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Abstract
We consider the Cauchy problem of second order hyperboliatémn with time
depending coefficients. Time depending singular coefftc@m bring some loss of

regularity of the solution; for instance “infinitely many aidation”, “infinite order
degeneracy” and “accumulation of zeros” crucially influeran the regularity loss.
In this paper we make clear the order of regularity loss from ititeraction of the
singular effects, and also discuss the optimality.

1. Introduction

We consider the loss of regularity of the solutions to thdofeing Cauchy prob-
lem of second order hyperbolic equation:

@ rﬁ—am%nﬁun:o, (t,x)e [0, T] x R,

u(T, x) =uo(x), u, (T, x)=ui(x), xeR",

where A =Zj21 83/_, a(t) > 0 andT is a small positive number.
Let p(¢) be a positive function fot € R". We introduce the following weighted
energyE ( ;p O )) for the solution of (1) as follows:

B p(0) = [ 86 peNde = [ pealIerat. OF +1i(. O de.

whereii(t, &) denote the partial Fourier transformation with respecthte space vari-
able x .

Let us suppose that r () is strictly positive and Lipschitz towrous on [QT ],
then one can prove the following energy inequality:

(2 E(@t;1)<CE(;p(D))

with p(¢) = 1, it follows that (1) isL? well-posed, whereC is a positive constant; we
will denote by C andC; [ =0 1.. ) some positive constants from beloithout
any confusion.

On the other hand, if: () has a singularity, which means ngsthitz continu-
ity or having a zero, therl.? well-posedness dose not hold in general. In the other
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words, the solution loses some regularity from the influsnog singular behavior of
a(t). According to Colombini, De Giorgi and Spagnolo [1],dft (i9 strictly positive
and Hblder continuous of ordest € (0 1), then one can prove the inggu@) with
p(€) = exp(&)Y*) for s < 1/(1 — «), but not fors > ¥ (1- « ) in general, where
(€) = /1 +|£|2. Such a problem for non-strictly positive coefficient () isaconsid-
ered by Colombini, Jannelli and Spagnolo [4], and the ordep(g), which describes
the loss of regularity, is higher than strictly positive easith the same Blder con-
tinuity to a(t). In any cases, such singularities of the cogdfits causes infinite order
regularity loss for the solution. Especially, dft () is sttic positive and log-Lipschitz
continuous, which meanis 1] — a()|/ |(ty — t2) In |ty — to]] < C for 1, # 1o, then one
can takep £ ) <)M for a positive constaM , it follows that (1)d&°  Ivmsed.

Holder and log-Lipschitz continuity are appropriate to slfs the relations be-
tween the singularity of non-Lipschitz continuous coeéfiti and the order of regular-
ity loss of the solution. But such global regularity conalits fora ¢ ) are not appro-
priate if one is interested in the loss of regularity whichgenerated from one point
singularity ofa ¢ ). Actually, such a precise estimate for tbes of regularity will be
required from an application to non-linear problem.

In the present paper we consider the cases that the coefficfenhas only one
or countably many singular points as goes to O.

2. Results

Let a() be decomposed into a product of the two non-negatinetionsA ¢ ) and
b(t) by

a(t) = A(0)b(0),

where A ¢ ), andb { ) describe thacreasing behavigrand theoscillating behaviorof
a(t) respectively. Here we suppose that

@) A1) € CX[0.T]).  b(1) € C2((0. T)).
, MO _ (M) KO _ A0
) $0 =050 —C<A<t)>’ W =A@ O @T)
tA(t) v
(5) ]ln (m) < C(in AG)Yy,

and

bo < b(t) < by,
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wherekg, bp and by are non-negative constants andt (fé:A(s) ds. Moreover, for a
non-negative real numben we suppose the following conditions tor () ahd ():

AQ) : AD N ]
o s a1} o {(mxm A7) P “"} >

Then our first theorem is described as follows:

(6)

Theorem 2.1. Let by > 0 and x = maXkyo, k1}. Under the assumption&3)—(6)
the following estimate holds

(7) E(t;1) < CoE(T; expCi(In(D))"))

on [0, T']. Moreover the estimate(7) is optimal that is for any given positive real
numbere there exist&(r) and b(¢) satisfying the assumptions of the theorem such that
for any positive constant€y and C; the estimate

®) E(t;1) < CoE(T; expCi(In(D))™*))
does not hold in general
The following corollary is concluded form the theorem:

Corollary 2.1. Under the assumption€3)—(6) with 5o > 0 we have the follow-
ings
(i) If « < 1, then (1) is C* well-posed on0, T]. On the other handsif « > 1,
then (1) is not C* well-posed in general
(i) If « <1 and A(0) > O, then the loss of regularity for the solution @f) att =0
is arbitrarily small. Moreovet if ¥ = 0, then (1) is L? well-posed on[0, 7], that is,
the solution of(1) loses any regularity at = 0.

