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Abstract

Let X be the space of type-preservirgl(2,C) characters of the punctured
torus T. The Bowditch spaceYgq is the largest open subset of on which
the mapping class group acts properly discontinuouslys tki characterized by
two simple conditions called the BQ-conditions. In this ejotve show thaf{p] €
int(X \ Agg) if there exists an essential simple closed cuiXeon T such that
[tr p(X)| < 0.5.

1. Introduction

Let T be the punctured torus and := 71(T) = (X,Y) be its fundamental group
which is free on the generatops, Y. The relative SL(2C) character variety ofype-
preservingcharacters is the set

X :={[p] € Hom(r, SL(2,C))/SL(2,C): tr(XY X1y~ = -2},

where the equivalence is by the conjugation action. The BloWwdspace is the subset
AXso C X of characters which satisfy two simple conditions (see Dwim 2.1), this
is the largest open subset af on which the mapping class group ®f acts properly
discontinuously. It is conjectured by Bowditch to be pretishe quasi-Fuchsian space
Xor (Conjecture A, [1]). To attempt to verify or disprove the @sture, and also
to study the dynamics of the action of the mapping class grmughe non-discrete
characters, it is useful to have an effective sufficient domd for [p] to be inside
int(X \ Agg). We have the following:

Theorem 1.1 (Main theorem). For [p] € X, [p] € int(X \ Agg) if there exists
X € € such that|tr p(X)| < 0.5, where ¥ is the set of free homotopy classes of essen-
tial simple closed curves on.T

REMARK 1.2. (@) The bound 0.5 in the theorem is not optimal, and cammbe
proved, but for computational purposes, it is quite effecti
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(b) Jorgensen’s inequality implies that if there exixt& ¢ such that O< |trp(X)| < 1,
then [p] corresponds to a non-discrete representation. Rough e@mgxperiments
have shown that in fact, in many examples considered (notepexamples were de-
tected), if |tr p(X)| < 1 for some X € ¢, with [tr p(X)| € (=1, 1), then by a trace
reduction algorithm, one can find sonYee ¢ such that|tr p(Y)| < 0.5, that is, p] €
int(X \ Xgg). This can be regarded as supporting evidence towards Bawalicon-
jecture as experiments with the Wada’s OPTi program [9] Hesve that in almost all
cases wherey] is non-discrete, there exist& € ¢ with |tr p(X)| < 1.

(c) The theorem quantifies the result of Bowditch in [1] (Thean 5.5) by giving an
explicit bound for the constanfy in his theorem, and hence generalizes Corollary 5.6
there, that po] € int(X' \ AXgg), where |pg] is the quaternionic character withdg(X) =

tr po(Y) = tr po(XY) =0 (and hence tpo(X) =0 for all X € ¥).

(d) The setXzq can be expected to have a very interesting and complicatethge
try, especially at the boundary, as evidenced by pictures sdndies of various slices
of deformation spaces of discrete, faithful representationcluding the Maskit slice,
Earle slice, Riley slice, Bers slices (obtained using Wadapti program [9]), and also
the bumping phenomena on the boundary of the quasi-Fuclsgiace, as studied by
various authors. In particular, we have the recent resdltBromberg that states that
the closure ofXge is not locally connected. Theorem 1.1 can be used in a compute
program to draw the Bowditch space and its complement arsdsthould prove useful
in studying the geometry of these spaces and various retaiejctures.

(e) More generally, as studied in [6], [7] and [8], we can stildg relative character
varieties X, where

tr p(XY Xty Yy =«

with « # 2, and the Bowditch space can be defined similarly for theksive character
varieties. Ifx is close to—2, our methods can be modified to give similar conditions
for when [p] € int(X, \ Xzg) and this can be used together with the BQ-conditions
to draw the Bowditch space and complement. Note that in thisecthe Jorgensen
inequality may no longer apply, for examplexfe (—2,2), since in this case the image
may never be discrete.

The rest of this paper is organized as follows. In Section ,set up the notation
and definitions to be used and in Section 3, we give the prodheftheorem.

