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Abstract

Special Lagrangian cones in complex Euclidean spaces asnetl as cones
over compact minimal Legendrian submanifolds in the odd ediisonal standard
hypersphere. The notion of the stability, the Legendriaabifity and the rigidity
of special Lagrangian cones were recently introduced awestigated by D. Joyce,
M. Haskins etc. In this paper we determine explicitly the Hitgkndex, the
Legendrian-index, and the rigidity of special Lagrangiaones over compact
irreducible symmeric spaces of typ® obtained as minimal Legendrian orbits and
over a minimal LegendriarBU2)-orbit. We obtain the examples of stable and
rigid special Lagrangian cones in higher dimensions. Mageowe discuss a
relationship of these properties with the Hamiltonian gitgbof minimal Lagrangian
submanifolds in complex projective spaces.

Introduction

A special Lagrangian submanifold in a Ricci-flat Kéhler niald, a so-called
Calabi-Yau manifold, has two aspects of Lagrangian submanifoldin symplectic
geometry and ecalibrated submanifoldn Riemannian geometry. A calibrated sub-
manifold is a minimal submanifold in the sense that the meamwature vector field
vanishes, and more strongly it is a real homologically va@uminimizing submanifold.

Recently D. Joyce provided the profound theory on speciajréagian sub-
manifolds with isolated conical singularities in (almo§labi-Yau manifolds and thier
deformations, moduli spaces in a series of his papers. Hik wmphasizes so much
the importance of investigation of special Lagrangian soie complex Euclidean
spaces.

The notion of the stability-index, the stability and theidity of special Lagrangian
cones were introduced by D. Joyce. They are closely relatetheé deformation of
special Lagrangian submanifolds with isolated conicabsgiarities and the regularity
of special Lagrangian integral currents. gpecial Lagrangian conés obtained as a
cone over a compachinimal Legendrian submanifolih the odd dimensional standard
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sphere. By the Hopf fibration a minimal Legendrian submadiftan be locally pro-
jected to aminimal Lagrangian submanifolth the complex projective space.

The most fundamental and typical examples are special hggra cone<[], over
minimal Legendrian orbits of the maximal tord&™ ! of the special unitary group
SUm) given by Harvey and Lawson ([8]). M. Haskins showed that &lstapecial
Lagrangian cone irC3 over a compact minimal Legendrian surface of genus Bin
is only CE,,_ ([7]). The further research on stable special Lagrangiamesan higher
dimensions and the stability-index of higher dimensionainbgeneous examples are
suggested in the paper [7, p.62].

Now we assume thak is one of compact irreducible symmetric spaces standardly
embedded in the odd dimensional standard spB&Fe’(1) as minimal Legendrian sub-
manifolds in the standard way (see Section 2):

¥ =SUp), SUp)/SAp), SU2p)/SHp) (p=3), or Ee/Fa.

Note that the rank of these symmetric spaces is equal-tol and the rank ofEg/F4
is equal to 2. LetCX be the special Lagrangian cone @i" over . Then we shall
show the following.

Theorem. (1) CX are all rigid.
(2) If ¥ =SU3),SU3)/SA3),SU6)/SH3) (p = 3), Es/F4, then CX is stable,and
hence Legendrian stable
(3) If = =SUp), SUp)/SAp), SU2p)/SAp), p = 4, CX is not stable in fact not
Legendrian stable

The properties of these minimal Legendrian submanifolds vel discussed in de-
tail and their stability-indices will be determined exjitliz In the last section of this
paper we shall discuss such properties of a special Lagrangdne over a minimal
LegendrianSU(2)-orbit in C*.

The results in this paper were partially announced in [174. November 2004,
Mark Haskins has visited Kyushu University and Tokyo Metragaol University. The
author could have nice discussion with him about this sulijezre. The author would
like to thank Mark Haskins for his valuable suggestion of abfgm on the existence
of stable special Lagrangian cones in higher dimensions.

1. Special Lagrangian cones and their stability-indices

In this section we shall describe some fundamental defirstand properties which
are necessary in the later sections (cf. [6], [7], [10], [141R]).

1.1. Special Lagrangian submanifolds of Calabi-Yau maniflls. In complex
Euclidean slpac&€™ = R?™, we recall the notion of special Lagrangian submanifolds.
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The natural group action ofSUm) c U(m) preserves the standard Kahler form
(symplectic form) defined as

m
a)::\/—lzdi AdZ

i=1
and the standard complex volume form defined by
Q:=dzZtA-.-AdZ
We decompose? into real and imaginary parts by
Q= Re@) + vV—11m(Q).

Then Ref2) and Img) are parallel reah-forms onC™.

The calibrated submanifolds by R& are characterized by the condition that the
restrictions ofw and Img) to the submanifold vanish. Thgpecial Lagrangian sub-
manifold in C™ is defined as such a submanifold Harvey and Lawson showedathat
minimal Lagrangian submanifold i€™ is a special Lagrangian submanifold.

In general, suppose thaM(, g) is a Riemannian manifold with holonomy group
contained inSU(m), and such a Riemannian manifold become€alabi-YauKahler
manifold of complex dimensiom. Then the parallel Kéhler forrm and the parallel
complex volume formQ are defined on the whol#, and Ref2) defines a calibra-
tion on M. The calibrated submanifolds with respect to Ref@re characterized by
the condition that the pull-backs @ and Img) to the submanifold vanish. Am-
dimensional submanifoldX in a Calabi-Yau manifold is called apecial Lagrangian
submanifoldif the pull-backs of bothw and ImE2) to X vanish.

For each constarst € R, we also can consider a calibration defined b)(ER/E?HQ)
and its corresponding calibrated submanifolds. We alsb stath a calibrated sub-
manifold aspecial Lagrangian submanifoldsvith respect to Rée*/jlgsz)) if the pull-
backs of bothw and |m(e¢?19sz) to X vanish. LetX be a Lagrangian submanifold
immersed in a Calabi-Yau manifolé1. Then we know thatX is a minimal sub-
manifold in M if and only if X is a special Lagrangrian submanifold with respect to
the calibration Réeﬁesz) for someé € R.

1.2. Special Lagrangian cones. Let $™1(1) denote the unit standard hyper-
sphere ofC™. Let ¥ be an (n— 1)-dimensional smooth submanifold immersed in
m-1(1) defined by an immersiop: ¥ — S?™1(1). Thecone C=CX over X in
C™ is defined by an immersion

®: X x[0,00) 3 (0,t) = tp(c) e C™.
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ThenC has an isolated singularity at the origin 0 a@d:=C\ {0} is anm-dimensional
smooth submanifold immersed @™ defined by the immersion

@' ¥ x (0,00) 3 (0,t) > tp(c) € C™.