Theorem 2.1 gives some optimal regularity estimates in #me chat the coeffi-
cienta ¢ ) has only one (or no) zero. But we can consider the taste: ¢ ) has count-
ably many number of zeros under some restrictioruto () arcimedzeros. Besides
the conditions (3)—(6), we suppose the following condgion

For a small positive real numbet there exist sequences dfiygoseal numbers
{t; }j=1, {r]}j=1 @nd {t;} 51 satisfyingzj,; < 7, <t; <7; for any j such that

o) =ay =] 7]

j=1
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and

_ M) Al

®) O = R M) = T

Here we note thab(r.i) 4 . Then we introduce the following condiido b ¢ ) for
tel; = [rf,r}'] G=L2...):

There exist constantao and dy independent ofi , and sequences of real humbers
{d;}j=1 and {m};>1 satisfying 1< m; < mo and 0< d; < dp such that

FLOINA0N% ) \?
(10) b(7) +<b(t)) EC(IB(IJJ')|>

for anyr € I; and

o () o) w0z )

for any s € I;\ {t;}, whereB &, 12) = [ b(s) ds.
Then we have the following theorem:

Theorem 2.2. Suppose the condition8)—(6) and (9)—(11).If b(T) > 0, then the
estimate(7) holds on[0, T with

(12) K = max{/co, K1, sup{lnij } } .

;o lInIna(z;)—t

RemARk 2.1. One can replace the definition of from (12) to

. Inj
K = max\ ko, kK1, Ilmsup{i +¢e
{ jooo LININA(r;)~2
wheree¢ is an arbitrary given positive real number.

Let us briefly introduce some related results to our theorems
In the strictly hyperbolic case t (¥ Iyt () &8¢ () arth > 0, by Colombini,
Del Santo and Kinoshita [2] it is proved that the conditions

(13) b@)e CY(O, T]) and sup{r|p'(r)]} < o0
€(0,7]

r(

are sufficient for theC* well-posedness of (1). For instance) X b(r) = 2 +
cos(Inr~1) satisfies the condition (13). 16 7 (  C?((0, T]), then more singular be-
havior for b’ () atr = 0 is allowed for th&> well-posedness than).(18deed the
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condition is given as follows:

2
(14) b() e CX(0.T]) and sup{ ! |b/(t)|} + sup {( ! ) |b”(t)|} < co.
e LNt reor) | \Inz—1

Moreover, the condition (14) is optimal (see Colombini, Deh® and Reissig [3] and
Hirosawa [6]). In Hirosawa [7] it is considered not only fmitoss of regularity ¢
well-posedness) but also small loss of regularity from tleénipof view for the gen-
eralization of the condition (14), and this result corregg® to Theorem 2.1 of the
conclusions (7) withh /) = 1. Thus, for the coefficient

(15) a(t) =2+ cos((In 1)<

we see thatifk > 1", %k =1", “0< «x < 1" and % = 0", then the order of regu-

larity loss of the solution to (1) is “infinite”, “finite”, “ditrarily small” and “nothing”
respectively.

Remark 2.2. We only see from [2] that the regularity loss is at mositdirfor
the coefficient (15) withkx = 0. On the other hand, in virtue @f €)C?((0, T]),
actually the regularity loss is nothing from the concluswi[7]. One cannot say that
the conclusion of [7] (and also [3], [6]) contains the corsddun of [2], because of the
difference of the assumptions to the differentiability of). (Incidentally, it is proved
in Hirosawa and Reissig [8] that one can weaken the assumptid € C?((0, T'])
of (14) toa)e C**((0, T]) for any e > O.

In the weakly hyperbolic cas& (0) = 0 ag > 0, by Tarama [11] it is proved
that for A ¢) =e™"" and a positivaC? periodic functions { ) the conditione > /1 2 is
necessary and sufficient for th&°  well-posedness of (1). Bydjfan [12] the func-
tions A ¢) andb ) are generalized. Their conditions for ¢f& [\pebedness corre-
spond to Theorem 2.1 witkh > 1. Recently, by Reissig [10] théege (7) is proved
for 0 < k¥ < 1. Thus actually the new point of Theorem 2.1 is the optity of the
estimate (7) forc /=1, that is, the estimate (8) does not holddneral even if /= 1.
Indeed, the proof of such an optimality is not a simple analofjthe casec =1.

Remark 2.3. The estimate (7) witk < 1 implies that the Cauchy probldm (
is H*® (or C*) well-posed on [0T ], in the other words, there exist &ifie num-
ber M and a unique solution #,(t ) such thatt,  ¢€) rﬁ:OCH([O, T); HY) for
any (o, u1) € HM*2 x HM*1 where H* denotes the usual Sobolev space of order
Then M describes the order of regularity lossalf () is styigibsitive, then the es-
timate (7) withk < 1 implies that the order of regularity lossaiitrarily small. On
the other hand, such a small loss of regularity does notvioflmm the estimate (7)
in general, becauseg ¢ ( ;1) is a weighted energy. Indeed rdj =(0 atr =1y, then the
estimate (7) shows only the boundednesgwfz, - (|| ) .
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If a(?) has infinitely many number of zeros, we meet other difties for the
proof of the estimate (7). By Yamazaki [13] and [14] the® abtl well-posedness
of (1) for such coefficients are considered under some daitabsumptions ta: z( ),
which corresponds to the assumptions (9)—(10). (For thaildewill be mentioned be-
low.)

