr,: & x S — S are projection maps into first
factor and second factor, respectively, ahds the standard symplectic form .

Let P be the tensor field of type (1, 1) o® x S, defined by

(2.5) P(X1, X2) = (X1, —Xo).

Then we have (cf. [6])

(2.6) P2 =1,

(2.7) (PX,Y)=(X, PY),
(2.8) traceP =0,
(2.9) VP =0

where X,Y are any tangent vectors & x S? andV denotes the Levi-Civita connection
of & x S%. P is called thealmost product structuref $* x S%. (2.4) and (2.5) imply

(2.10) PJ=JP.
Let M2 be an oriented Riemannian manifold of dimension 2 and let

(2.11) x: M2 = & x &, x(p) = (xa(P), X2(P))
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be a Lagrangian immersion, i.ex'0 = 0. If {e1, &)} is an orthonormal basis for the
tangent spacd,M? at p € M?, which is compatible with the orientation &2, then
{Je, Jeo} is an orthonormal basis for an orthogonal complem‘él;;*tﬂ\/l2 of ToM?2.

Thus {ey, &, Je, jez} is an (oriented) orthonormal basis f@;(p)(sz x $%). So we put
(2.12) Px.X =x,PX+Jx.QX

for X € T,M? where P and Q are linear endomorphisms ifi,M2. Then it follows
from (2.6)—(2.10) that

(2.13) traceP =0, P?-Q*=1, PQ+QP=0,
(2.14) (PX,Y)=(X, PY), (QX,Y)+(X, QY)=0,
(VxP)Y, Z) = (o(X, QY), JZ) + (0(X, Y), IQ2),

(2.15) - -

(VxQ)Y, Z) =(a(X,Y), JPZ) — (o(X, PY), JZ).
Then, from (2.13), there exists an orthonormal bdsjse,} of TpM2 compatible with
the orientation ofM? and ¢ € [—m/4, 7 /4] such that

(2.16) Qe = —sin2pe;, Qe =sin pey.

{Pel =cos e, P& =—cos e,
Here we note that sucle;, e} is uniquely determined up te — —¢ (i = 1, 2).
Clearly ¢ is continuous and whep € (—=x /4, 7 /4), ¢ is differentiable. We callp the
angle functionfor a Lagrangian immersior from an oriented 2-dimensional Riemann-
ian manifold M? to S x S

Next we show that the angle functignis essentially same as the Kéhler angle of
M? in §* x S? with respect to the complex structurd,(=J). Let f be an immersion
of an oriented 2-dimensional manifold into a Kahler manifold K1, J). The Kahler
angle of f is defined to be the angle betwedr,e; and f.e, for an orthonormal ba-
sis {e;, &} compatible with the orientation oM. On S x S?, we consider another
complex structure J, —J) as

(J, —J)(Xl, X2) = (J X]_, -J X2)

for (X1, X2) € T(S? x ). Then the corresponding symplectic form is nothing but the
twisted product form (g)*6 — (pr,)*o.
By (2.5), (2.16) and identification§ M = TM x {0}, TM = {0} x T M, we have

2 ' 2
= (cosp(cospx.e; — sinpJx,&), sing(singx,e; + cosp J x.e)),

x.e + P X.e — P
X*e1:<e1 X€ X:€ x*e1>
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X.& + P & — P
X6 = € X*ez, X+€ — PX.6&
2 2
= (sing(sinpx,e; + cosp I x,e1), COSp(Cospx,e — singJx.er)),

where we considexk,e; and x.e as vectors irR3 x R3. For p e M, if we put

Va(p) = cosp(p)(x.)per — sing(p)J (x.)pez,

(2.17) _ .
Va(p) := cosp(p)(X«) pe — sing(P)J(X.)pet,

then the above equations are written as
(2.18) X1 = (CospVy, sinpJdVh), X.& = (sinpJ V4, cospVy).
So we may regard as

Vi(p), IVA(p) = IVa(p) € Tayp S,

(2.19) ) ]
Va(p), IVa(p) = IV2(p) € Tey(p) S

where J is the complex structure of? defined by (2.3), andx{(p), x2(p)) € & x &
as (2.11), andvy, JV4, Vo, JV, are R3-valued vector fields orM?.

Proposition 1. Let¢: M? — [—x/4,7/4] be the angle function of a Lagrangian
isometric immersion from an oriented surface? b (S* x 2, J = (J, J)). Then the
Kahler angle with respect to the complex structfd —J) of & x S is equal to
/2 — 2¢. Consequentlywhen ¢ = +x/4 the immersion x ist-holomorphic with
respect to(J, —J).