Let 7: SY™1(1) - CP™ ! be the Hopf fibration, which is a Riemannian submersion
onto the (n—1)-dimensional complex projective spaGP™* of constant holomorphic
sectional curvature 4. The@X is a Lagrangian cone with an isolated singularity at
0 if and only if ¥ is a Legendrian submanifold i§*™ (1) with the standard con-
tact structure, and then the immersiom ¢: = — S?™1(1) defines a Lagrangian sub-
manifold immersed inCP™-1. Moreover since the mean curvature vectors of these
submanifolds correspond each other, we know the followungddmental fact (cf. [7]).

Proposition 1.1. The following three conditions on local properties of thasd-
manifolds are equivalent each other
(@) CX is a special Lagrangian cone ig™.
(b) T is a minimal Legendrian submanifold in51(1) with respect to its standard
contact structure
(c) =#(¥) is a minimal Lagrangian submanifold i@P™.

ExampLE 1.1. In Harvey-Lawson [8] the following example of a special
Lagrangian cone irlC™ was given as

ChL={(z1,....zm) e C" | (V=1)™2z1 - - ZmeR, |za] = - - = |znnl}.
Then
St =ECh NS c M)

is a minimal Legendrian orbit of the maximal torus $ffm), which is isometric to
an (m — 1)-dimensional flat torug M1,

Let A and Ay be the Laplacians of@’, g) and (£, gs) on functions, respectively.
A function u on C’ is called ahomogeneous function of order on C' if u satisfies
uot =t*u for eacht > 0. Then such a function can be expressedi@s) =r*v(o) for
some functionv on . The relationship between and Ay, is given by the formula

(1.2) AU(ro) =r* 2(Asv(o) — a(a + m— 2v(0)).
Hence we see that is harmonic if and only ifv is an eigenfunction ort with eigen-
value a(o + m — 2).

Assume thaim > 2. Set

Dy ={e € R |a(ex +m—2) is an eigenvalue oAy},
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which is a countable and discrete subseRofFor eache € Dy, we denote bymg(«)
the multiplicity for eigenvaluex(a + m — 2) of Ay, which is equal to the dimension
of vector space of all homogeneous harmonic functions oéredon C’. Then we
define a monotone increasing, upper semi-continuous famdfis: R — Z as

Ny@) == Y ms)

@Dy N(5,0)
if § <0 and
Nz (8) = Z ms ()
«eDxN[0,4]
if §>0.

DerINITION 1.1. The stability-index of a special Lagrangian coneC is
defined by

1.2) s-indC) := Nx(2) — b%(Z) — m? — 2m+ 1 + dimGg,

where b°(X) denotes the 0-th Betti number af, i.e. the number of connected com-
ponents ofX and Gy denotes a maximal compact subgroupSif(m) preserving the
special Lagrangian con€, or equivalently the minimal Legendrian submanifdid

Note thatms(0) =b%(X), mx(1) > 2m if X is not totally geodesicms(2) > m? —
1—-dimGg. SinceNg(2) > mg(0) +mg(1) +mgx(2), we have s-indgf) > 0 if X is not
totally geodesic. IfZ is totally geodesic, then s-in@j = —m.

A special Lagrangian con€ is calledstableif s-ind(C) = 0. A special Lagrangian
coneC is calledrigid if myg(2) =m? — 1 —dimGy. We see that a special Lagrangian
coneC is stable if and only if the following three conditions ardisied
(1) Nx(2) =mx(0) +mz (1) + mx(2),

(2) mx(1) =2m,
(3) mg(2) =m? — 1 —dimGs.
The Legendrian-indexof a special Lagrangian cor@ ([7]) is defined by

(1.3) HndC)= > my(w).

@eDzN(0,2)

A special Lagrangian con€ is Legendrian-stable([7]) if I-ind(C) = 2m. A spe-
cial Lagrangian conéC is Legendrian-stable if and only iNg(2) = mg(0) +mg(1) +
my(2) and myg (1) = 2m. By the definitionsC is stable if and only ifC is rigid and
Legendrian-stable.

Here we shall mention a relationship of the stability of spketagrangian cones
with the Hamiltonian stability of minimal Lagrangian submifalds in complex projec-
tive spaces (cf. [1]).
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Assume thaty: L — CP™ ! is a minimal Lagrangian immersion of am( 1)-
dimensional connected compact smooth manifbldnto a complex projective space.
Since the pull-backst-bundle ¢ 17 : v ~1S2™1(1) — L is flat, there is a connected
integral manifoldx of the horizintal distribution ony~tS?™-1(1), and hence it gives
a minimal Legendrian immersion: ¥ — S*™1(1) and a covering mag '7: ¥ —
L. We denote byp: 71(L) — S* the holonomy homomorphism of the fl&-bundle
Y~ 1S?M1(1) over L. Then the following holds.

Proposition 1.2. Suppose thaf is nontrivial. If the special Lagrangian cone
CX over ¥ in C™ is stable then a minimal Lagrangian submanifold L @P™ 1 is
Hamiltonian stable

Proof. We may assume thatis not totally geodesic. For eaghe C™, we define
a smooth functionf, on ¥ by

(f.)(%) = (p(x),v)  (x € Z).

Let p: 71(X) — S' be the holonomy homomorphism of the pull-bagkbundle from
the Hopf St-bundler: 9™ (1) — CP™ ! by the Lagrangian immersiotr. Here St
is considered as the center of the unitary grasipm). SetI" := p(71(X)), which is
a finite subgroup ofS'. Let I' be the deck transformation group of the covering map
V¥~ lm: ¥ — L. Suppose that there is a vectoe C™ such thatf,(xc) = f,(x) for each
ce I and eachx € X. Sinceg(xc) = ¢(x)p(c), we have(p(x)a,v) = (¢(x),v) for each
a e p(I") and eachx € . By the non-triviality of I, there isa € I" with a # 1. Since
(p(x),va~t—v) =0 for all x € X, by the fullness ofp we havevat=v. Asa#1,v
must be zero and thug§, = 0. Hence by the assumption on the stability we conclude
that ¥ has no nonzero eigenvalue smaller than ZT'hereforeX is Hamiltonian stable.

U

It can happen that becomes Hamiltonian stable evenGfE is not stable. Such
examples will be shown in the later sections.

1.3. Special Lagrangian submanifolds with isolated conidasingularities.
Here we mention the results of Joyce on the deformation of mpect special
Lagrangian submanifolK with isolated conical singularities or the local structufke
moduli spaces aroun, and the regularity of special Lagrangian varieties, whacé
described in terms of the stability-index and the rigidifyspecial Lagrangian cones.

Let M be the moduli space of compact special Lagrangian subnidsifeith iso-
lated conical singularities embedded M. McLean [14] showed that iX € M is
smooth (i.e. without singularities), then the moduli spaeeis a smooth manifold of
dimensionb!(X) around X.