Theorem 2.2 seems to be interpreted as only a unified désaript the preced-
ing results. But actually there are gaps between thesetseduie following examples
will be appropriate to understand what is the meaning of deotems, and also the
connections with the preceding results.

—a

ExampLE 2.1. LetA¢)=e ' andb () be defined by

b(t) = xa())(L + [sinGee ™ )7 + xa(e) [sinGre =) + xs(0),
where x; €) =1 orx; () =0xa(r) + xa(r) + x3(t) = 1
() In the case thaty1(r) = 1 and x2(¢) = x3(¢) = 0, (6) holds fork = mak 0 /o ¥}
1}.
(i) In the case thaty2(t) =1 and x1(¢) = x3(¢) =0, (6) holds fork =mak 0 01 =1.
(i) Let x;(9) be defined byx; {)=1for e Z; and x; ¢ ) =0 fort € Z;, where

7, :=[0, T]\ (Z2 U I3),

I, = Q ((tja + %)w | 1/1
Qi) ((, 7o)

' s —V/a
=Y k= [
1 —v/a 1 —y/a —y/a
(0+3)  -|(-3) (f“) <z
8= v/ v/ v/
B 1\ 7/ ~ 1\ 7/ ~ 1\ "7/
|:<tj“+§) :|—|:(tj“—§> :|+1 for <tj“+§> ¢7Z

with @« >0, 1> 8> 0,y > 0 and [ ] denotes Gauss’ symbol. Then (6) holds for

;c:max{Q max{ Og—l},ﬁ}:max[g—l,ﬁ}.

The conclusions (i) and (ii)—(iii) are proved form Theoreni,2and Theorem 2.2
respectively. The order of regularity loss is determinedthy parametersx g and
y, which describe thevanishing order distribution of zeros and accumulation of the



HYPERBOLIC EQUATIONS WITH SINGULAR COEFFICIENTS 773

oscillation ast — O respectively. Then the corresponding problems and eesuich
considered in the previous papers are the followings:

e for (i) with « >1/2 andy =1, (7) holds foxr =1 ([11]);

o for (i) with =1 anda =y, (7) holds forx =1 ([13]);

e for (i) with « <1 andy =1, (7) holds forx =M — 1 ([10]);

and nothing more concerning Example 2.1. Thus we could densbnly some re-
stricted singular effects of the coefficient which are disat by the parameters §
andy in the previous results. On the other hand, the assesfiaur theorems is that
the loss of regularity is brought from the three differemgsilar effects of the coeffi-
cient:

(s«) vanishing order o 7() as =0;

(s-B) distribution of zeros, which is described by the order)};

(s-y) accumulation of the oscillation as = 0, which is desitby the order ofb’ #(])
and|b” ¢) .

Then, these orders are denoteddyps , and respectively for prathl (iii), and
the order of regularity loss of the solution is determinedtbg interactions of these
parameters such as (12).

3. Proof of the theorems

3.1. Zones. Let us briefly introduce our strategy of the proof. Our goaltas
have a good representation of the solution to conclude tlimae (7). After partial
Fourier transformation with respect o , (1) is rewrittentlas following Cauchy prob-
lem:
(16) (07 + a(t)IE1?)v(t, §) = 0, (. §)e [0 TIx R,

u(T, &) = vo(§), v(T,§)=v(§), §eR",

wherev ¢, &) =u ¢, £ ),v0(€) =up(€) and vy(£) =u1(€). The second order scalar equa-
tion of (16) can be rewritten as the following first order gyst

Vi(e.§) = (A@. §) + Q. E)V (t. §).

If (1,8 is diagonal andReA (& ) = 0,[;1Q(1, £)ldr < Co(ln(&)), |V(, &) >
C1E(t,&;1) and |V (T, & )? < C2E(T, &; 1), then our proof is concluded. Thus the main
part of the proof is how to extract such a vector valued fumct (, £).

Remark 3.1. We transform our problem (1) to (16) in the first step.sThiep
performs only the case that the coefficient depends onlyr onut,this step is not
essential. Indeed, the method to use some properties oflpskffierential operator,
which was introduced in [8], hints a possibility to be getigesd our problem to the
case ofx dependent coefficient.
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Let M be a positive real number, to be chosen later. For anrarpigiven large
numberR we definer; , the sequences of positive real numpers { @hdsatis-
fying ;7 < t; <7 implicitly by

17) RA(@g) =M (INA (g ) )"
and
(18) M =RA@; B .t;) =RA(E)B(;, 17).

