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Abstract
Let L be a very ample line bundle on a smooth cu@ef genusg with (3g +
3)/2 < degL <2g — 5. ThenL is normally generated iflegL > max?2g + 2 —
4h*(C, L), 2g — (g — 1)/6 — 2h*(C, L)}. Let C be a triple covering of genup curve
C’ with C 2 ¢’ and D a divisor onC’ with 4p < degD < (g — 1)/6 — 2p. Then
Kc(—¢*D) becomes a very ample line bundle which is normally generafes an
application, we characterize some smooth projective sesta

1. Introduction

We work over the algebraically closed field of characterigtéro. Specially the
base field is the complex numbers in considering the claatigit of surfaces. A
smooth irreducible algebraic variely in P' is said to be projectively normal if the
natural morphismsHo(P', Op:(M)) — HO(V, Oy(m)) are surjective for every non-
negative integem. Let C be a smooth irreducible algebraic curve of gemusWe
say that a base point free line bundle on C is normally generated ifC has a
projectively normal embedding via its associated morphism C — P(H(C, L)).

Any line bundle of degree at leasg21 on a smooth curve of gengsis normally
generated but a line bundle of degree at mggtndight fail to be normally generated
(I8], [9], [10]). Green and Lazarsfeld showed a sufficienhdition for L to be nor-
mally generated as follows ([5], Theorem 1): lif is a very ample line bundle o@
with degL > 2g+ 1 — 2h*(C, L) — CIiff(C) (and henceh(C, L) < 1), thenL is nor-
mally generated. Using this, we show that a line bundl®en C with (3g + 3)/2 <
degL < 2g — 5 is normally generated for ddg > max2g + 2 — 4h%(C, L), 2g —
(g — 1)/6 — 2h*}(C, L)}. As a corollary, ifC is a triple covering of a genup curve
C’ with C % C’ then it has a very ampl&c(—¢*D) which is normally generated
for any divisor D on C’ with 4p < degD < (g — 1)/6 — 2p. It is a kind of gener-
alization of the result thakKc(—rg3) on a trigonal curveC is normally generated for
3r <g/2—-1 ([7].
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As an application to nondegenerate smooth surfaceP" of degree 2 — e with
g(H)=A+ f, maxe/2,6e— A} < f —1 < (A —2e —6)/3 for somee, f € Zs;,
we obtain thatS is projectively normal withpg = f and —2f —e+2 < Kg < (2f +
e —2)%/(2A — €) if its general hyperplane sectioH is linearly normal, whereA :=
degS—r + 1. We derive this application using the methods in Akakopéaper ([2]).

We follow most notations in [1], [4], [6]. Le€ be a smooth irreducible projective
curve of genugy > 2. The Clifford index ofC is taken to be CIiffC) = min{CIiff( L) |
hO(C, L) > 2, h}(C, L) > 2}, where Cliff(L) = degL — 2(h°(C, L) —1) for a line bundle
L on C. By abuse of notation, we sometimes use a diviBoon a smooth variety}/
instead ofOy (D). We also denoteH' (V, Oy(D)) by H'(V, D) andh®(V, L) — 1 by
r(L) for a line bundleL on V. We denoteKy the canonical line bundle on a smooth
variety V.

2. Main results

Any line bundle of degree at leasg2 1 on a smooth curve of genugis nor-
mally generated. If the degree is at mogf, 2hen there are curves which have a non
normally generated line bundle of given degree ([8], [9I0]}1 In this section, we in-
vestigate the normal generation of a line bundle with givegrde on a smooth curve
under some condition about the speciality of the line bundle

Theorem 2.1. Let L be a very ample line bundle on a smooth curve C of genus
g with (3g+3)/2 < degL < 2g—5. Then L is normally generated dflegL > max{2g+
2—4h(C, L), 2g — (g — 1)/6 — 2h*(C, L)}.

Proof. We haven'(C, L) > 2, since 3 —5 > deglL > 2g+ 2 — 4h'(C, L). Sup-
poselL is not normally generated. Then there exists a line bufdle L(—R), R >
0, such that (i) CIiffa) < CIiff(L), (i) degA > (g — 1)/2, (iii) h%C, A) > 2 and
h(C, A) > h}(C, L) + 2 by the proof of Theorem 3 in [5]. Assume d&glL~! = 3.
Then [KcL™1 = gi. On the other handL = Kc(—g}) is normally generated. So
we may assume dedgcL~! > 4 and thenr(KcL™%) > 2 since ded. > 2g + 2 —
4h(C, L). Let B; (resp. B,) be the base locus odKcL™t (resp. KcA™Y). And let
N; = KcL=3(=By), Ny := KcA"Y(=B,). ThenN; < N, since A¥ L(—-R), R> 0
and h}(C, A) > h'(C, L) + 2. Hence we have the following diagram,

