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Abstract
The Exponential attractor, one of notions of limit set in infinite-dimensional dy-

namical systems, is known to have strong robustness and is known to be constructed
under a simple compact smoothing condition. In this paper, we study a dynami-
cal system determined from the Cauchy problem for a quasilinear abstract parabolic
evolution equation. We give a general strategy for constructing the exponential at-
tractor and apply the abstract result to a chemotaxis-growth system in non smooth
domain.

1. Introduction

Exponential attractor which has been introduced by Eden, Foias, Nicolaenko and
Temam [4] is one of very important notions of limit sets in thetheory of dynamical
systems in infinite-dimensional spaces (see [2, 3, 19, 26]).The exponential attractor is,
if it exists, a compact set with finite fractal dimension which contains a global attrac-
tor interiorly and attracts every trajectory in an exponential rate. In many mathematical
models, exponential attractors are considered essential limit sets. In some pattern for-
mation model, the formation is considered to perform in an exponential attractor rather
than in a global attractor. And the fractal dimension of an exponential attractor is taken
as a number of active modes and the attraction of every trajectory is taken as a re-
duction of the degrees of freedom in the process of pattern formation which is called
the slaving principle.

Exponential attractors are also known to have very strong stability in approxima-
tion. Indeed the first and third authors [1] have shown under suitable conditions that
an exponential attractor attracts even approximate solutions in its neighborhood expo-
nentially and continues to trap them in the neighborhood forever. This then shows that
we have global reliability of numerical computations whichare practiced for investi-
gating profiles of the solutions which evolve in the exponential attractor and for know-
ing a structure of the exponential attractor.

Eden et al. [4] presented also a very useful method for construction of exponential
attractors in Hilbert spaces. They showed a method how to construct an exponential
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attractor from a property called the squeezing property of anonlinear semigroup which
defines the dynamical system in consideration. More recently, Miranville, Zelik and
the second author [6] presented another more general methodwhich is available even
in Banach spaces. They presented a new condition of semigroup called the compact
smoothing Lipschitz property, see (5.2), and showed a method of constructing an ex-
ponential attractor from this property. The latter method seems to have advantages in
several view points. In [4], the authors consider a maximal set for the relation of cone
property of semigroup which is closely related to the squeezing property. Such a max-
imal set is however obtained only by using Zorn’s lemma. In [6], a compact smooth-
ing Lipschitz condition of semigroup is only used, which gives us hope for numer-
ical implementations. As we have no uniqueness of exponential attractors, these dif-
ferent methods may give different exponential attractors.But we have to remark that
Miranville and the second author [5] have shown for reaction-diffusion systems that
the two methods have the same sharpness in the estimate of fractal dimensions of at-
tractors.

In this paper we are concerned with construction of an exponential attractor for
a dynamical system determined from the quasilinear abstract parabolic evolution equa-
tion in a Banach space. As observed in [4, Chapter 3], the squeezing property seems
to fit only to semigroups which are determined from semilinear evolution equations
and does not necessarily seem to fit to semigroups determinedfrom quasilinear equa-
tions. So we intend to verify the compact smoothing Lipschitz property of semigroup.
To this end we shall utilize a representation formula of solutions for the quasilinear
equation in terms of the evolution operators for the linear abstract equations. The the-
ory of linear abstract parabolic evolution equations was originated by Tanabe [22, 23]
on the basis of the theory of analytic semigroups. Then it wasdeveloped by many au-
thors (see [7, 24, 25]). To verify the desired compact smoothing, we need however
very refined properties of the evolution operator which may not be necessarily used in
the linear theory itself.

We shall also consider an application of our abstract results to a chemotaxis-growth
model presented by Mimura et al. [14] in mathematical biology. In the paper Osaki
et al. [18], an exponential attractor was already constructed when the region is
a two-dimensional bounded domain of class3 (cf. also [17]). In [18] the authors
established the squeezing property of semigroup to use the method of Eden et al.,
but this required us a shift property that 1( ) with = 0 on
implies 3( ). This is the reason why we needed3-regularity of . But
the compact smoothing requires us only a weaker shift property that 2( )
with = 0 implies 2( ). Therefore, 2-regularity of is sufficient and
more interestingly we can work even in a convex domain (see [9]). As well known,
the spatially discretized approximate problems are usually formulated in polygonal do-
mains (see [15, 16]).
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Not only to the chemotaxis-growth model but our abstract results can be expected
to apply to many other interaction diffusion systems (see [28]).