Moreover, we denote bV 4 R ) the positive integer satisfying< tzx < ty_1.
Then we define the sets of intervalsy o = Zwo(R, M), Zuo = Zuo(R. M), Zy1 =
Z\I’,l(Rv M) and ZH,l = ZH,l(Rv M) by

Zyo:={te[0,T]t < 1z},

Zuo = {z € [0, 7T [zx, T1 N (It fj)] :

j=1

j=1

Zyq= {t e [0, Y [z T NIt t;)}
and
Zyi = {t e [0, 7Y [z T N J(lz7 . 1) V1], rf))} .
j=1

In particular, ift; < 77, andt] > 7}, then we regard thatc[,7; ), and;[ ;) are
empty respectively. We shall call the sefg o and Zy ;1 the pseudo-differential zones,
and the set<Zy ¢ and Zy 1 the hyperbolic zones respectively.

Let us definez { ) =2 { R ) in the respective zones as follows:

To A(tR) + BiA(t) A(t)Y2A(tr) Y2 for t e Zy,

~ t for telt7,t;),
a(t;R) = a(t;’) [57:1)
a(ry) for te [tj,tj’.'),
a(r) for t€ZyoUZya.

Here we see from the definition @f¢ () that

a(tr)expC (INA @z ) L)) for te Zyo,

(19) a)= ca) for teZya.
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Indeed, the estimate of (19) iy o is straightforward from (5). We introduce the fol-
lowing lemma in order to show the estimate iy 1:

Lemma 3.1. The following estimate holds for anjy

max {A(sl)} < C.

so.s1€1; | A(So)

Proof. Note thatx { )A # ) is monotone decreasing by (4). By (8), (11) and
mean value theorem forj‘ <sp <8< rjf“ with j > 2 there existss, € (s, s1) such
that

Ms) _ N(s2), My, .
A(so) B A(s2) (51— 50) = CA(Ij_l) (rj T )
At;) , o At5) B e
< (AT~ agye ) e s

Thus by (11) and Lemma 3.1 we have

a(t) < CA(t)) ((%(t - t,-)) j +d,-> < CAt;)b(t;)
J

fort e [tj_, tj). If ¢ e[zj,tj*), then (19) is proved by the same way.
3.2. First step of diagonalization procedure. Let us carry out some diagonal-

ization procedure to have a representation of the soluti@h.us fix &, € R” satis-

fying |&| = R. For the solutionv «, &) of (16) we define the vector valued function
Vo(t) = Vo(t; R) by

Vo(t; R) := ( Raft,-;f()tv (;))50) ) ’

wherei =—+/—1. ThenVy(z) is a solution to the following first order system:
(20) @ — Ao(r) — Bo(t))Vo(r) = O,

where

Ao(t) = Ao(t; R) :=iRd(t; R) <(1J é)

and
a'(t; R)
a(t; R)
iR(a(t)?> —4(t; R)?)
a(t; R)

Bo(t) = Bo(t; R) :=
0
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In the first step of diagonalization procedure which will bend below, we transform
the equation (20) taking the hyperbolicity into account. Wédine the matrixM; by

({1 1
)

Then (20) is rewritten as follows:
(21) @ — Ax(r) — Bua(t) — Baa(t)) M7 Vo(r) = 0,

where

Ai1(t) = A1(t; R) = i RA(t; R) (é _2) :

_ o ._dBR) (11
Bii(t) = Bu(t, R) := 7 R) <1 1) ,

and

Bio(t) = B1o(t, R) =

iR(a(t)>—4d(t;R?) ( 1 1
en (1)

respectively. Now (21) is a sufficiently good formula for teetimate in the pseudo-
differential zonesZy o and Zy 1.

3.3. Estimate inZy,. We define the % 2 matrix valued functiod(z, t) by

exp(—iR/f’d(v;R)dv) 0
0 exp(iR/ZIZi(s ;R)ds)

Noting ©1(, 7)1 = @1(z, 1) and O1(z, 1)(3, — A1(r))Oa(z, 7) = 8, the equation (21) is
rewritten as follows:

O1(t, 7) = O1(t, T; R) =

(22) @, — Ba(t, )W, 1) =0,
where

Bi(t.T) = By(t. T; R) = Ou(r, t; R)(Bu(t; R) + Baalt; R))O1(t, T3 R)
and

Wa(t, T) = Wa(t, T; R) := Ou(z, £; R)M;Vo(t; R).
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Then the formal solution of (22) is represented by
00 So Sk,

@) W= W) [ B [ Bl s ds
k=0 VT T

wheresg = ¢. it follows that

oo 1 . k
A LA D Bus. 1) ds)
e o =t 0 S ([ 1B
< |Wai(z, r)|exp( (I B1a(s)|l +||312(S)||)d5)

where ||A|| denotes the matrix norm ofx2 2 matrix, that is, for {afk}ikzl it is
defined by||A|l := max{la;c|} . Consequently, we have

TR TR 2 ~r)\2
IWl(r,rR)ls|W1(TR,TR)|eXp< /O |za(é))| U + /0 R|a(s)25—(s)a(s)| ds)

<t mtesp( [ i as 5 [Mawas)

= |Wi(tg, tr)l exp(% In (1 + blZT\R()T\SR)) L RA(w)