Proof. Let{e;, e} be the orthonormal basis &fi> compatible with the orientation
of M2 given by (2.16). For the complex structuré, (—J), we have

(J, —J)x.e1 = (cosp I Vi, sinpVy),

by (2.18) and (2.19). Hence, using V4| = ||Vl = 1, we get
(3, —J)x.€1, X&) =sin 2 = COS(% - 2<p)- U

Now we study some special class of Lagrangian surface§?ix 2. We will
calculate the second fundamental tensormand the mean curvature vectét of the
product immersion Let x;: |; — S (i =1, 2) be curves in a 2-sphere with arclength
parameters, and letx: I; x I, — S be the product immersion defined bys;, ) =
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(x1(s1), X2(=2)). If & (i =1,2) are curvatures of spherical curves then we getx/’(s) =
ki(s)JI%(s) — xi(s). So we have

a( 0.2 ) = (c1(50)3%(51), 0),

(2.20) 851 | aasl
a(g, g) = (0, ka(82) I%(2).
and

2H :g(i’ i) +O‘<i, i)
08, 0% 0 0%
= (k1(s1) Ixq(S1), 2(S2) I Xo(S2))-

Consequently the product immersionis minimal if and only ifk; = «x, = 0, that is,
eachx; is a great circle ofS>. Hence, we have

Proposition 2. Let x be a product immersionM; x M, - & x . If x is a
minimal immersionthen x is totally geodesic and each; M = 1, 2) is a great circle
of S

For the Lagrangian immersiox, if ¢ =0, then we haveP? =1 by (2.13). Hence, we
can decompos& M?=T;M&T_;M whereT;M is an eigenspace of eigenvalue 1mPf
and T_1M is an eigenspace of eigenvaluel of P. SinceT;M and T_1M are totally
geodesic distributions oM?, we can see thak? is a product manifoldM; x M, and
X is a product immersion.

Now we back to the general case and we will deduce fundameniaédtions for
Lagrangian surfaces i6* x S. It follows from (2.15) that

(2.21) ((VxP)ew, er) = 2sin 2(Jo(ey, &), X).
On the other hand,

(VxP)ey, e1) = (Vx(Pey) — PVxey, 1)
(2.22) = (Vx(cos ey), 1) — (Vxey, Pey)
= —2sin 2p(Xg).

Hence, we obtain from (2.21) and (2.22)
sin 2p{X¢ + (Jo(ey, &), X)} = 0.
We get also from calculation of(Vx Q)es, &)

cos 2{ Xy + (Jo(ey, &), X)} =0.
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Therefore Xy + (Jo (1, &), X) =0 for all X € T,M?, i.e.,

(2.23) gradp = —Jo(ey, &).
By calculating((Vx P)ey, &), we have

(2.24) sin 2{(o(ey, €1), IX) — (o(€2, &), IX)} = 2 cos D(Vxey, &).

Let » be a connection form with respect to the orthonormal framid fie;, &} on M?,
which is given by
Vxer = o(X)e, Vx& = —w(X)er.

By (2.1), (o(e, ), J&) are symmetric foii, j, k=1, 2. We put

To=(o(en, &), Ja), Ti=(o(e, &), Je),

(2.25) . .
To=(o(en, &), IJ&), Tz3=(o(e, &), I&).

It follows from (2.23) that
(2.26) gradp = T1e; + To&

and from (2.24) that
2w(ey) cos 2 = (To — T2) sin 2,
(2:27) {Zw(ez) cos 2 = (Ty — Tz) sin 2.

Next, we consider the equations of Gauss and Codazzi for aahg@n surface
M2 in S x $°. The curvature tensoR of & x S satisfies

(Y, Z)X — (X, Z)Y + (PY, Z)PX — (PX, Z)PY

R(X,Y)Z = 5

for any X, Y, Z e T(S? x &) (cf. [6]). So we have

2

(R(ew, &)ey, €1)

Sir? 2¢
2

for an orthonormal basige;, &} of M? satisfying (2.16). Hence, the Gauss equation is

_sirf 2¢

(2.28) K +ToTo+ TiTs — (To)® — (T2)?
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for the Gauss curvaturk = (R(ey, e))ep, e1) of M2, Normal componentst(el,ez)e.)L
of R(e, &)e (for i =1, 2) to M? are

= . _(Pe&,e)iQa — (Pe, e)iQe
(R(en, &)e) = >

_sin4p{(e;, &)Je — (e, &) ey
; .