This paper is organized as follows. In Section 2 we review theevolution opera-
tors for linear parabolic evolution equations and list their properties used in the sub-
sequent sections. Section 3 is devoted to constructing local solutions to a quasilinear
abstract equation and to representing them by the evolutionoperators. First result on
this subject was obtained by Sobolevskiı̆ [20] (cf. also [8]), afterward his result was
generalized by Lunardi [12] and Yagi [29, 30]. We shall present in this paper a very
refined result with its proof. In Section 4 we establish Lipshitz continuity of local so-
lutions with respect to initial values, which provides directly the compact smoothing
Lipschitz condition. We shall present in Section 5 a generalstrategy for constructing
an exponential attractor for a dynamical system determinedfrom the quasilinear ab-
stract equation. Along these lines we shall apply in Section6 our abstract result to
the chemotaxis-growth system.

NOTATION. Let be a Banach space with norm . If there is no fear of
confusion, is denoted by . LetX be a subset of , thenX is a met-
ric space with the induced distance ( ) = ( X ). For X

and a set X , ( ) is defined by ( ) = inf ( ). For two
sets 1 2 X , their distance (1 2) is defined by ( 1 2) = max ( 1 2)

( 2 1) , where ( 1 2) denotes the Hausdorff pseudodistance given by

(1.1) ( 1 2) = sup
1

( 2) = sup
1

inf
2

( )

For two Banach spaces and ,L( ) denotes the space of bounded linear
operators from into with the uniform operator norm L( ). For each ,

( ) = is a seminorm ofL( ). The topology defined by all these semi-
norms is called the strong topology ofL( ). For example, a sequence =1 2 3

of linear operators inL( ) is said to be strongly convergent to an operator
L( ) on if - lim = for all . When = ,L( ) is
abbreviated asL( ).

Let be a Banach space and let be an interval. ( ; ), ( ; ) (0 1)
and 1( ; ) denote the space of -valued continuous functions, Hölder continuous
functions with exponent , and continuously differentiablefunctions equipped with
the usual function norms, respectively.B( ; ) is the space of -valued bounded func-
tions (not necessarily measurable) equipped with the normB = sup ( ) .

2. Review of evolution operators

Let be a Banach space with norm . We consider a family of densely de-
fined closed linear operators ( ), 0 , acting in . We assume thatthe spectral
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set ( ( )) is contained in a fixed open sectorial domain

( ( )) = C ; arg 0
2

and the resolvent satisfies

(2.1) ( ( )) 1
L( )

+ 1
0

with some constant 1. In addition, ( ) is assumed to have a constant do-
main D( ( )) D and to satisfy a Hölder condition of the form

(2.2) ( ) ( ) 1 ( ) 1
L( ) 0

with some exponent 0 1 and some constant 0,D being a Banach space
equipped with a graph norm D = (0) .

The condition (2.1) yields that each ( ) is the generator of ananalytic semi-
group ( ), 0, on , and the semigroup satisfies

( ) ( )
L( ) 0 0

where ( ) denote the fractional powers of ( ). From this estimate the following es-
timate is easily obtained:

(2.3) ( ) 1 ( ) L( ) 0 1 0

Under (2.1) and (2.2), Tanabe [22, 23] constructed a unique evolution opera-
tor ( ) for the family ( ), 0 . That is, ( ) is a family of bounded
linear operators on defined for 0 with the following basic properties:
a) ( ) ( ) = ( ) for 0 , ( ) = 1 for 0 ;
b) ( ) (resp. ( ) ( )) is strongly continuous on for 0
(resp. 0 ) with the estimate ( )L( ) (resp. ( ) ( ) L( )

( ) 1); ( ) is strongly differentiable on in for with ( ) =
( ) ( ); and d) ( ) is strongly differentiable in for on the domain D

with ( ) = ( ) ( ). In this section, denotes a universal constantwhich is
determined in each occurrence by the exponent and initial constants appearing in (2.1)
and (2.2).