Joyce [11] showed that KX is a special Lagrangian submanifold with isolated con-
ical singularitiesCy, ..., Ck, then the dimension of the obstruction spa@g of X is
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equal to the sum of stability-indices of special LagrangianesCy, . . ., Cy:

k
dim Ox = )~ s-ind(G;).

i=1

This means that s-in@() of a special Lagrangian con€ is the dimension of the
obstruction space to deforming a special Lagrangian suliolénX in a Calabi-Yau
manifold with a conical singularity with con€, and that ifC is stablethen the de-
formation theory ofX simplifies.

That a special Lagrangian cori is rigid means that if all infinitesimal deforma-
tions of C as a special Lagrangian cone comes from rotationS bl SUim). Next we
mention the Joyce’s regularity results of special Lagrangntegral currents, or special
Lagrangian varieties. Geometric measure theory impliescttimpactness of the space
of such objects. Suppose thi#t is a special Lagrangian integral current and has the
multiplicity 1 tangent cone ax € suppX. Joyce showed that if the tangent cone>of
at x is a rigid special Lagrangian cone, theénhhas an isolated conical singularity at

So it is actually interesting and important to investigatelieitly the stability and
rigidity of special Lagrangian cones.

Joyce and Marshall proved th@3 is stable andCl} is unstable ifm > 4, and
C{. is rigid if and only if m # 8,9, and they determined their stability-indices and
Legendrian-indices explicitly (cf. [11]). By the spectrahalysis on surfaces Haskins
showed that a stable special Lagrangian con€¥nover a minimal Legendrian torus
in S is only C3, ([7]).

ProBLEM. Construct and classify stable special Lagrangian conesomplex
Euclidean spaces.

2. Stability-index of special Lagrangian cones over certai compact irreducible
symmetric spaces

In this section we shall discuss a class of special Lagrangiges constructed by
the Lie theoretic method including the Harvey-Lawson co@gs. Let (U, G) be an
Hermitian symmetric pair of compact type with the canonidatompositiont = g +p.
Set dim{U/G) =2m. Let ( , ), denote the Ad{)-invariant inner product ofi defined
by (—1)-times Killing-Cartan form ofu. We decomposg into the direct sum of the
semisimple parfss and the center(g) as follows: g = gss® c(g). There is an element
Z € ¢(g) such that a& defines the invariant complex structure &f,(G). Relative to
the complex structure the subspgcean be identified with a complex Euclidean space
C™. We take the decomposition obJ( G) into irreducible Hermitian symmetric pairs
of compact type:

(2.1) U,G)=(U1,G1) @ - (Us, Gs).
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Set dimyU;/G;)=2m; fori =1,...,s. Letu =g +p; be the canonical decomposition
of (Uj, G;) for eachi =1,2,...,s. Assume that there is an elemepte p; satisfying
the condition (ad;)3 + 4(adn;) = 0. Choose positive numbers > 0,...,cs > 0 with
32, 1/c = 1/c. Puta =1/y/2Gm; for eachi = 1,...,s. SetLl; = Ad(Gi)(aini) C
S*™—1(c; /4) C pi, which is an irreducible symmetri®-space standard embedded in a
complex Euclidean spags.

Setn=am+---+ass € p. SetL = Ad(G)(n) c ™ *(c/4) C p, which is a
symmetric R-space standard embedded in a complex Euclidean sp&&€™. Note
that we have the inclusions

(2.2) L=0C1x--xLsc M Ycy/4) x - - - x ™ Y(cs/4) ¢ ™ Y(c/4).

Note that L is a compactH-minimal Lagrangian submanifold embedded G"
(see [3]).

We take an orthogonal decompositiogy) = ¢° ® {Z}r of ¢(g). Let g° := gss® ©
and G° denote the analytic subgroup @& generated by®. Set = = Ad(G%(n) =
GO/K® c ™ Y(c/4) c p, whereK® ={a e G° | Ad(a)(n) =n}. ThenX is a Legendrian
submanifold inS*™(c/4). MoreoverX is a minimal submanifold inS*™(c/4) if
and only if¢m; =cm for eachi =1,2,...,s. Thus we obtain

Proposition 2.1. CZX is a special Lagrangian cone i@™ if and only if the con-
dition ¢m; = cm is satisfied for each+ 1, 2,...,s.

In the case whenl, Gj) = (SU?2), S(U(1) x U(1))) for all i, the above special
Lagrangian con€ X coincides with the Harvey-Lawson’s special LagrangianedOfj, .

In the case whenl, G) is irreducible, i.e.s = 1, from the classification theory
of symmetric R-spaces,X is one of symmetric spaces of compact type in the follow-
ing list:

(a) S 1.

(b) SUp), m= p*

(¢) SUp)/SAp), m=(p—1)(p+2)/2+1.

(d) SU2p)/Sp). m=(p—1)(2p+1)+1.

(8) Eg/F4, m=27.

Here p > 3. Note that they are connected, simply connected and cdnipaducible
symmetric spaces whose restricted root systems are of #&ypand the rank of the
symmetric spaces is equal — 1 and the rank ofEg/F,4 is 2. They are the standard
embeddings by the first eigenfunctions of the Laplacian [(d3]).

Suppose thatz is a compact embedded minimal Legendrian submanifold of
S$m-1(1) given by the standard embedding of the above symmetdcespof compact
type. LetCX be a special Lagrangian cone ovErin C™. Then we shall show
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Theorem 2.1. (1) They all CX are rigid.
(2) If X =SU3),SU3)/SA3),SU6)/SA3) (p=3), Ee/F4, then CT is stable and thus
Legendrian stable
3) If X =SUp),SUp)/SAp),SU2p)/SAp), p > 4 then CX is not Legendrian stable
and thus not stable

REMARK. In case (a),x = S™! is a totally geodesic Legendrian submanifold
embedded inS*™1(1) and thusCX is a Lagrangian vector subspace ©fF.

In order to determine the stability-indices of special laagan cones over these
minimal Legendrian submanifolds = G°/K°, we shall examine explicitly the eigen-
values and their multiplicities of the Laplacian of compaotducible symmetric spaces
G%/KO by the theory of spherical functions on compact symmetracep (cf. [19]). In
the calculation we use the results described in [1].

First we prepare a useful algebraic lemma for our calcufatibet (my, ..., mp)
be a p-tuple of real numbers satisfying the conditions

P
(2.3) Zmi =0 and O<m —m4 e€Z foreach i=1,2,...,p—1.
i-1

Then note thaim; € (1/p)Z for eachi =1,2,...,p— 1. In fact, if we setZ > k; :=
m;, — mij+1 > 0, then we have

p—-1

1 .
mp:——ijkj,

j=1

p-1
nu:h+~~+M4;—%§:jh i=1,2,...,p—1).
j=1

Lemma 2.1. Fix a positive real number t 0. Define a function Q with respect
to my,...,Mp or Ky,...,Kp_1 by

p p
(2.4) Q=) (m)’—t> im.
i=1 i=1

1) If (mg,...,mp)=(1,0,...,0,-1)i.e (ka,...,Kp-1) =(1,0,...,0,1),then Q attains
Q=2+t(p—1).