We define the covariant derivative of as
(Vxo)(Y, Z) = Vxa(Y, Z) — o (VxY, Z) — a(Y, Vx2).
Then the Codazzi equations are given by

sin4p{(e, 6)Je — (&1, &) Je)

(Ve,0)(€2, &) — (Ve,0)(e1, 8) =

4
Hence,
(Va0)(er, &) — (Veo) e, &), Ty =~ 2%
(2.29) (Ver0)(€2, &) — (Ve,0)(er, €2), Je&o) = S'”4“‘”.

(Ve,0)(e1, @) = (Ver0)(er, &), Je&r) =0,
((Ve,0)(&2, &) — (Ve,0)(E1, €2), J&r) = 0.

By (2.2), we have
(Veo)(ej, &), Ja) =e(o(e), &), Ja) — (o(e), &), IVea)
— (0(Veej, &), Ja) — (o(gj, Ve &), Ja).

Therefore from (2.29), the Codazzi equations are written as

(230 eTi-eToroE)lo— 2T+ @)= -5,
@31 eT- el )T Fe(@)Ts - 2T) = T,

e — T + w(e)(2Ty — Ta) + w(e) (2T, — To) = 0.

Note that the last equation is also derived from (2.26).
Wheng = +r/4, it follows from (2.1) and (2.15) that = 0 and we geK =1/2
from (2.28). Hence, we have

Proposition 3. Let M? be a2-dimensional Riemannian manifold and let M? —
& x $ be a Lagrangian isometric immersioff the angle functiony defined by(2.16)
is identically equal totm/4, then x is totally geodesic and the Gauss curvature éf M
is K=1/2.
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It is well-known thatS? x S? is holomorphically isometric to complex 2-dimensional
complex quadricQ?. And totally geodesic submanifolds in complex quadri@® are
classified by Chen and Nagano [3].

EXAMPLE. Let¢.: > — xS be a Lagrangian immersion given by, §, z) —
((x,y, F2), (X, y, £2)), where &, y, 2) is an orthogonal coordinate system BA. Then
we can see that the angle functignof ¢.. is identically equal totn/4.

3. Existence ofSO(3) x SO(3)-valued frame fields

In this section, we study integrability conditions for erisce of Lagrangian iso-
metric immersionx: M2 — S x S by using some frame fiel#l — SQ3) x SQ(3).

Now we consider Lagrangian immersion: M2 — S? x S with which the angle
function satisfiesy € (—/4,7/4). LetVi(p), Va(p) be vectors inrR® defined by (2.17).
By (2.19), at eachp € M?,

(3.1) {51([3) = (xu(p), Va(p), IVa(p)).
&2(p) = (x2(p), Va(p), IVa(p))

are orthonormal frames iR® respectively. By the definition (2.3) of the complex struc-
ture J on S, we can see that{(p), £&2(p)) € SQ3) x SA3).
Now, we calculate Ricci identity (i.e., integrability cdtidns) for two frame fields

£1(p) and 2(p), namely,
(De, De, — De,De, — Diey,e,1)€1(P) = 0,
(D¢, De, — De, De, — Dyey e;1)62(P) = O,

where D is the Euclidean connection d®® = R® x R3. We denote the frames as
(X1, V1, IV1), (X2, V2, JV,), and also denotey, e, instead ofx.e;, x.& for simplicity.
Note that fore; = (e; + Pe)/2 + (€1 — Pe)/2, (1 + Per)/2 (resp. & — Pe)/2) is an
eigenvector of® with eigenvalue 1 (resp-1) and is contained i, (p) S (resp.Tuy(p) S9)-
Then from (2.12), (2.16), (2.17) and (2.19), we obtain

e+ Pe
DeiX1 = Diespay2X1 = —
= cospVy,
e — Pe
De.X2 = Die, —pey/oXe = ———
= sin<pJV2.