2. Preliminaries: Notation and definitions

As in the introduction, leflT be the punctured torus{, Y a pair of simple closed
curves onT with geometric intersection number one so that=71(T) = (X, Y). The
relative character variety ofype-preservingcharacters is the set (denoted Bj) of
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equivalence classes of representations frorto SL(2,C) satisfying
(1) trp(XY Xty 1) =—-2,

where two representations are equivalent if they are camgudy an element of
SL(2,C). By classical results of Nielsen [5], (see for example [@] background and
references) it does not matter which pair of generators &l der 7 in the definition.
Fixing a pair of generatorX, Y of T, by results of Fricke, see [3] for an exposition,
the map

) X {(X,Y,2) € C3 X2+ y?+ 22 = xyZ,
given by

tLp] = (tr p(X), tr p(Y), tr p(XY))

is a bijection. Henceforth we shall identify’ with the cubic variety given in (2), and
the topology onX’ will be that induced by this identification. The charactget fuch
that ([p] = 0= (0, 0, 0) is the quaternionic character, denoted ty}.[

The outer automorphism group af,

Out(r) = Aut(rr)/Inn(r),
is isomorphic to the mapping class group of
mo(Homeo(T)) = GL(2,7Z)
by results of Nielsen [5], and it acts ofi, via the action

©) ¢(p) =[po¢~"], where ¢ eOutl), [p] € X.

This action is not effective, the kernel is generated by th®raorphisme;,,, where
dinv(X) = X1, ¢inv(Y) = Y71, corresponding to the elliptic involution ofi. Denote
by I' = PGL(2,Z) the quotient ofrg(Homeo()) (equivalently, Outf)) by the elliptic
involution, I' now acts effectively onY'.

The set% of free homotopy classes of essential (non-trivial and peripheral)
simple closed curves on forms the vertices of the pants gra@t{T) of T, where two
vertices are connected by an edge if and only if the corredipgncurves have geomet-
ric intersection number oneg’(T) is isomorphic to the Farey graph of the hyperbolic
plane, and every vertex has infinite valence (see for exafple X,Y € ¢ are called
neighborsif they are joined by an edge i@(T). This is equivalent to saying that
andY generater. Note that for anyX € % and [p] € X, tr[p](X) is well-defined. To
simplify notation, we shall use the notationally simplep(X) henceforth.

' acts on%(T), and is transitive on the set of vertices in fact, it is transitive
on the set of neighborsX( Y), and the set of triples of mutual neighborX,{, Z).
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DEFINITION 2.1. The Bowditch space is the subsBio C X consisting of all
characters 4] € X satisfying the following two conditions, called tH&Q-conditions
(i) trp(X) ¢[-2,2] for any X € ¥; and
(i) [tr p(X)| < 2 for only finitely many (possibly noneX € %.

In [1], Bowditch showed thatYgg is open in&’, and thatI" acts properly dis-
continuously ontgq. It is also not difficult to see that in faciyg is the largest open
subset of X’ for which the action is properly discontinuous, (see forregke [7] and
[6] for details, and generalizations to not necessarilyetppeserving characters). Fur-
thermore, the subsetor of characters corresponding to the quasi-Fuchsian repieese
tions of  is contained inAgg as a connected component. Bowditch has conjectured
that in fact,XQF = XBQ.

The dynamics of the action df on int(X'\ Agg) is also very interesting, and some
natural questions arise. The first (see [4]), is whetheretlexists p] € int(X" \ Ago)
such that the closure of its orbit containg] and intersect9)xgg. More generally
one can ask if there is a dense orbit under this action, or gtrodoits are dense, and
finally, if this action is ergodic. Another natural questicnwhether intft' \ Agg) is
dense inX \ Ago.

Our main theorem can be considered as a first step towardstulg ef these
questions as it gives an effective way of determiningdf g int(X \ Agg). In fact,
the proof, which is based on a trace reduction algorithmsgimemany cases a way of
constructing a sequence of elements in the orbit @f\hich converges todp]. (In
particular, it can be modified to give an effective constant 0 such that if there exists
neighbors K, Y) such thatjtr p(X)| < ¢ and |tr p(Y)| < ¢, then there exists a sequence
of elements in the orbit ofd] which converges todg]. Our result is also useful for
attacking the conjecture in [8] that the set of ends of a dtardp] should be a Cantor
set if it contains at least three points and is not the enticgeptive lamination space,
since the trace reduction algorithm given produces lotsmafseof the character when
there existsX € ¢ with |tr p(X)| < 0.5.