< |Wa(tr, Tr)| €Xp(C (INA r ) ))

+ blRA(TR))

by (5) and (17), it follows that
(24) [Wi(t, tr)| < [Wi(tr, Tr)I €Xp(C (INR ) )
in Z\y_’o.
3.4. Estimate inZy,17. We note thatBy1(r) = 0 in Zy 1. By (18) we have

l R [l |a(s)2—5(s)2|
/tj [ Bia(s)|l ds < > - T ae)

< CRa(t;)(t; —t;) < CRA(t;)B(t; ,1;)) =CM,
where we note that (11) implies the following estimates i [; \ {z;}

b(t)
|B(t, t,)l -

(25) Colt —t;|7*< Calt — ;7

and

MO _ o 00
A@t) = " |B(t, 1)

(26)
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Analogously, we have

G
/ | Bi2(s)l| ds < CM.
1j

Consequently, there exists a positive constant  indepérafep such that

(27) Wiz, 7)| < /p |Wa(z, T)|  for t, <t<t <ty
and
(28) |Wae, 1))| < /o |[Wale], 1)) for 1 <1<,

3.5. Second step of diagonalization procedure.The representation (23), which
is obtained after the first step of diagonalization procedperforms well for the esti-
mates in the pseudo-differential zones. However, such eeseptation is insufficient
for the estimate in the hyperbolic zones. In the next step mmesform the equa-
tion (21) in the hyperbolic zonegy oU Zy 1 taking account of the assumptians €)
C?((0, ¢]); we shall call this step the second step of diagontitimaprocedure.

Let us defineM,(t) = M(t; R) by

oY 1 —p@R)
where
_ L —id'(t)
p(t)=p(; R) = AR P

Now we suppose thaW/,(¢) is invertible; which will be confirmed later. Noting 7 () =
a(r), and the identities:

1 - 1 <p(t)19’(f) —p'(0)
Mo(t) 19, M(t) 3’+1+p(t)2 40 p(t)P’(f)>’

iRa(r) (1—p(t)2 —2p(t) )

Mo(t) LA (t)Mo(t) =

1+p@eR \ —2p@t) —1+p(¥
and
_ _ a'(t) 1+2p@)+p¥  1—p@)
MZ(t) 1B11(I)M2(t) - 2a(t)(1+p(t)2) ( 1_ p(t)Z 1_ 2p(t)+p(t)2) )
we have

My N 0)(@ — Ax(t) — Bra(t)) Ma(r) = 8, — Aa(r) — Ba(t).
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where

iRa(r) + O
nay= )= | 200) o |-
0 —iRa(t) + 2a()
b1+(2) b2+(t))
by (t) b1 (1))’
R2a(t)* i (R a(t)a'(t) 24'()
16R2a(t)4—a’(t)2( Ra(t)® | RZ()* Rza(t)5)

Bz([) = Bz(t; R) = <

bi+(t) = bi+(t; R) =

and

R 4ia" @)\  (8id (2 a()
bas(1) = bae(ti R) = Tepa 5a — a2 <$ <Ra(t)2> + ( Ra(1)? > ¥ 2R2a(t)5) '

Thus (20) is rewritten as follows:
(29) @ — Aa(t) — Ba(t)) M5 (t)M T Vo (2) = .

3.6. Estimate inZy . By (4), (6), (17) and noting #( > d inZy o we have
the followings:

) () |b'(0)]
|p(t; R)| = 4Ra (1% = 4d RA(t)? * 4d2 R (1)

< X0 (InA@)™ < KA

(InA(zr) Y =cm,

Therefore, M»(t) is uniformly invertible in Zg o by choosing the constan¥  suffi-
ciently large.
We define the Zx 2 matrix valued functio,(¢, t) by

Oy(t, ) = Oz(t, T; R) := @G)l(z, T; R).

a(z)

Noting ©,(z, 7)1 = Oy(z, ) and O(z, 1)(8, — A2(t))Oa(z, 7) = 8,, (29) is rewritten as
follows:

(30) @ — Ba(r. T)Walt, 7) = 0,
where

Bo(t, 7) = Bo(t, T; R) := ©a(t, 1; R)Ba(r; R)Oa(t, T; R)
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and
Wa(t, T) = Walt, T; R) := Oa(t, t; R)M; ™ (t; R)YM{*Vo(t; R).
Then the solution of (30) is represented by
® sy s
Walt, ) = Wo(r, t);/r Ba(s1, T)"'/T Bo(sk+1, T) dsgs - - - dsa,

it follows that
|Wa(t, )| < |Wa(z, )| exp(/ | B2(s) I ds) .
t

By (4) and (6) we see that

l < )“(t)z EAYS
la’(t)] < Cm(ln A())

and

()3

- (t)z(ln A@)H%.