By calculating De, X1, De, X2 similarly, we have

(3.2) {Delxl =cospVi, DeXp=sinpdVy,

De, X2 = sinpJV,, De,X2 = COSpVs.
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To get Dg V; and Dg (JV;), we first calculateDg €j and Dg (J€j). By (2.25), (2.17)
and (2.19), we have
De,€1 = (De,€1, X1)X1 + (De, 1, X)X + Ve, €1
= —(€1, Dg,X1)X1 — (€1, D, X2)X2 + Ve €1 + 0 (€1, €1)
= —cog pX1 — SIf Xo + w(e)e + ToJe + Ti e,
where V denotes the Levi-Civita connection @& x S2. Note thatx; and x, are con-
sidered as unit normal vector fields of the inclusi6f x S* < R2® x R3. Similar
computations yield
De,e1 = w(e)er + TiJe + ToJ e,
De,&2 = —w(er)e + Tide + ToJ e,
De,& = —SiI? px; — o< pXp — w(&)er + ToJe + TaJ e,
De,(J&) = —Toer — Tier + w(er) J &,
De,(J€1) = —COSg Singxy + COSy SiNpx, — Tiey — Toey + w(e) J &,
De, (J&) = COSg Singxy — coSp singxa — Tiey — Toey — w(ey)J e,
De,(J&) = —Toe; — Tze; — w(&p) J &
(2.17), (2.26), (2.27) and these equations imply
De, V1 = Dg, {cOS@e; — singpJey)
= (e1p){—singe; — cospJ e} + cospDe €1 — sing D, (J&)
= —cospXx; + {w(ey) cosp + singT,}e; + {w(ey) sing + coszo}jel
= —cospXy + {w(e1) sin 2p + To cog ¢ + T, sir? ¢} I V4.

Similar computations yield

Deivl = —COospx1 +aJ Vi, Dezvl =8IV,
Del(\] V]_) = —aV;, Dez(\] V]_) = —sin PX1 — /3V1,

(3.3) De, Vo =y IV, De, Vo = —COSpXp +8J Vs,
De,(IV2) = —singxz — yVa, De,(IVo) = =6V
where
o = w(ey) sin 2p + Ty cog ¢ + T, Sir? ¢,
(3.4) B=w(e)sin2p+T COSz(p+T3 Sir? 0,

y = —w(ey) sin 2p + Ty sirf ¢ + T, cof ¢,
8 = —w(ey) sin 2p + Ty Sirf ¢ + T3 cof .
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Using (2.27), we get

a Sing = w(ey) cosy + T Sing,
B cosy = w(ey) sing + Ty oS,
y COSp = —w(ey) Sing + T, COSg,
8 sing = —w(ey) cose + Ty Sing.

(3.5)

By differentiating (3.4) and using (2.27), we obtain

ga = & (w(ey)) sin 2p + (6 To) coS ¢ + (& T2) sir? ¢,
8B = &(w(ep) sin 2 + (g Ty) coF ¢ + (6 T) sirf ¢,
ey = —&(w(e)) sin 2 + (& To) sir? ¢ + (6 Tp) co ¢,
68 = —g(w(e)) sin 2 + (g Ty) sir? ¢ + (g Tz) coF .

(3.6)

(3.2), (3.3) and (3.5) imply

De De, X1 — Dg, Dg, X7 — D ] X1 = 0,
3.7) e Ve e Ye [er,e0]
Del DeZXZ — De2 DeIXZ — D[el,ez]XZ =0.

Next, we compute Dg, De, — De,De; — Diey e,1) V1. From (3.2), (3.3), (3.5) and (3.6),
we get

De1 De.zvl — De2 De1V1 — D[el,eﬂvl
- H% + (&) — xle(e) + w(er)? + w(ez)z} sin 2
+{e1 Ty — &To + w(e) To + w(e) Ty} cos ¢

+{aTs — T+ w(e) Tz + w(ey) Ts} sinf 90} JVi.
By the definition of the Gauss curvature,
(3:8) K = (R(e, e1)er, &) = ex(w(e1)) — e(w(er)) — w(er)” — w(e)?,
the equation De, De, — De,De; — Diey,e,1) V1 = 0 is equivalent to
@ - K) sin2p + (e T1 — & To + w(e)) To + w(e) Ta) coS ¢
+{e1Ts — & T2 + w(€) T2 + (&) Ta} sinf ¢ = 0.

By similar computations ford Vi, V, and JV,, we obtain
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Proposition 4. Let x: M2 - S x S? be a Lagrangian isometric immersion such
that x is not+-holomorphic with respect t@J, —J). Let 4, JVi, Vo, JV, be R3-valued
vector fields on M defined by2.17)and (2.19). Then(i) (De, De, — De, De; — Dye;,e,]) V1 =
0 and (Dg, De, — Dg, D¢, — Dje,,e,))(J V1) = 0 are equivalent to

2
+{e1Ts — & T, + w(e) T2 + w(e) Ta) sirf ¢ = 0,

3.9) <} - K) sin2p +{er Ty — eTo+w(e)To + w(e) T1) cos ¢

equivalent to

(_% + K) sin2p +{er Ty — eTo+w(e)To + w(e) i) sir ¢

+{eTs — T +we)Ts + w(e)Ts) cog ¢ = 0.