o
C——(C

7T: projection
N,

Cy

whereC; = ¢y, (C).
If we setm; :=deg¢yn, | =1, 2, then we havenyim;. If Nj is birationally very
ample, then by Lemma 9 in [8] and dgL ! < (g—1)/2 we haver (N;) < [(degN; —
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1)/5]. It is a contradiction to deg > 2g + 2 — 4h'(C, L) that is equivalent to
degKcL 1 < 4(h°(C, KcL—1) —1). ThereforeN; is not birationally very ample, and
then we havam, < 3 since deKcL ™t < 4(h%(C, KcL™1) —1).

Let H; be a hyperplane section @f;. If |H;| on a smooth model of; is special,
thenr(N;) < (degN;)/4, which is absurd. ThugH;| is nonspecial. Ifm; =2, then

r(KcL™*(=B1+ P +Q)) = r(KcL™(=By))+1

for any pairs P, Q) such thatpy, (P) = ¢n,(Q) since|H;| is nonspecial. Therefore we
haver (L(—P—Q)) > r(L)—1 for (P, Q) such thatpy, (P) = ¢n,(Q), which contradicts
that L is very ample. Therefore we get; = 3. SupposeB; is nonzero. SeP < B;
for some P € C. ConsiderQ, R in C such thatgn, (P) = ¢n,(Q) = ¢n,(R) = P’ for
some P’ € C;. Since|H,| is nonspecial, we have

r(KeL™(Q+R) = r(Ny(P+Q+R)) =r(Hy + P)
=r(H)+1=r(KcL H+1

which is a contradiction to the very ampleness lof Hence KcL~! is base point
free, i.e., KcL™' = N;. On the other hand, we hawe, = 1 or 3 for my|m;. Since
KcAfl(— Bz) =N, > N; = K¢ Lil, we may setN; = Nz(—G) for someG > 0.

Assumem, = 1, i.e. KcA}(—=By) = N, is birationally very ample. On the other
hand we have (N;) > r(N;)+(degG)/2, sinceNz(—G) = N; and CIiff(Ny) < CIiff( A) <
Cliff(L) = CIiff(N;). In case dedN, > g we haver(N,) < (2degN, — g + 1)/3 by
Castelnuovo’s genus bound and hence

4degN; —2g+2 29 —2—degN; - g-—1

liff( L liff( N N, —
Cliff(L) > CIiff( Np) > degN, 3 3 z ¢

since N, = KcA™1(—B,) and degA > (g — 1)/2. If we observe that the condition
deglL > 2g — (g — 1)/6 — 2h!(C, L) is equivalent to CliffKcL1) < (g — 1)/6, then
we meet an absurdity. Thus we have dég< g — 1, and then Castelnuovo’s genus
bound produces dely, > 3r(N;) — 2. Note that the Castelnuovo numbe(d, r) has
the propertyn(d,r) < z(d —2,r — 1) ford > 3r — 2 andr > 3, wheren(d, r) =
MmMm—-2)/2)F —1)+me, d—1=m(r —1)+¢, 0<e <r —2 (Lemma 6, [8]). Hence

m(degNy, r(Np)) <--- < n(degNz — degG, r(Nz) — de%) < m(degNg, r(Ny)),

because of X r(N;) < r(N;) — (degG)/2. Sincer(N;) > (degN;)/4 and deg\; <
(g —1)/2, we can induce a strict inequality(degNj, r(N;)) < g as only the number
regardless of birational embedding from the proof of Lemman 98]. It is absurd.
Hencem, = 3, which yieldsC; = C,.
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Let H, be a hyperplane section €. If |H,| on a smooth model of, is special,
thenr (N2) < (degN,)/6. Thus the condition de§cL~* < 4(h°(C, KcL™%) — 1) yields
the following inequalities:

2 degN degN
92 < Gliff( Ny) < CIiff( Ny) < eg L

which contradicts toN; < Np. Accordingly |H;| is also nonspecial.
Now we haver (N;) = (degN;)/3— p, i =1, 2 wherep is the genus of a smooth
model of C; = C,. Therefore

degN;
3

+2p = CIiff( Ny) > CIiff(Np) =

degN,
+2
3 p
which is a contradiction that deg; < degN,. This contradiction comes from the as-
sumption thatL is not normally generated, thus the result follows. ]

Using the above theorem, we obtain the following corollander the same as-
sumption:

Corollary 2.2. Let C be a triple covering of a genus p curvé @ith C 4
and D a divisor on Cwith 4p < degD < (g— 1)/6 — 2p. Then Ks(—¢*D) becomes
a very ample line bundle which is normally generated

Proof. Setd := degD and L := Kc(—¢*D). SupposelL is not base point free,
then there is aP e C such that|KcL~(P)| = gii!,. Note thatghit; cannot be com-
posed with¢ by degree reason. Therefore we have 6d+3p due to the Castelnuovo-
Severi inequality. Hence it cannot occur by the conditbr: (g — 1)/6 — 2p. Sup-
poselL is not very ample, then there aR Q e C such that|KcL (P + Q)| = g§i1,.
By the same method as above, we get a similar contradictidmus T is very am-
ple. The conditiond < (g — 1)/6 — 2p produces CliffKcL™Y) =d +2p < (g — 1)/6
since degKcL~1 =3d and h%(C, KcL™1) =h%C’, D)=d — p+ 1. Whence ded, >
29 — (g — 1)/6 — 2h*(C, L) is satisfied. The conditionpl< d induces ded<cL™* >
4(h°(C, KcL™1) — 1), i.e., ded. > 2g+ 2 — 4h}(C, L). Consequenthyl is normally
generated by Theorem 2.1. O

REMARK 2.3. In fact, we have a similar result in [8] for trigonal carv
C: KC(—rg?}) is normally generated ifr3< g/2 — 1 ([7]). Thus our result could be
considered as a generalization which deals with triple Goge under the some con-
dition.

Let SC P' be a nondegenerate smooth surface &ha smooth hyperplane sec-
tion of S. If H is projectively normal anch*(H, Oy (2)) = 0, theng = h(S, Og) =
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0, pg =h?(S, Os) = hi(H, Ox(1)) and h(S, Os(t)) = 0 for all nonnegative integer
([2], Lemma 2.1, Lemma 3.1). Using Theorem 2.1, we can charae smooth pro-
jective surfaces with the wider range of degrees and seditipenera. Recall the defi-
nition of A-genus given byA :=degS—r + 1.

Theorem 2.4. Let SC P' be a nondegenerate smooth surface of de@ae- e
with g(H) = A+ f, maX{e/2,6e— A} < f —1 < (A —2e—6)/3 for some ef € Z-,
and its general hyperplane section H is linearly norm@hen S is projectively normal
with pg = f and —2f —e+2 < K3 < (2f +e—2)?/(2A —e).

Proof. From the linear normality of, we geth®(H, Oy (1)) =r and hence

h'(H, O (1)) = — degOn (1) — 1 +g(H) + h(H, Oy (1))
=—2A+e—1+g(H)+h°(H, O4(1))
=g(H)— A= f.

Therefore we havéil(H, Oy (1)) > deg(Kn ® On(—1))/4) +1 sincef > e/2+1 and
degOp(1) =2A —e=2g(H) —2— (2f +e —2). ThusOy(1) satisfies dedy (1) >
2g(H) + 2 — 4h'(H, Ox(1)). The conditionf — 1 > 6e — A implies degOy (1) >
29 — (g — 1)/6 — 2h*(H, O (1)). Also the conditionf — 1 < (A — 2e — 6)/3 yields
degOn (1) > (3g + 3)/2. HenceOyx(1) is normally generated by Theorem 2.1, and
thus its general hyperplane sectibhis projectively normal since it is linearly normal.
ThereforeS is projectively normal withg = 0, pg = h%(S, Ks) =h*(H, Oy(1))=f > 1
sinceh(H, Oy (2)) = 0 from degDy (1) > (3g + 3)/2.

If we consider the adjunction formula thes.H = 2f +e— 2 and 0— Kg —
Ks+H — Ky — 0. Thus we have 8> H(S,Kg) = H(S Kg+H) — HO(H,Ky) —
0, sinceHY(S, Ks) =q = 0. Assume|Ks + H| has a fixed componerB. Setp e
B N H, then p becomes a base point ¢K | since HO(S, Ks+ H) — HO(H, Ky) is
surjective, which cannot occur. Therefokg+H is free from fixed components. Thus
for any irreducible curveC in S, we can choose effectiv® € |H + Kg| such thatD
does not contairC and thenD.C > 0, which impliesH + Ks is nef. Hence we get
Ks.(H + Ks) > 0 and then

KZ> —Ks.H=-2f —e+2.

Thus —2f —e+2 < K2 < (2f +e—2)?/(2A —€) by the Hodge index theoremi2H? <
(Ks.H)2. Hence the theorem is proved. ]
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