2 If(my,....mp)=p—-21)/p,—-1/p,...,—=1/p)i.e (ki,...,kp—1) =(1,0,...,0),
or (mg,...,mp)=(1/p,....,1/p,—(p—1)/p) (ki,...,Kp—1) =(0,...,0,1)),then Q
attains

p—-1 p-1
= t 2 +t(p — 1).
Q 0 o< +t(p—-1)
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.(3) Assume that p= 4. If (my,..., mp) = ((p—2)/p, (P —2)/p,—-2/p,- .-, -2/p)
i.e (ky,...,kp-1)=1(0,1,0,..,0)or (My,...,mp)=(2/p,....2/p,—(P—2)/p,—(P—
2)/p)i.e (ki,-.., Kp-1) =(,..., 0,1, 0),then Q attains
p_1+tp;1<Q:M+t(p—2)<2+t(p—l).
p 2 p
(4) Q=2+t(p-1)if and only if(mg,...,mp) =(1,0,...,0,-1)i.e (Ki,..., kp1) =
(1,0,...,0,1).
(5) Q <2+t(p—1)if and only if(my,...,mp) or (Ky,...,Kp—1) is one of the following
table
p (kla"-;kpfl) (m1!'~'!mp) Q
>3 (1,0...,0,0) (Ll 1 —1> p-1,.p-1
p p p p 2
>3(0,0,...,0,1) <1 ,3,—E> p-1,,p-1
p P P 2
11 1 1
4 0,1,0) (E’E’_E'_§> 1+2
p—-2 p—-2 2 2> 2(p—2)
>51(,1,0,...,0 —_— = ., —— +t(p—2
( (2222 (p-2)
2 2 -2 -2 2(p-2
>5|(0,...,0,1,0) (—,.. ,_,_p , p ) (p )+t(p—2)
p p p p p
111 1 1 1 3 9
6 (010! 11010) (E,E,E,_E'_E,_E) §+t§
444 3 3 3 3 12
7 1 ==, =, -2, -2, -2 = ——
(01 O! 101 O!O) (7! 77 71 71 77 71 7> 7 +6t
7 (01 0!01 11 010) <§!§5§1§1_f1 f,_ﬂ-> 1_2+6t
VAN A A A A A 7
Proof. The statements (1), (2) and (3) are obtained by dieotputations. The

function Q can be described in terms &f, .

(2.5) Q=§{§(l——p)lk +Z (1——) }KHZ

The statements (4), (5) follow from this formula.

_1 as the formula:

i(p—

=i+l

O

The casex = (SU(p) x SU(p))/SUp): In this case note thah—1 =dimE = p?—1,

m = p?, 2m = 2p? and m? —

1—dimGs =m? — 1 —dim(SUp) x SUp)) = (p? — 1)%
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Let {e1,...,€p} be the standard orthonormal basis ofpadimensional Euclidean
vector spaceRP. Set

D(SUp))

i=1

p
Zmi=0,0§mi—mi+162(i:112a---vp_1)}

(2.6) i1

theZG=LZ”qp—Dl

Hereki =my —mjy1 (i =1,...,p—1) and{Ag4,..., Ap_1} is the fundamental weight
system ofSU(p) defined by

Aj=ertete—=Y g (=12...,p—1).

©
1l
-

We know that there is a bijective correspondence betw2EJ(p)) and the complete

set of all inequivalent complex irreducible representaiof SU(p). Then for each

A= Zip:l mie; € D(SUp)) the eigenvaluea, of the Casimir operator on a complex
irreducible representation with highest weightis equal to

p p
(2.7) —ay =y (M)’ —2) im
i=1 i=1

and the corresponding eigenvalue &f; is given by
28) A= (-ay) o207 = () -2 P2 (~an)p = PQ
. = A 2p = A 2p p= A)P =P

because ofC = 4/(p?c) = 1/p? by [1, p.594]. HereQ is a function defined in Lem-
ma 2.1. For each\ € D(SU(p)), we denote byd, the dimension of a complex irre-
ducible representation with highest weight The dimensiord, is given by the Weyl's
dimension formula. The multiplicityn(1), i.e. the dimension of the eigenspace, for the
eigenvaluexr of the LaplacianAyx is equal to

mey= Y (@)

AeD(SUp)), r=(—an)p

First we consider the case= 3. Then (2.7) becomes

2
(2.9) —ap = é(kf +kikz +K3) + 2(ky + ko).
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(1) If (ki, ko) = (2,0) or (0, 1), then-a,) -3 =(8/3)3 =8 andd, = 3.
(2) If (ki, ko) = (1,1), then £a,)-3=6-3 =18 andd, = 8.
(3) If (ki, ko) = otherwise, then<{a,) -3 > 20> 18.
Thus all eigenvalues and their multiplicitity m(A) of Ay between 0 andrd =18
are determined as follows:

A | aeDsN[0,2] | Mg(a)
0 0 1
8 1 18
18 2 64

Hence we haveNy(2) = my(0) +my (1) +mg(2), my(0) = 1 =b%(X), mg(1) =18 =
2m, andm? — 1 —dimGy = 9 —1— (8 +8) = 64 =my(2). Therefore we conclude that
s-ind(C) = 0.

Next we treat the casp > 4. By Lemma 2.1 we obtain the following table of all
A € D(SU(p)) corresponding to eigenvalugs< 2m = 2p:

p A (K1, ..., kp-1) A=pQ da

>3 | A1+Ap 1| (1,0,...,0,1) 2p? p?—1
_3 Al (1101---1010) p2_l p
>3 Ap1 (0,0,...,0,1) p?—1 p
4 Ao (0,1,0) 20 6

1

>5| A, | (0,1,0,...,0)| 2(p+1)(p—2) p(p2 )

1

>5| Ap2 | (0...,0,1,0)| 2(p+1)(p—2) p(p2 )
6 As (0,0,1,0,0) 63 20
7 As (0,0, 1,0,0,0) 96 35
7 As (0,0,0,1,0,0) 96 35

Note that the (nonzero) first eigenvalue &f; is p? — 1 =dimX.
By using these results, we determine @le Dy N[0, 2] by A = a(e + m — 2), that

is, @ = (y/ (M= 22+ 41 — (m—2)) /2 as follows:

If p> 8, then we have

A o€ Ds N [0, 2] m):((x)
0 0 1
p? -1 1 2p?
2p+1)p_2) | VPP 2P+8( +21)(p -2)-(P* -2 pz(pz— 1
2p° g (P 17
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If p=7, then we have

A [PAS D): n [0, 2] m):((x)
0 0 1
48 1 98
2
+/2593— 47
96 — 2450
98 2 2304
If p=26, then we have
A o € DsN [0, 2] mz(a)
0 0 1
35 1 72
56 A/345— 17 450
63 £/352—17 400
72 2 1225
If p=5, then we have
A [PAS D): n [0, 2] mz(a)
0 0 1
24 1 50
36| YO73=23 | 599
2
50 2 576
If p=4, then we have
A ax € Dy N [0, 2] mE(O{)
0 0 1
15 1 32
20 V697 36
32 2 225

We obtain s-indC) > 0 and thusC is not stable.