By further investigations, we can establish the following estimates of the evolution
operator; for the proofs, see [29, 30]. As for estimates of operator norms,

( ) ( ) L( ) ( ) 0 1 + 0(2.4)

( ) ( ) L( ) ( ) 0 0(2.5)

( ) ( ) ( ) L( ) ( ) 1 0 1 0(2.6)
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( ) ( ) ( ) L( ) 0 1 0(2.7)

As for difference of the evolution operator and the semigroup, we verify the fol-
lowing. For 0 1 and 0 1,

(2.8) ( ) ( ) ( ) ( ) ( ) L( ) ( ) + 0

For 0 1 and 0 1,

(2.9) ( ) ( ) ( ) ( ) ( ) L( ) ( ) + 0

For = 0 1,

(2.10) ( ) ( ) ( ) ( ) ( )
L( ) ( ) 0

For 0 1,

( ) ( ) ( ) ( ) ( )
L( ) log(( ) 1 + 1)( )

0
(2.11)

Let us now consider the Cauchy problem of a linear evolution equation

(2.12)
+ ( ) = ( ) 0

(0) = 0

in . We assume that the initial value0 is from

(2.13) 0 D( (0) ) 0 1

In addition, is an -valued Hölder continuous function suchthat

(2.14) ([0 ]; ) 0 1

Then it is well known that (2.12) possesses a unique solutionin the function
space:

([0 ]; ) 1((0 ]; ) ((0 ];D)

And the solution is represented by the formula

(2.15) ( ) = ( 0) 0 +
0

( ) ( ) 0



106 M. AIDA, M. EFENDIEV AND A. YAGI

with an estimate

(2.16) ( )
0

( ) ( ) 0

(see [22, 23]).
Furthermore it is possible to verify the following refined properties

(2.17) ([0 ]; ) and 1 ([0 ]; D)

In fact, let us first prove these in the case when 0 1. From (2.15),

( ) ( ) = (0) 0 + (0) 1 (0) 0

+ ( ) ( 0) (0) (0) (0) 0 +
0

( ) ( ) ( )

Then, by (2.4) and (2.11), we conclude that ( ) ( ) is convergent to (0) 0

as 0; that is, ( ) ( ) is continuous at = 0 in -norm. For 0 ,
we write ( ) ( ) = ( ) 1 ( ) ( ). By some calculation it is seen from (2.2)
that ( ) 1 is Hölder continuous in inL( )-norm. Hence, ( ) ( ) is continuous
for 0 also.

To see the second assertion of (2.17), we write

( ) ( ) = ( ) ( 0) (0) (0) 0 +
0

( ) ( ) ( ) ( )

+
0

( ) ( ) ( ) ( ) ( ) ( ) + 1 ( ) ( )

(2.18)

Here it follows from (2.4) that

1 ( ) ( 0) (0) L( ) 0 ;

and it is clear that 1 ( ) ( 0) (0) 0 as 0 for every D; then,
since D is dense in , it follows that 1 ( ) ( 0) (0) 0 as 0 for
every . It is easy to see that

0
( ) ( ) ( ) ( )

0
( ) ( ) ( ) ( ) ( ) ( )

Hence we conclude that1 ( ) ( ) converges to 0 as 0 in -norm. It is
the same for 1 (0) ( ) = (0) ( ) 1 1 ( ) ( ). This means that 1 ( ) is
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continuous at = 0 with respect toD-norm. Therefore the second assertion of (2.17)
is also verified.

Let us now consider the case when = 1. We use again the formula (2.18)
with = 1. From (2.10) it is seen that, as 0, ( ) ( 0) (0)1 converges
strongly to 1 on . It is also easily seen that, as 0, ( ) converges strongly
to 1 on . Therefore, ( ) ( ) converges to (0)0. As the continuity of ( ) ( )
is known for 0 , the first assertion of (2.17) is proved when = 1.
From (0) ( ) = (0) ( ) 1 ( ) ( ), the second assertion is also proved.

3. Quasilinear abstract parabolic evolution equations

We consider the Cauchy problem for an abstract evolution equation

(3.1)
+ ( ) = ( ) 0

(0) = 0

in a Banach space . Let be a second Banach space which is continuously embed-
ded in , and let be an open ball of ] such that

= ; 0

For each , ( ) is a densely defined closed linear operator in with the do-
main D( ( )) independent of . is a nonlinear operator from into .0
is an initial value at least from .

We make the following structural assumptions.
The spectral set ( ( )) is contained in a fixed open sectorial domain

( ( )) = C ; arg 0
2

and the resolvent satisfies

(3.2) ( ( )) 1
L( )

+ 1

The domainD( ( )) D is independent of ,D being a Banach space with
a graph norm D = (0) . And ( ) is assumed to satisfy a Lipschitz con-
dition

(3.3) ( ) ( ) 1 ( ) 1
L( )

where is a third Banach space such that with continuous embedding.
The nonlinear operator also satisfies a usual Lipschitz condition

(3.4) ( ) ( )
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There are two exponents 0 1 such thatD( ( ) ) andD( ( ) )
for every with the estimates

(3.5)
1 ( ) D( ( ) )

2 ( ) D( ( ) )

( = 1 2) being some constants independent of .
For the initial value 0 , we assume a compatibility condition

(3.6) 0 D( ( 0) ) with the same as above

Then the following result on local existence is proved.