(3.10)

4. The Maurer-Cartan equation for Lagrangian immersions

Let G be a Lie group andy be Lie algebra ofG. we denote a basis fag by
e, ..., e, and the dual basis fog, . . ., e, by v, ..., Yn. Theng-valued 1-formQ
on G is defined a2 =) ., &6 ® ¥i. If we putd(e ® ¥i) =6 ®dy; and | ® ¥i A
g @ vil=[e, ] ® ¥ Ay, then we have

d2(e. @)= ) & @ dyi(a, a)
= XI: e ® {a(¥i(a)) —ai(a)) — vi(le. a])}
=—IZa ® i ([ex &)
=—[eL, al,

Qt(a, @) = <Z[a. & ® v AW])(Q(: a)
= ZEG, g l(vi(e)vi(@) — vi(a)vj(e)
=[;i,a]—[a,@]
= 2[e, al.

Hence Q satisfies

de = —%[Q A Q.
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This equation is called th#aurer-Cartan equatiorand theg valued 1-formQ on G
which satisfies the equation is called thaurer-Cartan form The following theorem,
due to Cartan (cf. [4]), is the key result of this paper.

Theorem 1. Let G be a Lie group with Lie algebrg and Maurer-Cartan form
Q. (i) Let M be a manifold on which there existsgavalued 1-form & satisfying

(4.1) dd)z—%[cp/\cb].

Then for any point g M there exists a neighborhood U of p and a mapU — G
such that #Q = ®. (i) Given maps { f,: M — G, then Q= {7 if and only if
fi = La o f, for some fixed & G, where L is the left translation on G

When G is the special orthogonal groupQn), the Lie algebrag for SQn) is
o(n) which is the set of all skew-symmetric matrices of degnedt is known that the
Maurer-Cartan form2 on SQ(n) is given by Q = g~1dg with the conditionQ +'Q =0
for g € SQn) (cf. [4]).

Now, we want to find the conditions for existence and congeeeior Lagrangian
isometric immersion#1? — S? x S? by using Theorem 1. It is known th& is a homo-
geneous space @Q3) and we may identifyS?> with the quotient spac&Q3)/SQ2).
Thus $* x S is identified with the homogeneous spa®@&(3) x SQ3)/SA2) x SQ2).

Let {e;, &} be an oriented orthonormal frame field M? satisfying (2.16), and let
{1, ¥} be the dual 1-forms fofe;, &}. Then €1(p), £2(p)) is a SQ(3) x SO3)-valued
frame field overM?, given by (3.1). So we consider the Maurer-Cartan equation fo
this frame field.

For & = (X1, V1, JV1) and & = (Xo, Vo, J\W), it follows from (3.2) and (3.3) that

D& =61®1, D& =69,

where ®; and ®, are o(3)-valued 1-forms onVi?, given by

0 —COoSpYp —singym
(4.2) ®; = | cospyn 0 —ay — By |,
sinpya  ayn + By 0
0 —COoSpy,  —Singy
(4.3) ®;, = | cospyr, 0 —yY1— Y2
singy1 yy1+8v2 0

Now SQ(3) x SQ(3)-congruence Theorem for Lagrangian isometric immersié —
& x S is obtained as:
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Theorem 2. Let M? be a connected and orient@ddimensional Riemannian mani-
fold and let ¥, x?: M? - S x S be Lagrangian isometric immersions with which
the angle functiong?, ¢? take the values if—m /4, 7/4). We denotes’ (i = 1, 2) the
second fundamental forms of,xespectivelyand T(X, Y, Z) = (¢ (X, Y), JZ), the
corresponding symmetric tensor fields or?.MThen there is an isometry g SQ(3) x
SQ3) such that ¥ = go x! if and only if ¢* = ¢?, and T = T2 hold.

Proof. If ot =¢? T1=T2, theno(3) valued 1-formsb;, ®, on M? given by (4.2),
(4.3) are the same values respectively. Thus the resutivislfrom Theorem 1 (ii). ]

REMARK 1. The full holomorphic isometry group of? x S* with respect to
the standard product metric and the complex structdrelf is generated (cf. [1]) by
SQ3) x SO3) and

T: x> P xS, (X, X2) = (X2, Xa).