la"(t) < C

Therefore, we have

10+ 9220) = € (o a0 AT + 120 0 A )
MO
= Cragp" MO

it follows that

/ “IBas)l ds < C / T M) Ay Y ds

RA(s)?
o (NAOTH*  (nAE)TH> 2 [T ) o
—C< RAG RA@) R, awe™MAO) 1“)
(MA@ (na@™*
- ( RA()  RA(D) )
Thus, we obtain
(nA@) 1> (nA(r) H*
(31) |Wz(r,r)|s|wz(r,r)|exp(c( - 2 ))

+ -
foranyr; <t <t =<7,
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3.7. Estimate inZy ;. We restrict ourselves that [rj ,tj] ; otherwise, we
have the same estimates below in the analogy of the preseet ca

By (10), (26) and noting the definition dfy 1 we have

p(: R)| = ()] _ @b+ [20)b ()]
Pt 4Ra(2 = ARbGRA()

<C< 1 + 1 )< ¢ < ¢
~ \Rb(A@)  RB(t,1;)M(1)) = RB(t,1)x(t) ~ RB(t; . t;)A(t; )
=cm1

Thus My(¢) is uniformly invertible on[r* t

. t;] with respect tg  for largel
By (4), (10) and (26) we have

2

Hence we obtain

|b1:t(t)|+|b2i(t)|§c< be) . b )

RA(1)B(r,1;)?>  R2A(t)?B(r,1;)®
Ch(t) <1+ 1 ) - Ch(t)
= RA(t)B(t,1;)? RA(t)B(t.t;)) — RA(t)B(r,1;)?

Noting (4) we see that

L0081 =208 02 (

A()b(t)
= 2B(tj, t)Y/?

H_ o)
Mt)  2B(t, t))

(€d¥m —1)<0

for sufficiently smalld > 0, it follows that # B #(, ¢ %2 is monotone decreasing on

[tjf, tjf]. Thus we obtain

4 b(s) ! b(s) 1 i b(s)
/, RA()BGs )2 % 5/ RAG)BG 2" = RA(17)B(i; . 1) / B2 "
2 2

< - 0
Ri() B 1) M
for anyr; <7 <t <t;. Consequently, there exists a positive constant h soat

(32) |W2(t’ T)| =< ﬁle(T,TN.

We easily see that the estimate (32) also holds for@ny r <7 < 7.
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3.8. Estimate in the whole zones. Let us introduce the following lemmas:

Lemma 3.2. There exists a positive constant> 1 independent ofi such that

a(t_ii)
aeh) =

Proof. By (18) and (25) we have

a(f) _ b) |BG )| |y -]
o)) " TBGE o) b)) -l 1)

Therefore, the lemma is proved if

(33) tj—t; <C(t] —1;)
and
(34) 1;—1;<C(t; —15).

We only prove (33); otherwise the proof is easier. By (18) aethma 3.1 we have
B(1; . 1;) = CB(1).17),
it follows from (11) that

(1 = (A AN = 1)) +dj)
(67 =) (/AN =)™ +dj) —

(35)

Let us consider the case thdt > 0 and-¢; > t; —1;; otherwise the estimate (33)
is trivial. Denoting forL; > 1 and; > 0 that

(%(ﬁ_m) j =1;d; and (%(q—r;)) j =L;l;d;,

by (35) we have

ym, Lili + 1 ayme

CELI lj+1 - 7J ?

it follows that L; is bounded. Therefore, we obtain (33). O

Lemma 3.3. The following equality and inequalities are established|éoge M:

(36) |Vo(t; R)| = V2 |Wa(t, T; R)|



HYPERBOLIC EQUATIONS WITH SINGULAR COEFFICIENTS 783
and

a(r)
f

Proof. (36) is straightforward from the definition ®§(z; R) and Wi(z, 7; R). We
note the equalities:

|er)|,/ }®ﬂrﬂM”VM41%0M
a(r) a(t)Ru(t, &o) — iv,(t, &o)
2(1+p(t)2) a® w””( )(a(r)Rv(r £0) + i, 50))‘
<a+pﬁamvmsw—ul—pmc£@)y

1 a(r)
T2+ p PV a@) [\ (L pXIOR (. o) +i(L+ s (. o)

Recalling the estimate @b ¢ () in Section 3)g, ¢ |() can be takdnitrarily small with
large M . Thus (37) is proved. ]

a(t)

37) 0

IVo(t R)| < [Wa(t, T; R)| < [Vo(t; R)I.