Theorem 1. Under (3.2)–(3.5), let 0 satisfy the condition(3.6). Then,
there exists a unique local solution to(3.1) in the function space:

(3.7)
1((0 0]; ) ([0 0]; ) ([0 0]; )

( ) ([0 0]; ) 1 ([0 0]; D)

Here, 0 0 is determined by the norm ( 0) 0 and the modulus of continuity

(3.8) 0( ) = sup
0

( 0) 1 0 as 0

Note that from(3.5) and (3.6) it holds that -lim 0
( 0)

0 = 0.

Proof. Similar results have already been obtained in [29, 30] in which the do-
mains D( ( ) are allowed to vary with but the space is assumed to be
reflexive. To get rid of the reflexiveness we shall need in thisproof more refined ar-
guments than those in [29, 30].

Our proof consists of several steps. Throughout the proof denotes a universal
constant which is determined in each occurrence by the exponents and by the initial
constants appearing in the structural assumptions in a specific way.

STEP 1. For such that 0 , we set a Banach space

Z( ) = 0 ([0 ]; ) B([0 ]; )

with some fixed exponent such that 0 .
Here, 0 ([0 ]; ) denotes the space of -valued continuous functions which are

Hölder continuous at the initial time, namely

0 ([0 ]; ) = C([0 ]; ); sup
0

( ) (0)
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equipped with the norm

0 ([0 ]; ) = ([0 ]; ) + sup
0

( ) (0)

It is readily verified that 0 ([0 ]; ) becomes a Banach space.
We set also a subset ofZ( ) in such a way that

K( ) = Z( ) ; (0) = 0

sup
0

( ) 1 and sup
0

( ) ( )
1

Here, 1 is a constant fixed as

(3.9) 0 1

The nonempty setK( ) is clearly closed inZ( ).
STEP 2. For each K( ), ( ) denotes a family of linear operators ( ) =

( ( )), 0 . And is a Hölder continuous function ( ) = ( ( )),
0 . We consider the Cauchy problem of a linear evolution equation

(3.10)
+ ( ) = ( ) 0

(0) = 0

It is quite easy to observe that ( ) satisfies (2.1) and (2.2) with the exponent
fixed above. As 0 and satisfy (2.13) and (2.14), respectively, there exists aunique
solution to (3.10) in the space:

([0 ]; ) 1((0 ]; ) ((0 ];D)

([0 ]; ) 1 ([0 ]; D)

The solution is indeed given by

( ) = ( 0) 0 +
0

( ) ( ) 0

where ( ) denotes the evolution operator for the family ( ).
We can then define a mapping fromK( ) into Z( ) by setting ( )( ) = ( ),

0 , for each K( ).
STEP 3. If 0 is sufficiently small, then maps the setK( ) into itself.
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Indeed, for = ( ), we write ( ) as

( ) 0 = ( 0) 1 0

+ ( 0) (0) (0) ( 0) 0 +
0

( ) ( )

Then by the same calculations as in Step 3 of the proof of [30, Theorem 3.1] (note
that (3.3) implies clearly [30, (A.ii)] with = 1) of using (3.5), (3.8), (2.4), and (2.9),
we can verify that

(3.11) ( ) 0 0( ) + 0 + 1 0

here and in what follows 0 stands for the quantity (0) 0 . Hence, if 0
is sufficiently small, then (3.9) implies that

(3.12) sup
0

( ) 1

In a similar way, we can estimate ( ) ( ) also. In fact, from

( ) ( ) = ( ) ( 0) (0) ( 0) 0 +
0

( ) ( ) ( )

we verify that

(3.13) ( ) ( ) ( 0 + 1) 0

In order to verify the Hölder condition of , let us write

( ) ( ) = ( ) 1 ( ) + ( ) ( )

= ( ) ( ) ( ) + ( ) ( ) 1 ( ) ( ) ( )

+ ( ) ( ) 0

Then, by the same calculations as in Step 3 of the proof of [30,Theorem 3.1] of us-
ing (2.3), (2.4), (2.9), (3.5), and (3.13), we can verify that

(3.14) ( ) ( ) ( 0 + 1)( ) 0

Hence, if 0 is sufficiently small, then

sup
0

( ) ( )

( )
1
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STEP 4. If 0 is sufficiently small, then the mapping :K( ) K( ) is
a contraction with respect to Z( )-norm.