Then the congruence theorem for the full holomorphic isoyngtoup of §* x S is not
true as Theorem 2. LeZ(k;) (i =1,2) be oriented circles i with constant curvature
ki and supposer; < kp. If we put My = C(k1) x C(k2) and My = C(k2) x C(k1),
then bothM; and M, are Lagrangian surfaces & x S? by product immersions. We
can see thaM; and M, are not congruent undeSQ(3) x SQ(3) but congruent under
full holomorphic isometry groupf S* x . The angle functiong of M; are both
identically equal to 0, but the quantitids, T; defined by (2.25) are different, because
of (2.20). As we saw in Proposition 2, the product immersiénCgx1) x C(kz) into

S x S is minimal if and only ifk; =k, = 0.

We prove the equivalence of the Ricci identity for the franeddfi(3.1) and the
Maurer-Cartan equation far(3)-valued 1-forms (4.2) and (4.3).

Proposition 5. Let M? be an oriented Riemannian manifold of dimensR&rlet
{e1, &} be an orthonormal frame field on Mcompatible with the orientation of &)
and let {1, ¥»} be the duall-forms for {e;, ). Supposep : M2 — (- /4, 7/4) and
To, T1, To, T3 : M? — R are functions on M such that the equation.26) and (2.27)
hold. Let @1, ®, be o(3)-valued1-forms on M defined by(4.2) and (4.3), respectively
Then the Maurer-Cartan equatior(g¢.1) for @4, ®,

1
doj = ——[Dj A D]
2
are equivalent to the Ricci identjty3.9) and (3.10).

Proof. D& =g ®; implies

De De,&i = De, (& @i (€2)) = & (i (€1)Di(e2) + 1D1(€2)),
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De,De,§i = &i(Pi(€2)Pi(e1) + &2P1(e1)), Dieyeéi = & Pi([er, €2]).
Hence we obtain
(De;De, — De, Dey — Diey e1)éi = &i(dP1(er, &) +[Pi(er), Pi(e2)])
:a(d©r+;®iA®ﬂ)@h®)

This equation means that the Ricci identity ((3.9) and (B.1€ equivalent tod®; +
(1/2)[®; A @] =0. [

According to Theorem 1 (i), we get the existence theorem fagrhngian iso-
metric immersionM? — & x S

Theorem 3. Let (M2, g) be a simply connected oriented Riemannian manifold of
dimension2. Suppose that there exists an orthonormal frame fielde,} on M? com-
patible with the orientation of ¥ functions T: M2 - R (i =0, 1, 2,3)and ¢: M? —
(—=m/4, w/4) such that they satisfy

grady = Tie; + Toey,
(4.4) 2w(e;) cos 2p = (To — T,) sin 2p,
2w(ep) cos p = (T; — T3) sin 2p

for the connection formw on M? with respect to{e;, &}. If the Gauss equation

_ sir? 2¢

(4.5) K +ToTz + TaTs — (To)? — (T2)?

and two equations of Codazzi

(4.6) exTs — &To+ w(e)(To — 2T2) + ofe)Tr = ~ o .
@7 1Ty — T2 + 3ue)T, + w(en)(Ts — 2Ty = o0

hold, then there is the Lagrangian isometric immersionM? — S? x S* and the func-
tion ¢ is the angle function for x The second fundamental foren of x is then given
by (2.25).

Proof. If the Gauss equation (4.5) and the Codazzi equat{ér®, (4.7) hold,
then the left hands of the Ricci identities (3.9) and (3.1@) aritten as the same form

{To(T2 — To) + To(T1 — T3)} sin 2p + 2{w(e) T — w(&x)T1} cOS 2p.
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Hence (4.4) implies that this term is equal to zero. By Prijmzs5, Theorem 1 (i)
and Theorem 2, we can construct frame figle> (£1(p), £2(p)) of (3.1) onM?2. Con-
sequently the Lagrangian isometric immersion

x: M? > xS, pr (xa(p), X2(P)
is constructed by the above frame field and the projection

(61(p), &2(P)) = (xa(P), X2(P))- O

5. Minimal Lagrangian surfaces in & x &

In this section, we study minimal Lagrangian immersionsM? — S x S* with
which the angle function satisfigse (—x /4,7 /4). The Lagrangian immersionis min-
imal if and only if the second fundamental formof x satisfies) _;_; (o (e, &), Jeg)=0
for j =1, 2, or equivalently

To+T,=0 and T,+T3=0,

whereT; (j =0, 1, 2, 3) are the components of second fundamental form wfith
respect to the orthonormal frame field;, e} of (2.16). By (2.26), T, and T, are
determined byy and, in the case of minimal Lagrangian immersions, Theoreiga 2
described as:

Theorem 4. Let M? be an oriented2-dimensional Riemannian surface and
x1, x2: M2 — & x $? be minimal Lagrangian immersiond.et ¢': M? — (—m/4,7/4)
be the angle function of'x(i = 1, 2). Then there is an isometry g SQ3) x SQ(3)
such that ¥ = go x* if and only if ¢ = ¢2.