By (27), (28), (31), (32), Lemma 3.2 and Lemma 3.3 we have
[Vo(t;: R)| = V2|Wa(1; . 1;: R)| < 2o _lim Wiz, 7))
(38) = N/E(Rza(tj_)zh)(tj’ £0)I% + v, (), Eo)l)l/2 <V2ou | Wa(t;. i R)|
< pu|Vo(t]; R)|
and

[Vo(7.1 R)|

(39) <3 (/+1) exp(C ((InA(!+1) 1)21( _ (InA(tf)l)ZK)) |Vo(t7; R)|.

a(t;) RA(t],1) RA(t))

Suppose that € [7j.1,1],,] ands ¢ Zyo, that is, j < N . Then by (27), (38), (39)
Lemma 3.2 and Lemma 3.3 we have the following estimates:

Vot )= W0, 110) | = V20 (W 20)| =0 [Voltfos R

o [ ) g (AL (lnA(z,-)ﬂﬁ()

a(ty) e RA(T,)  RA(; >|Vo(tj;R)’
a(t5,1) (nA@) )™ (nA)

i
Vot | W) g (L % 00T )
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—1\2
<C («/Epzudﬁ)N eXp(%

=expC W +(InR Y )NVo(T; R)I,

)|vo(T;R)|

where we note thal" € Zy o for small 4. Analogously, we have the same estimate if
t€[ti t;-1] andr ¢ Zy . Thus we obtain

J
[Vo(t; R)| < exp(C (N +(InR ¥ )} Vo(T; R))|
for any t ¢ Zy o. On the other hand, by (24) we have
[Vo(t; R)| = V2| Wa(t, )| < C exp(C (INR Y YWa(tx. T&)| < C exp(C (INR Y ) Vo(tx; R)|

for t € Zy 0. Noting the inequalities

N < exp((ln Inx gy L) sqp{ _Inj })

;i lInina@;)—t

< exp((ln InA ¢y )Y) sup{ _Inj })

i LInlinA@;)—t

< exp((ln InR)sjup{m'nIz#}) = (In R)sup{ i/ Ininx ¢}
we obtain

IVo(z; R)| < exp(C (InR ) )Y Vo(T'; R)|
for anyr € [0 T] and any larger numbet . Thus by (19) we obtain (7).

Remark 3.2. We have never considered for non-larBe , but such a case d
not bring any problem for the loss of regularity.
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3.9. Optimality. Finally, we shall prove the optimality of the estimate (7) on
the assumption (6). Precisely, we shall give an example of = (A\ft)b(t) and initial
data satisfying all the assumptions of Theorem 2.1, but #tienate (8) does not hold
for any positive constant€y, C; ande .

Main idea of the proof is based on [11] by Tarama. He proved fitvathe coeffi-
cienta)=e""p¢ 1), wherep is a positive periodic function, there exist iditiata
such that (1) is noC* well-posed sinee< / 1 2. In the other worids,3 1/« — 1,
then there exist initial data such that the estimate (7) withl dose not hold for any
positive constant€’y, and C1. Here we remark that we only see that the estimate (7)
with « = 1 dose not hold even ik < 1 by [11]. On the other hand, owrotem
asserts that the optimality of (7) is true without any resioh to « .

Let us consider the Cauchy problem
(40) :(8,2 M PUTVIE (L 8) =0, (&) e [0.T]x R,

u(T, &) = vo(§), vi(T, &) =val§), & €eR",

wherel ¢) =¢™"" ,a < 1 andp is a positive 1-periodic function. By seftin:= 1/¢
andw 6)=w ¢ £ ) :=sv ¢ &) we have

(a1) (455 #5746 Pp0Er?) u) =0

Let us understand now the ordinary differential equatioh) (ds a small perturbation
of the simpler equation

d2
42) (ﬁ + )»OP(S)Z) w(s) = 0,

where g is a positive constant; indeed, such a equation of Hill'setyp studied well
and the properties will help to solve our problem.

The second order scalar equation (42) is rewritten as tHewfislg first order sys-
tem:

_ 2
%X(s;so) = (2 )‘Og(s) )X(s;so),

where X §, s0) is 2x 2-matrix valued function. Then one can describe a teefil
Floquet theory as follows:

Lemma 3.4 (Floquet theory). Let p(tr) be a continuous 1-periodic and non-

constant functionand
10
X (50, 50) = .
650 =(53)
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There exists a positive real numbeg such thatX(so + 1, sg) has the eigenvalueg
and 1 satisfying|u| > 1. Here we remark that the eigenvalues X{so + 1, so) are
independent ofg since p(s) is 1-periodic

For a proof of this lemma refer to [9] Chapter 1, for instance.
Let us prepare some properties to apply Lemma 3.4 for ourlgmab

Lemma 3.5. For any given real numbes e [0, 1) there exists a positive con-
stant Cs such that

[s™AG™H% = (s — o) M((s — o) Y| < Cso5% %A (s™)?
foranys >1and0 <o < 8s'.
Proof. By mean value theorem there exist constanis,, 63 € (0, 1) such that

ls ™A% = (s — o) (s — o) 1|

< 4o (s — 610) %2 + 200 (s — o ) (s — Ho0)* e 2 020)"
<do(s—0) %% 2 +2u0(s—o) S 2F