317
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The caseX = SU(p)/SAp): In this case note thah—1 =dimX = (p—1)(p+2)/2,
m=p(p+1)/2, 2n=p(p+1) andm? — 1 — dimGy =m? — 1 — dimSUp) = p*(p +

3)(p —1)/4.
The subseD(SU(p), SA(p)) € D(SU(p)) is defined by

D(SUp), SAp))
p

= iz Z m; &;
i=1

i=1

p
Zmi:O, Osmi—mi+1ez(i:1,2,...,p—1)}

(2.10) =

0<k eZ(i:1,2,...,p—1)}.

Hereki=mi —mj+; (i=1,...,p—1) and{M; |i =1,..., p— 1} is the fundamental
weight system of $U(p), SA'p)) defined by

P
Mi:2Ai:2<81+~~~+8i—l—pZSJ’) i=1,2,....,p=1).
j=1

We know that there is a bijective correspondence betweéBU(p), SQ(p)) and the
complete set of all inequivalent spherical representatminthe compact symmetric pair
(SWUp), SAp)). Then for eachA = ZZi":l mie; € D(SU(p), SAp)) we have

p p
(2.11) —ay =4y (M)’ —4) im,
i=1 i=1

and the corresponding eigenvalue f is given by

p2

2.12) L= (CanC = (anso B P

=(-aa); =pQ

2 4

because ofC = 8/(p?c) = 2/p? by [1, p.594]. HereQ is a function defined in Lem-
ma 2.1. The multiplicitym(}), i.e. the dimension of the eigenspace, with eigenvalue
of the LaplacianAy is equal to

m(}t) = Z dA .
AeD(SUp),SAp)), r=(—ar)p/4

First we consider the case= 3. Then (2.11) becomes

8
(2.13) —a, = §(k§ +kiko + k3) + 4(ky + ko).
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(1) If (kg,k2) =(1,0) or (0, 1), then<{a,)-3/4 = (20/3)(3/4) =5 andd, = 6.
(2) If (ki, ko) =(1,12), then {a,)-3/4=16-3/4 =12 andd, = 27.
(3) If (kq, ko) = otherwise, then-{a,) - 3/4 > 13 > 12.

Thus all eigenvaluesa and their multiplicities ofAyx between 0 and @ = 12 are de-

termined as follows:

Hence we haveNs (2) = mx(0) +mg (1) +mx(2), mg(0) = 1 =b%(X), mg(1) =12 = 2n,
andm? — 1 —dimGy =6 —1— (9 —1) =27 =mg(2). Therefore we conclude that

s-indC) = 0.

Next we treat the casp > 4. By Lemma 2.1 we obtain the following table of all

A | aeDsN[0,2] | Mg(x)
0 0 1
5 1 12
12 2 27

A € D(SU(p), SAp)) corresponding to eigenvalues< 2m = p(p + 1):

p A (K, ..., Kp1) A=pQ da
2
23| 20+ 2050 | (1,0..,01)| pp+p | PZHPRTI
>3 2A, 0....00 | P= 1;('“2) p(p2+ b
>3] 20,4 | (00,..,01| P= 1;('“2) p(p2+ b
4 A, ©,1,0) 12 20
2 _
5| 20 | (0,1,0..,0)| (p-2)p+2) | PP
2 _
>5| 2Ap2 | (0...,0,1,0) (p=2)(p+2) W
6 2As 0,0,1,0,0) 36 175
7 2As 0,0,1,0,0,0) 54 490
7 274 (0,0,0,1,0,0) 54 490

Note that the (nonzero) first eigenvalue Af; is (p— 1)(p +2)/2 =dimX.
By using these results, we determine @le Dy N [0, 2] as follows:
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If p> 8, then we have
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A a € Dx N[0, 2] ms ()
0 0 1
—1)(p+2
= ;(p ) 1 p(p+1)
+1)/2-22+4(p+2)(p—2)— +1)/2—2)|p?(p+1)(p—1
(p—2)(p+2) V(p(p+1)/2—2)+4(p 2)(|o )—(P(p+1)/2—2)| p*(p 6)(|o )
—1)p*(p+3
p(p+1) 7 %@)
If p=7, then we have
A | aeDsN[0,2] | Mmg(a)
0 0 1
27 1 56
45 v214—-13 392
54 £/223-13 980
56 2 735
If p=6, then we have
A | aeDsN[0,2] | Mmg(w)
0 0 1
20 1 42
32 V/489— 19 210
2
36 +/505— 19 175
2
42 2 405
If p=25, then we have
A | aeDsN[0,2] | Mmg(a)
0 0 1
14 1 30
21 V/253-13 100
2
30 2 200
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If p=4, then we have

A | aeDsN[0,2] | Mg(x)
0 0 1
9 1 20
12| 2(vV7-2) 20
20 2 84

The caseX = SU2p)/SAp): In this case note than—1 =dimX = (p—1)(2p+1),
m=2p?—p=p2p-1), 2n=2p(2p—-1) andm?—-1—dimGy = m?—1—dimSU2p) =
p?(2p — 3)(2p + 1). Set

D(SU2p))
2p 2p
@14) {mei > m=00<m —myeZ (| 21,2,...,2p—1)}
' i=1 i=1
2p—1
= !Z kiAi |0<k €Z (i :l,2,...,2p—l)}.
i=1

Hereki=my —mi;; (i =1,...,2p—1) and{A; |i =1,...,2p— 1} is the fundamental
weight system ofSU2p) defined by

. 2p
A Zerdte —'—pZej (=12,...,2p—1).
i1

Now we definef; € R? by

fi == %(821'*‘82) (I =1, 2,...,p—1, p)

The subsetD(SU2p), SHp)) € D(SU2p)) is defined by
D(SU2p), SHP))

p p
ZHﬁZmifi > m=0,0=m-mueZ(i=12...,p-1)
(2.15) i=1 i=1
p—1
:{Zlqlvh O<kez(i=12,...,p-1)}.
i=1
Hereki=mj —mi+1 (i =1,...,p—1) and{M; |i =1,..., p— 1} is the fundamen-

tal weight system of SU(2p), SH(p)) defined byM; = Ay. We know that there is a
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bijective correspondence betwednW(SU(2p), SEp)) and the complete set of all in-
equivalent spherical representations of the compact syriempair (SU2p), S p)).
Then for eachA =23 P, mi fi € D(SU2p), SE(p)) we have

P P
(2.16) —ay =2 (m)*—-8) im
i=1 i=1
and the corresponding eigenvalue &f is given by
N I NN I SN B
(2.17) = (-an)75C7 = (an) 5o 297 = ()5 = PQ

because ofC = 2/(p°c) = 1/(2p?) by [1, p.594]. HereQ is a function defined in
Lemma 2.1. The multiplicitym()), i.e. the dimension of the eigenspace, for the eigen-
value 1 of the LaplacianAy is equal to

m(x) = > da.