Using (2.26) andp € (—n/4, 7/4), we see that (2.27) is equivalent to

(5.1) {w(el) = —(ex9) tan 2,

w(&p) = (e1p) tan 2p,

wherew is the connection form with respect fe;, &}. Then by (2.26) and (5.1), the
Gauss equation (4.5) is

(5.2) K = — 2|lgrade]|?.

Sir? 2¢
2

According to (5.1), we get that the Codazzi equations (2a88@Q) (2.31) are written as
the single equation
sin 4y

(5.3) e1(e1p) + ex(e2¢) — 3w(er)(exp) + 3w(er)(ery) = — I




FUNDAMENTAL THEOREM OF LAGRANGIAN SURFACES 845

Then using the definition of Gauss curvature (3.8) and (5v§, can see that (5.2)
and (5.3) are equivalent. By the definition of the Laplacian

Ap = er(e1p) + &2(e20) — w(e1)ep + w(e)ery,

and (5.1), (5.3) is written as

sin 4y

(5.4) Ag + 2||grade||®tan 2p = — 2

To show the existence of Lagrangian isometric minimal insimr M? — S x S,
we want to find desirable orthonormal frame fidlel, e,} on M2 in Theorem 3. Let
{e1, &)} be a given oriented orthonormal frame field & with connection formew.
Let p be a function onM? and put

{@(p) = COSpey +sinpey,
&(p) = —sin p€; + cospe,.

Then the connection formv, with respect to{e;, &} is written as
w, = (Vei(p), &(p)) = dp + .
Hence{ei(p), &(p)} andw, satisfy (5.1) if and only if

{dp(§1) = —w(&) — (&¢) tan 2,
dp(&) = —w(&) + (er9) tan 2

hold with given (angle) functiop. Consequently integrability condition of these equa-
tions are

0= (Vdp)(ew, &) — (Vdp)(e2, &)
= &(dp(e1)) — e(dp(ez)) — dp(Ve,e1) + dp(Ve &)

a )2

- ~5(66) - &@E) Y - 2
— _ 2(€19)?

+ 5@ — BE) a2 — 2

+ 0(8)? — w(&)(e1p) tan 2 + w(&1)” + w(€1) (&) tan A
2||grade||?

=—K —Aptan2p — c0% 2
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If the Gauss equation (5.2) and the Codazzi equation (5.4), htben this term van-
ishes, and the existence of orthonormal frame figd e;} on M? satisfying (5.1) are
guaranteed. If we put functiorif, and T, on M? as gradp = Tie; + T, then the as-
sumptions of Theorem 3 are satisfied in this case. Hence fsteexe of Lagrangian
isometric minimal immersions, we obtain the following:

Theorem 5. Let M? be a simply connected oriented Riemannian manifold of di-
mension2 and let K be the Gauss curvature of M Suppose there exists a function
¢: M2 — (=m/4, /4) such that

sir? 2¢

K =
2

— 2|lgrade||?,

sin 4p
YR

Ag + 2||grady||® tan 2p = —

Then there exists a Lagrangian isometric minimal immersiorM? — S x S? such
that ¢ is the angle function of x

Next, we rewrite Theorem 5 in the case whbi? is a domainU in R? with an
isothermal coordinate. Lek(y) be an orthogonal coordinate systemlbfand suppose
U has a metric

(5.5) ds® = g(x, Y)*(dx’ + dy?)

for some functiong = g(x,y) >0, X,y) e U and letgp: U — (—n/4,7/4) be a
function. We use the notation that = 99/9x, gy = dg/dy and alsogy = d¢/0X,
@y = dp/dy. If we put e = (1/9)(9/9%), & = (1/9)(d/dy), then {e}, &} is an or-
thonormal frame field oJ. The connection formw with respect to the basige;, e}
are written as

9y
?:
w(€) = (Vee1, &) = —(&, [e1, &]) = %-

w(ey) = (Vg 1, &) = —(ey, [e1, &]) = —

So the Gauss curvatuld€ on U is

K = ex(w(e) — ew(w(er) — w(er)” — w(e)?
=9t Oyy (9x)* + (9y)*
g g*
_ Aglogg
==
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where Ag = 82/9x? + 82/9y?. From