Indeed, for = ( ), K( ), = 1 2, we have

1( ) 2( ) = 1( 0) 2( 0) 0 +
0

1( ) 2( ) 1( )

+
0

2( ) 1( ) 2( )

Here we establish the following lemma.

Lemma 1. For 0 1,

1( ) 1( 0) 2( 0) 0
+

0 1 2 0 ([0 ]; )

0
(3.15)

Let ([0 ]; ) 0. Then, for 0 1,

1( )
0

1( ) 2( ) ( )

1+
1 2 0 ([0 ]; ) 0

(3.16)

Proof. In order to verify these fundamental results, we haveto employ the evo-
lution operators ( ) ( = 1 2) for the families of Yosida approximation ( )
( = 1 2) of ( ) (cf. [23, p.207]). Indeed we observe that

1 ( ) 1 ( 0) 2 ( 0) 2 (0)

=
0

1 ( ) 1 ( )

1 ( ) 1 ( ) 1
2 ( ) 1

2 ( ) 2 ( 0) 2 (0)

Letting , we obtain that

1( ) 1( 0) 2( 0) 2(0)

=
0

1( ) 1( )

1( ) 1( ) 1
2( ) 1

2( ) 2( 0) 2(0)
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Therefore,

1( ) 1( 0) 2( 0) 2(0) L( )

0
( ) 1

1( ) 2( )

0
( ) + 1

1 2 0 ([0 ]; )

From this the first assertion is verified.
Next, we write

1 ( )
0

1 ( ) 2 ( ) ( )

=
0

1 ( ) 1 ( )

1 ( ) 1 ( ) 1
2 ( ) 1

2 ( ) 2 ( ) ( )

=
0

1 ( ) 1 ( ) 1 ( ) 1 ( ) 1
2 ( ) 1

2 ( )
0

2 ( ) ( )

From (2.16), 2 ( ) 0 2 ( ) ( ) satisfies a uniform estimate

2 ( )
0

2 ( ) ( ) ([0 ]; )

and as ,

2 ( )
0

2 ( ) ( ) 2( )
0

2( ) ( ) = ( )

Then, letting , we obtain that

1( )
0

1( ) 2( ) ( )

=
0

1( ) 1( ) 1( ) 1( ) 1
2( ) 1 ( )

Hence,

1( )
0

1( ) 2( ) ( )

0
( ) 1( ) 2( )
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0
( ) 1 2 0 ((0 ]; )

We have thus proved the second assertion of the lemma.

Using this lemma with = , we obtain that

1( 0) 2( 0) 0 +
0

1( ) 2( ) 1( )

( 0 + 1) 1 2 0 ([0 ]; )

In addition, by (3.4) and (3.5), it is easy to see that

0
2( ) 1( ) 2( ) 1+

1 2 0 ([0 ]; )

Hence,

(3.17) 1 2 B([0 ]; ) ( 0 + 1) 1 2 0 ([0 ]; )

0 -norm of 1 2 is also estimated in a quite similar way by applying
the lemma with = . Indeed,

1( 0) 2( 0) 0 +
0

1( ) 2( ) 1( )

+ ( 0 + 1) 1 2 0 ([0 ]; ) 0

In addition,

0
2( ) 1( ) 2( ) 1+

1 2 0 ([0 ]; )

Therefore,

sup
0

1( ) 2( ) 1(0) 2(0)

( 0 + 1) 1 2 0 ([0 ]; ) 0
(3.18)

This together with (3.17) then yields that

1 2 Z( ) ( 0 + 1) 1 2 Z( ) 1 2 K( )

Hence, is a contraction fromK( ) into itself, provided is sufficiently small.
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STEP 5. Take a 0 = 0 in such a way that the results of Steps 3 and 4
are valid. Then, there exists a unique fixed point K( ) of . Since satisfies
the formula

(3.19) ( ) = ( 0) 0 +
0

( ) ( ) 0 0

is shown to be a local solution to (3.1) on the interval [00] which satisfies all
the conditions of (3.7), except that ([0 0]; ).