A€D(SU2p),Sp(p)), A=—ax

First we consider the case= 3. Then (2.16) becomes
_4.0 2
(218) —ap = §(kl +kiko + k2) + 8(k]_ + k2)

Q) If (kg, ko) =(2,0) or (0, 1), the £a,) - 3/2 = (28/3)(3/2) = 14 andd, = 15.

(2) If (ki, ko) =(1,1), the Fa,)-3/2=20-3/2 =30 andd, = 189.

(3) If (kq, ko) = otherwise, then-a,) - 3/2 > 32 > 30.

Thus all eigenvales. and their multiplicitity m(A) of Ay between 0 and @ = 30 are
determined as follows:

A | aeDxyN[0,2] | Mmg(a)
0 0 1
14 1 30
30 2 189

Hence we haveNs(2) = my(0) +my (1) +mg(2), my(0) = 1 =b%(X), my(1) = 30 = 2n,
My (2) = 189. On the other handy’ —1—dimGy = 15 —1—(36—1) = 189. Therefore
we conclude that s-in€) = 0.

Next we treat the casp > 4. By Lemma 2.1 we obtain the following table of all
A € D(SU(2p), SHp))) corresponding to eigenvalues< 2m = 2p(2p — 1).
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P A (kl, . ykp—l) A= pQ da
>3 | Ao+Azp 2| (1,0,...,0,1)| 2p@2p-—1) p’(2p—3)(2p+1)
>3 Ao (1,0,...,0,0)| 2p+1)(p—1) p(2p —1)
>3 Aop o 0,0,...,0,1)| 2p+1)(p—-1) p(2p —1)
4 As ©0.1,0) 36 70
2p(2p — D)(2p — 2)(2p —
o5 A, |(0.1.0....0)| 22p+1)p—2) | 2PEP= 2'04 )2p—3)
2p(2p—D(2p—2)(2p 3
25| Axpy |(0...,0,1,0) 2zp+1)(p-2) | 2PV Z2E Y
6 A 0,0,1,0,0) 117 924
7 As | (0,0,1,0,0 0) 180 3003
7 As _ 1(0,0,0,1,0,0) 180 3003

Note that the (nonzero) first eigenvalue &f; is (2p+1)(p — 1) =dimX.
By using these results, we determine @ale Dy N[0, 2] as follows:

If p> 8, then we have

A o €Ds N [0, 2] mE(Ol)

0 0 1
(2p+1)(p—1) 1 2p(2p - 1)
2(2p+1)(p—2) J(p(2p—l)—2)2+8(2p+21)(p—2)—(p(Zp—l)—Z) 2p(2p—l)(212—2)(2p—3)

2p(2p — 1) 2 p*(2p — 3)(2p + 1)

If p=7, then we have

A a€Ds N [0, 2] mz(Ol)
0 0 1
90 1 182
150 7‘85221_89 2002
J/8641—
180 M 6006
182 2 8085

323




324 Y. OHNITA

If p=6, then we have

A | aeDsN[0,2] | Mg(x)
0 0 1

65 1 132
104 | /1128-32 990

117 | +/1141-32 924
132 2 4212

If p=>5, then we have

A a € Dy N [O, 2] m):(Ol)

0 0 1

44 1 90

| ¥ZB-138 |
2

90 2 1925

If p=4, then we have

A | aeDsN[0,2] | Mg(a)
0 0 1
27 1 56
36| +/205—13 70
56 2 720

The caseX = Eg/F4: In this casem — 1 =dimX = 26, m = 27, 2n = 54 and
m>—1—dmGxg =m? —1—dimEg =27 — 1 — 78 = 650. Let{My, My} be the
fundamental weight system oE&§, F4;) defined by

2
My =Ag= 5(88 — &7 — €p),

1
Mz = Ag = 5(88 — &7 — &) * €,

where{s | i = 1,...,8} denotes the standard orthonormal basisR8fand {A; | i =
1,...,6} denotes the fundamental weight systemkgf (cf. [4], [1, p.601]). Set

(2.19) D(Es, Fa) = {kiM1 + koMy | k1, ka2 € Z, kg > 0, ko > 0}.
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Then for eachA = k;M; + koM; € D(Eg, F4) we have
1 4 1
(2.20) —ap =4k =kg +4) + =kiko + 4k | ko +4 ).
3 3 3
and the corresponding eigenvalue &f is given by
1 1 3
2.21 A= (—ap)—=Cl=(—ay)= 36 = (—a))=
(2:21) (~ax)5;C7 = (man) 5, - 36 = (-an);

because ofC =1/(9c) =1/36 by [1, p.594]. Thus we determine all € D(Eg, F4) cor-
responding to eigenvalues< 2m =54 and their multiplicitied, (cf. [13]) as follows:
(1) If (ky, ko) =(1,0) or (0, 1), then we have = (—a,) - 3/2 = (52/3)(3/2) = 26 and
dA = 27.

(2) If (ki, ko) =(1, 1), then we have. = (—a,) - 3/2 = 36(32) = 54 andd, = 650.

(3) If (kq, ko) = otherwise, then we have = (—a,) - 3/2 > 56 > 54.

Thus all eigenvalues. and their multiplicities ofAy between 0 andr®d = 12 are de-
termined as follows:

A | aeDs N0, 2] | Mg(a)
0 0 1
26 1 54
54 2 650

Thus we obtainNy(2) = my(0) +my (1) +mg(2), my(0) = 1 =b%(X), mx(1) =54 = 2,
mx(2) = 650 =m? — 1 — dim Gx. Hence we obtain s-in@) = 0 for ¥ = Eg/Fa4.

Getting together those results in each case, we concluddotloving. Theo-
rem 2.1 follows from Theorem 2.2.