(‘/7x)2 + ((/’y)2

lgrade |1® = (e19)? + (e20)? = 7
the Gauss equation (5.2) is
(5.6) 20109 g = 2(()” + (py)") - w
and from

Ap = er(e19) + e2(€20) — w(e1)exp + w(e)erp
- Oxx T Qyy

we get for the Codazzi equation (5.4)

g2 sin 4

(5.7 Lop = =2((@x)? + () tan 2p — 2

Since any 2-dimensional Riemannian manifold is conforynfiit, the metric is
locally isometric to (5.5). Thus the Gauss equation (5.2) te Codazzi equation (5.4)
for any minimal Lagrangian surface & x S are locally written as (5.6) and (5.7).
Hence Theorem 5 is written as follows:

Theorem 6. Let U be a simply connected domain®3. Suppose gU — (0,00)
and ¢: U — (—n/4, 7/4) are solutions of two equations

g2 sir? 2¢
2 1
g° sin 4p
4

Aolog g = 2((ex)* + (py)?) —

Aop = —2((px)? + (py)?) tan 2p —
(Ao = 8%/0x% +8%/0Y?).

Then there exists a minimal Lagrangian immersionlk — S* x S$? such that the in-
duced metric to x on U satisfigs.5) and ¢ is the angle function of the immersion x

Finally, we consider Theorem 6 in the case whgemand the angle functiow are
rotationally symmetric orlJ.
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0.975¢

0.925;

0.875

Fig. 1. solution curve inr(, g)-plane

Theorem 7. Let I3, I, C [0, 00) be intervals with { N I, #@. Suppose gl; —
(0,00) and ¢: | — (—m/4, w/4) are solutions of the system of ordinary differential
equations

L @R gL ., GsiP2
g =9 —g—+29(<p)2—g%,

(5.8) g L,
w”=—2(¢’)2tan20—%—W-

Then there exists a minimal Lagrangian immersion x from gobinconnected domain
U in R? to & x & such thaty is the angle function of x for the solutiq(r), ¢(r))
of (5.8).

Proof. It is well known that

ad ad 1. 9
— =C0S¢ — — —sinf—,
X or r a0
ad o0 1 ad
— =sinf— + — cosb —,
ay ar r a0
92 139 10

Ao:

-+ — 4+ —
arz ror r290’

where §, y) and ¢, 8) denote the orthogonal coordinates and the polar cooetinaft
R?, respectively. Then the two equations in Theorem 6 are ewitis (5.8). ]

Figs. 1, 2, 3 are numerical solution curves of (5.8) withigitonditionsg(1) =1,
¢(1)=7/8 andg’(1) =¢'(1) = 0 with 0.01<r < 11.3.
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Fig. 2. solution curve inr(, ¢)-plane

0.85 0.875 0.9 0.925 0.95 0.975

Fig. 3. solution curve ind, ¢)-plane



850

(1]
(2]

(3]
(4]
(5]

(6]
[7]

M. KIMURA AND K. Suizu

References

I. Castro and F. UrbanoMinimal Lagrangian surfaces ir$? x S, preprint.

B.-Y. Chen: Intrinsic and extrinsic structures of Lagrangian surfadgascomplex space forms
Tsukuba J. Math22 (1998), 657—680.

B.-Y. Chen and T. NaganoTotally geodesic submanifolds of symmetric spd¢ceBuke Math.

J. 44 (1977), 745-755.

P. Griffiths: On Cartan’s method of Lie groups and moving frames as appbedniqueness
and existence questions in differential geome®wke Math. J41 (1974), 775-814.

H. Iriyeh, H. Ono and T. Sakailntegral geometry and Hamiltonian volume minimizing pnaype
of a totally geodesic Lagrangian torus i x S?, Proc. Japan Acad. Ser. A Math. S@9

(2003), 167-170.

G.D. Ludden and M. OkumuraSome integral formulas and their applications to hyperaces
of &' x §, J. Differential Geometr (1974), 617-631.

A. Cannas da Silva: Lectures on Symplectic Geometry,tlecNotes in Math1764 Springer,

Berlin, 2001.

Makoto Kimura

Department of Mathematics

Interdisciplinary Faculty of Science and Engineering
Shimane University

Matsue, Shimane, 690—-8504

Japan

e-mail: mkimura@riko.shimane-u.ac.jp

Kaoru Suizu

Department of Mathematics

Seikyo Gakuen High School
Kawachi-nagano, Osaka, 586—8585
Japan

e-mail: suizu@seikyo.ed.jp