3. Proof of Main Theorem: A trace reduction algorithm

Our proof of Theorem 1.1 is similar in spirit to that given bywditch in [1]
that [pg] € int(X' \ Agg), although somewhat more geometric. The key lemma is the
following:

Lemma 3.1. Let [p] € X and suppose that there exists X ¢ such that
[tr p(X)| < 0.5, with tr p(X) ¢ R. Then there exists a neighbor Y of X #i such
that |tr p(Y)| < |tr p(X)].

The theorem now follows from the lemma sinceltif p(X)| < 0.5 and trp(X) €
R, then Jp] ¢ Ao, otherwise, we can construct a sequence (of neightots) in €
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such thatXo = X, and furthermore, either (i) the sequence is infinite #nd(X;+1)| <

tr o(Xj)I for all j, or (ii) the sequence is finite and terminatesXat with tr p(Xy) €
(—2,2). In either case,r] ¢ Agg. Note that the condition is an open condition, so
[p] € int(X \ Xsq).

Proof of Lemma 3.1. Let,, n € Z denote the (successive) neighbors>af that
is, Y, = X"Yy for some neighbolyy of X. For simplicity of notation, we use the lower
case letterx, y, to denote tp(X), tr p(Y,) respectively. The condition in the lemma
is then

4 x| < 0.5, x¢R.
By conjugating the representation so th4K) is diagonal andx is its attracting fixed
point, that is,

p00=(5 % ) sw=( & o)
we see that
(5) x=ir+ir1 where |A|>1,
and
(6) Yo = A"+ DA,
where

X2

@) AD= 5,

by the commutator relation (1).
Write » =re'?, so x| =1 > 1, argr =0 € (—m, ]. By renamingy, asY,, and
interchangingA and D if necessary, we may assume that

D
®) 15‘K

< |A|=r.

The idea now is that ifx| is small, thenr ~ 1 and|6| ~ 7/2. Hence|A| ~ |D| ~
IX|/2, so that eithetyp| < |X| (if arg A »# argD), or |y1| < |x]| (if arg A ~ argD). We
make these arguments precise in the following estimates.

From (4), we have the following bounds forand 6:

0.5 +/4.25
9) l<r=p|<——F—— 1281,

(20) —0.25< cosf < 0.25, 0.419 < 0| < 0.581r.
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From (4), (7) and (8), we have

(11) |AD|<ﬁ:>|A|2<E:>|A|<i.
3.75 3.75 V/3.75
Hence,
D IX| ‘ D‘
12 =|A+D|=|A||l1l+—| < 1+—].
(12) 361 = 1A+ DI = A1+ 2] < XL 142
Now we claim that either
D
(13) ‘“K < /3.75,
or
D D)1 V/3.75
14 A+ — V3. 75 |1+ .
) ‘ Ax‘ b /Yo ATY

Proof of Claim. Suppose that the first statement is not thet, is, |1+ (D/A)| >
V3.75. LetD/A=ro€%, wherefy € (—r, ], and writea := |1+ (D/A)|, « := 7 — 6.
So our assumption is equivalent to

(15) a’ > 3.75.

Applying the cosine rule to the triangle with vertices at twmplex numbers O,
D/A and 1+ D/A), we get

1+|D/A? —a?

(16) cosfr — 6p) = cosa = 2D/ A

Now applying the bounds faa and|D/A| from (15), (8) and (9) to (16) and rounding
off, we get

1+r2-3.75
a7 cosx < —— < —0.432.
In particular,
(18) |6o] < 0.367, 0.647 < o < 1.367.

Now write b := |1 + (DA~1/(AL))| and as before, apply the cosine rule to the tri-
angle with vertices at 0DA~%/(Ax) and 1+ OA~1/(A))) to get

D2

A

1
(19) b?=1+=

7 cos@ + 20).

r2
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Using the bounds foé and« in (10) and (18), we get that
(20) le + 20| < 0.522r —> cosfx + 20) > —0.07.

Applying (20) and|D/A| <r <r? to (19), we have

V3.7 J3.7
(21)  b*<1+1+2(0.07)=2.14= b < 1.463< 1?;8f (= 1.512) < ISM 5

where the last inequality follows from (9). This proves tHaim as the second state-
ment of the claim holds in this case. (]

To complete the proof of the lemma, we see that if the first pathe claim holds,
we havelyo| = |A+ D| < |A]/3.75 < |x|, otherwise,|y1| = |Ar + DA™Y = |A| [Alb <
|Alv/3.75< |X|, where the last part of the inequalities in both cases follawn (11).

]
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