Theorem 2.2. Let ¥ = SUp), SUp)/SAp), SU2p)/SHp) (P > 3), Es/Fa
(resp m= p?,(p—1)(p+2)/2+1,(p—1)(2p+1)+1,27)be an(m — 1)-dimensional mini-
mal Legendrian submanifold embedded #"S(1) in the above standard way and €
CX be the special Lagrangian cone @™ over X. Then the rigidity the Legendrian-
index and the stability-index of C are described as follows
(1) The equality

ms(2) =m? — 1 — dim(Gs)

holds and hence each C is rigid
(2) The Legendrian-indekind(C) is equal to

I-ind(C) = s-ind(C) + 2m.
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(3) The stability-indexs-ind(C) is given as in the following table

SU(p) SU(p)/SAp) SU2p)/SH(p) Ee/Fa
0> 8 PP(P—17 | PP(P—1)(p+1) | 2p2p—-1)(2p-2)2p—3) |
= 2 6 12
p=7 3332 1372 8008 —
p=6 850 385 1914 —
p=5 200 100 420 —
p=4 36 20 70 —
p=3 0 0 0 0

REMARK. In [1] it was shown that for eachX =SWUp), SUp)/SAp),
SU2p)/SH ). Es/Fa, the imager (X) = SWp)/Zp, SUp)/SAP)Zp, SU2p)/SHP)Z2p,
Ee/F4Z3 by the projection of the Hopf fibration is a Hamiltonian s&bhinimal
Lagrangian submanifold embedded in a complex projectiaesp

And by using the formula (1.1) we also see the following.

Theorem 2.3. In each case: = SU(p), SUp)/SAp), SU2p)/SAp) (p>4),C =
CX \ {0} has nonzero homogeneous harmonic function of owdeior somea with
1 < a < 2 and there is no nonzero homogeneous harmonic function ‘oaf ©rder «
for any o with 0 < o < 1.

3. Stability-index of a special Lagrangian cone in ¢ over a minimal
Legendrian SU(2)-orbit

In this section we mention about the stability and the rigidif a certain special
Lagrangian cone over a minimal Legendri@h(2)-orbit in C*. This example was also
treated in [9, Example 5.7].

Let V3 be the complex vector space of all complex homogeneous puiiats with
two variablesz;, z, of degree 3. We equilys with the standard Hermitian inner prod-
uct such that

1 3ok k 3}
=~ __A%Klk=0,1,2,
{"" N

is a unitary basis of/z = C* = R8, We know thatVs is an irreducible unitary repre-
sentation ofSU2). Now we consider the orbit dBU2) throughw = (1/+/2)(vo + v3).
Then the orbit® = p3(SUQ2))w C S(1) is a 3-dimensional minimal Legendrian sub-
manifold embedded ir8’(1).
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Theorem 3.1. The special Lagrangian cone C @* over the minimal Legedrian
orbit X = p3(SU?2))(w) is not Legendrian stabljeand hence not stablelts stability-
index and Legendrian-index of C are given by

s-indC) =10 and I|-ind(C) =11 (= 8+ 3).
Moreovey ¥ satisfies
msg(2) = 19> m? — 1 —dimSU?2) = 12
and hence C is not rigid

We shall calculate all the eigenvalues and thier multipési of the Laplacian of
the SU2)-orbit X = p3(SU2))(w) by the method used in [15].
Let G =SU?2) andg =su(2). Let{E;, Ep, E3} be a basis ofj = su(2) defined by

(Gt () (5 0)

For each nonnegative integer let (V,, pon) be an ( + 1)-dimensional irreducible
unitary representation o6 = SU(2) as follows: LetV,, denote a complex vector space
of all complex homogeneous polynomials with two variablgsz, of degreen and
on: SU2) — U(V,) is defined as

3.1) (pn< z _55) f)(zl,zz) = f((zl, zz)( 3 _;_’ ))

Here set
n) .— 1 n—k
v = —=7
JK(n—k)!

for eachk =0, 1,...,n and the standard Hermitian inner product )) of V, invariant
under p, is defined such thap(”,...,v(} is a unitary basis ok/". Then the differ-
ential dp,, of the representatiop, is given by

(3.2) @002 = (5 ) X 2).

8217 022 2

k
2

If we denote byD(SU2)) the complete set of all inequivalent irreducible unjtaep-
resentations o5U(2), then we know

D(SU2)) = {(Va, pr) I N € Z, n > 0.
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In V3 = C* = R® (n = 3), we use the unitary basig = v((f), v =08, vy =0,
vz = vg‘?’). Then the orbitX = p3(SU2))w of SU2) through a point

w;%mﬁ@e§m=wewww=n

is a 3-dimensional compact minimal Legendrian submanifetdbedded inS’(1).

We can see that it is a unique minimal Legendrian orbit $i1) under pz. Thus
the minimal cone overz = p3(SU2))w is a special Lagrangian cone i@* Then

{(1/3)E1, (1/+/3)E3, (1/+/3)E3} is an orthonormal basis of with respect to the in-
duced metric from the orbip3(SU2))v ¢ C* We denote byAy the Laplacian of
¥ = G/K with respect to the induced metric acting smooth fuctions@fK. The

isotropy subgroup

(3.3) K:={Ae G| ps(Aw =w}

of G=SU_2) atw € V3 is a cyclic subgroufZs of order 3 consisting of the following
elements

1 0 eV -1(27/3) 0 e V-1(21/3) 0
(34) ( 0 1 ) ' 0 ef«/f_l(27r/3) ! 0 e«/*_]- (27/3)

which is the fundamental group & = G/K.
For each nonnegative integar we define a vector subspacé,lx of V, by

(3.5) Mk =={v € Vi | pn(A)v = v for eachA € K}.
Then by direct computations we have

Lemma 3.1. (1) In case n=2:
If we set |=3p+r for p e Z with p>0and re Z with 0 <r < 3, then (V;,)x
is spanned by

[ |k=1+3j (j=-p,...,—1,0,1,..,p)}.

(2) In case n=2 +1:
If 21 +1=3p for pe Z, then(V;))k is spanned by

v k=3j (j=0,1,...,p)}
If 20+1=3p+1for peZ, then(V,)k is spanned by

{vl((n)|k:3j_1(j=1,2,...,p)}-
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If 21+1=3p+2for peZ, then(V,)k is spanned by
[ |k=3j+1(=0,1,..,p)}
By Peter-Weyl's theorem we know

(3.6) C¥(G/K)= P (Vi ® Va.

nezZ,n>=0
Here eachv € (V,)k and eachu € V, corresponds tof € C*(G/K) defined by
f(aK) = (pn(@)v,u) (aK € G/K).

Then we have

(Ax f)(@kK)
3.7) ~ 1 2 1 2 1 2
(o)) (o) () )}
By direct computations we have the following lemmas.
Lemma 3.2.

(3.8) <(dpn @ El>>2 i <dp” (%3 E2>>2 ’ <dp” (%3 E3>>2) v

= —{é(n —2k)2 + 2((k+ 1)(n — k) +k(n — Kk + 1))}1)3‘).