< Cos 52~ 2-0) (s 1)2

< Casa75e2m7(s793a)"’1)\’(sfl)2

< Cos‘)‘_“r’ecz‘”(H)L(s_l)2

< Cs05%°A(s )2,
where the constanfs depends only &n . Thus the lemma is proved. O
Let 1o be a positive real number and define s:=Ao)(be the solution to
4. —1\2
S 4)‘(S§ 1) €% = Ao.
Here we remark that for large. ~ we have
1 o
Elnlél <s¢ <Injgl.
Let ¢ be a small positive real number satisfyingol— -1 > 0, ank® <
(In|g))¥Y*=1=¢. Noting o < 3s51"”*8“ for § e [0,1) with large || we have from
Lemma 3.5 that
(43) ko = (se — o)t 27V 1g)? < C(n )~

for large |€] .
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By similar proof for the estimate (43) we have
max |(S§ —n—-1 +t)74672(s§7n71+ry‘ _ (Sg —n+ t)74e72(357n+r)°‘| |%-|2
(44) 7€[-1,0]
< C(njg)tve

for any n satisfyingn — 1< (Ing| ¥*=1¢ <n.
Let us prove now the following proposition:

Proposition 3.1. Letng be a large integer satisfyingo—1 < (In|&[)Y*~¢ < ng

for a given large|§|. Then there exist initial datdw(s¢), ws(s¢)), positive constants
C1 = Ci(x) and C, = C2(x) such that the solutionw(s) of (41) satisfies the estimate

+w(ss —no— 1)] = Crexp(Ca(in [ )V~

d
‘%w(& —ng—1)

Proof. Letn be a non-negative integer. We consider the fatigwirst order sys-
tem:

d
I X" s =
e (t, 70)

X, (10, T0) = (; (])_) .

Then we have the following representation:

(0 —(sz —n +7)(se —n +1)2p(s: +7)2IE|?
0

> X,,('C, TO),

d d
( a5 o= 1’) = Xoo(—1, 0)X, 1(~1, 0)- - Xo(~1, 0) ( W(Sf)) .

w(sz —ng—1) w(se)

We set

X(se —1,5:) = (all 6112> and X, (1 0) :( a1(n) alZ(n)) :

azy azp az1(n) az(n)

and denote their eigenvalues py* , angl respectively. Here ate the following
lemma:

Lemma 3.6. For anyn — 1 < (In|g|)Y*1* < n with large |¢] we have the
followings

(45) min|p, |} > 1
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and
(46) max{|a;; @ + 11 a; & ) Hiner — pal} < Cn gDV

Proof. Notingai1+az = u+u =t we have|ars — u|+lazy— u| > | — =1, from
which follows

_1‘ )

max{lais — pl, lazg— pul} = = [n —

Let us assume that

1
lai — ul > > =

the other case can be treated similarly. Then we also have

1
|6122—M71 > > |l«6—l«fl|-

The estimate (43) implies that max[_1 g [| X, (s, T)|l is bounded, and

Tafg] [ Xn(z,0)— X(se +7,5:) < C(In|gl)~*
TE|—1,

for large |£| . Thus we have the estimate (45). By (44) we also lageestimate (46).

O
Let us set
aia(n) 1
B = Mn — all(n)
n a21(n)
1
Mn— — aza(n)

Then we have
. 0
X,,,(—l, O)Bn :Bn (M 1) )

it follows that

X,0(—=1, 0)X,,,_1(—1, 0)- - - Xo(—1, 0) = B,,,V,,, By *.

no

where

_ (o O Mng-1 O pmo O
Yno_( 0O M1>(1+Gno)< Slufl >(I+Gnol)"'([+Gl)< 00 /vL_l)

no no—1 0
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and
Gue1=B 4B, — I.

Let us denote by (1 1) the (1 1) element Bf,. By Lemma 3.6 we havedB,| +
B, < C and |Gl < C(In|g])t"Y*. Thus we obtain

no

< Cno(n g [ T1mal < Clinlg)™ 1_[|un

n=0 n=0

y(l 1)_ 1_[“11

n=1

Therefore, for larggé| we obtain

no
y(l’ 1)_ 1_[/1//1 =

n=1

no

]_[Iun

n=0

it follows from (45) that

no

(1, 1) > 31_[ |nl = ; (%um + 1)) "> Cexp(C (Injg] e,

n=0

This estimate implies the estimate of Proposition 3.1. Ll
We set; =sgl andt:, =6: —n— 1y'. Noting the inequality

—2_

1 5, ”
= &n 5)\.1‘,, le,,

- J_ mmz{ 1)
we have

iw(sée” —n—1) + |w(s§” —n — 1)| + }tf,}v(tg,,,)}

ds

d
= téinav(téin) +(ts )

d
< 2t§,n, (‘ Ev(té,n)

+t§ n |U(l‘§ ’l)|>
d
=< C ()Ev(té.n)

+ hlte.n) ] |v(ts,n)|)

for any large|&| . Therefore, by Proposition 3.1 and Lemma 3.éhexe the following:
Corollary 3.1. Letwa < 1. For any givené and for any small positive real num-

ber ¢ there existy, 1, satisfying0 < t; < 1o < T, positive constant€y, C1, and initial

data (vo(€), v1(£)) such that the solution t¢40) satisfies

v ()] + () p (s ) €] ()] > CoeCMED ™ [y (1)),
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This corollary concludes the proof of Theorem 2.1.
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