Lemma 3.3. All eigenvalues and their multiplicities ok s, are given as follows
Let ne Z with n> 0.
(1) In case n=2, if we set |=3p+r with nonnegative pr e Z and0 <r < 3, Ay
has eigenvalues

4 P
§|(|+1)—812 (j=-p,...,—1,0,1,...,p)

and its multiplicity is n+ 1 =2 + 1.
(2) Incase n=21+1,if 2 +1=3p for an integer p> 1, then Ay has eigenvalues

(P—2j)+2(@B +1(p—)+iBp-3j+1) (1=01...,p)

and its multiplicity is +1 =2 + 2,
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(3) Incase n=21 +1,if 21 +1=3p+1 for an integer p> 2, then Ag has eigenvalues
(P—2j +1F+2(iBp—3j+2)+@ —D(P—-j+1) (=1,...,p)

and its multiplicity is +1 =2 + 2.
(4) Incase n=2 +1,if 21 +1=3p+2 for an integer p> 1, then Ay has eigenvalues

(p—21)2+§((3j +2)Bp—-3j+1)+(@j+1)(Bp—-3j+2) (1=01....p)

and its multiplicity is m+1 =2 + 2.

From Lemma 3.3 all eigenvalues @&y not greater thamh < 2m = 8 and their
multiplicities are given as follows:
(1) Forn=2,1 =1 andj =0, the eigenvalue is/8 (« = +/33/3— 1) and its multi-
plicity is 3.
(2) Forn=3,1 =1, p=1 andj =0, the eigenvalue is 3x(= 1) and its multiplic-
ity is 4.
(3) Forn=3,1 =1, p=1 andj = p, the eigenvalue is 3o(= 1) and its multiplic-
ity is 4.
(4) Forn=4,1=2, p=0 andj =0, the eigenvalue is 8x(= 2) and its multiplic-
ity is 5.
(5) Forn=6,1=3, p=1 andj = —1, the eigenvalue is 8x(= 2) and its multiplic-
ity is 7.
(6) Forn=6,1=3,p=1 andj =1, the eigenvalue is 8x(= 2) and its multiplicity is 7.
(7) Otherwise all other eigenvalues are greater than 8.
Thus we have

m)_j(O) =1, myg (ga — 1) =3,

ms(l)=4+4=8, ms(2)=5+7+7=19,

and

Ng(2) =My (0) +mg (? - 1) +my (L) +mg(2) = 31.

Therefore we obtain
s-indC) = Nx(2) — b%(Z) — m? — 2m+ 1 + dimGy, = 10.

and

I-ind(C) = mg <§3 — 1) +mg(1) =11> 8.
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and henceC is not Legendrian-stable. And we obtain
mg(2) =19> 12=# —1—dimSyY3) =m? — 1 — dim Gsy.

and henceC is not rigid. Therefore we obtain Theorem 3.1.
And by using the formula (1.1) we also see the following.

Theorem 3.2. For this minimal Legendirian orbitz = p3(SU2))w, C' = C \ {0}
has nonzero homogeneous harmonic function of orddor somea with 0 < @ < 1
and there is no nonzero homogeneous harmonic function ‘oof @rder « for any «
with 1 < a < 2.

Next we consider the Hopf fibratiom: S’(1) — CP?2 from S’(1) C V5 = C* onto
the 3-dimensional complex projective spa@®? with the Fubini-Study metric of con-
stant holomorphic sectional curvature 4. We denote alsqdyhe action of SU2)
on CP? induced byr from the represenatiops of SU2) on Vz = C* By the pro-
jection of the minimal Legendrian orbji3(SU2))w, we obtain a minimal Lagrangian
orbit L = p3(SU2))[w] on CP?3 through ] = Cw. It was also treated in [5] from the
viewpoint of momentum maps. Then the isotropy subgroup

(3.9 K':={A e SU2) | ps(A)w] = [w]}

of SU?2) at [w] € CP? is a finite subgroup of order 12 consisting of the following
elements

(50 (27)

wherea,b € C with |a|] = |b| =1 anda® =1, b6 = —1. Let
(3.11) M)k :=={v € Vi | om(A)v = v for eachA e K'}.

Note thatK c K’ and thus ¥»)k: € (Va)k. Then by checking the results of Lemma 3.1
on (Vh)xk we can show

Lemma 3.4. (&) (Vn)x' # {0} if and only if n= 2 for some integer k Z satis-
fying the condition that | is odd with + 3, or that | is even with > 0,
(b) If n =2 and | is odd with I> 3, setting I=3p+r for 0<peZ and0<r <
3, then

{Ul(fls?j - Ul(zli)%j [i=1,...,p}

is a basis of(Vp)k:.
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(c) If n=2 and | is even with [> 0, setting [=3p+r for 0<peZ and0<r <
3, then

2 ) |
{UI(+?3j + U|(,\2g,j | j=0,1,..., p}
is a basis of(Vy)k'.

Now by using Lemma 3.2 we can determine all eigenvalues ferLiplacianA’
of L on functions.

Lemma 3.5. All eigenvalues and their multiplicities ok’ are given as follows
Let n=2 for | € Z with ell > 0.
(1) In the case when | is odd andA 3, if we set I= 3p+r with nonnegative g € Z
and0 <r < 3, A’ has eigenvalues

4 ) .
§|(| +1)—8j% (j=1,...,p)

and its multiplicity is +1 =2 + 1.
(2) In the case when | is even angl0, if we set |=3p+r with nonnegative g € Z
and0 <r < 3, A’ has eigenvalues

4
él(l +1)—8j%2 (j=0,1,...,p)
and its multiplicity is n+ 1 =2 + 1.

By Lemma 3.5 we can determine the first eigenvalueAbfand its multiplicity as
follows:

Lemma 3.6. (1) If n=4,1=2,p=0and j=0, then the eigenvalue i8 and
its multiplicity is 5.
(2) fn=6,1=3,p=1and j=1, then the eigenvalue i8 and its multiplicity is7.
(3) Otherwise all other eigenvalues are greater th&n

Hence we obtain that the first eigenvalue &f is 8 and its multiplicity is 12 =
4?2 — 1 —dim(SU?2)). Therefore we conclude

Corollary 3.1. 7(X) = p3(SU2))[w] is a 3-dimensional compact Hamiltonian sta-
ble minimal Lagrangian submanifold embeddeddi®® which does not have parallel
second fundamental formMoreover its null space is exactly the span of the normal
projections of Killing vector fields o€ P3.
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REMARK. This example gives a negative answer to the second probteft, i

p.506]. Very recently it was also obtained independentlyLiogio Bedulli and Anna
Gori in their paper: A Hamiltonian stable minimal Lagrangisubmanifolds of projec-
tive spaces with non-parallel second fundamental form.
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