From (3.11), it is seen that ( ) is continuous at = 0 in the -norm. Mean-
while, ( ) is already known that ((0 0]; D) ((0 0]; ). Therefore,

([0 0]; ).
STEP 6. Finally the uniqueness of local solution in the space (3.7) is verified

by the same arguments as in Step 6 of the proof of [30, Theorem 3.1]. So we omit
the proof.

We have thus accomplished the proof of the theorem.

For more regular initial values such as0 D( ( 0) ) with an exponent ,
1, we can prove a stronger result.

Corollary 1. Let an initial value 0 satisfy a stronger compatibility condi-
tion

(3.20) 0 D( ( 0) ) 1

Then, the local solution obtained inTheorem 1satisfies:

(3.21)
1((0 0]; ) ([0 0]; ) ([0 0]; )

( ) ([0 0]; ) 1 ([0 0]; D)

Furthermore, 0 0 is determined by ( 0) 0 alone.

Proof. By the same arguments as in Steps 3 and 5 of the proof of Theorem 1,
we can verify from (3.20) that the solution belongs to (3.21). Dependence of 0

on ( 0) 0 alone is verifed as in [30, Remark 3.1].

We finally notice some global existence result. For an initial values 0 satisfying
(3.20), assume that every local solution to (3.1) satisfies apriori estimates

( ) 0 0

( ( )) ( ) 0 0

with some uniform constants 0 and 0 independent of . Then (3.1) possesses
a global solution on the whole interval [0 ). In fact this is now clear, because Corol-
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lary 1 yields that any local solution on an interval [0 ] can beextended over the in-
terval [0 + ] with some fixed time length 0 independent of .

4. Lipschitz continuity for initial values

We shall verify Lipschitz continuity of solutions to (3.1) with respect to the initial
values. For this purpose we introduce a set of initial values

= 0 ; 0 1 and ( 0) 0 1 1

with some constants 0 1 and 0 1 . Then, for each 0 , there
exists a unique local solution. Moreover, by Corollary 1, wesee that (3.1) possesses
a local solution in the space (3.21) at least over a fixed interval [0 ] for every initial
value 0 , 0 being determined from the set .

We then show the following theorem.

Theorem 2. Let (3.2)–(3.5) be satisfied. Let and be the local solutions to
(3.1) with initial values 0 and 0 in the set , respectively. Then there exists some
constant 0 depending on the set alone such that

( ) ( ) + ( ) ( ) + ( ) ( )

0 0 0

Proof. Let ( ) (resp. ( )) denote the evolution operator for a family of
linear operators ( ) = ( ( )) (resp. ( ) = ( ( ))).

From (3.19) we have

( ) ( ) = ( 0)( 0 0) + ( 0) ( 0) 0

+
0

( ) ( ) ( ) +
0

( ) ( ) ( )

(4.1)

Let us first estimate -norm of ( ) ( ). By (2.4) and (3.5) we have

( 0)( 0 0) 1 ( ) ( 0)( 0 0) 0 0

By (3.4) and (3.5),

0
( ) ( ) ( )

0
( ) ( ) ( )

For estimating other terms in the right hand side of (4.1), werepeat the same ar-
gument as in the proof of Lemma 1. Indeed, arguing in the same way as for (3.15)
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with = , we observe that

( ) ( 0) ( 0) 0 0
0

( ) 1 ( ) ( )

Similarly, in the same way as for (3.16) with = ,

( )
0

( ) ( ) ( )
0

( ) ( ) ( )

Thus we obtain an integral inequality

( ) 0 0 +
0

( ) 1 ( )

which is satisfied by ( ) = ( ) ( ) .
For all such that 0 , we then see that

( ) 0 0 +
0

( ) 1 sup
0

( )

0 0 + sup
0

( )

Therefore,

1 sup
0

( ) 0 0

This shows that, if is sufficiently small, say 0 with some fixed 0,
then

( ) sup
0

( ) 0 0 0

It now suffices to consider the case when . Then,

( ) 0 0 + 0 0
0

( ) 1

+ 1 ( ) ( ) 0 0 + ( ) ( )

Solving this integral inequality of Gronwall’s type, we conclude that

( ) 0 0

Hence,

(4.2) ( ) ( ) 0 0 0
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Estimation of and -norms of ( ) ( ) is now immediate. By (2.4) and
(3.5),

( ) ( 0)( 0 0) 0 0

Similarly, by (2.4) and (4.2),

( )
0

( ) ( ) ( )

0
( ) ( ) ( )

0
( ) 0 0

1
0 0

In addition, by the same argument as for (3.15) and (3.16) with = , we verify that

( ) ( 0) ( 0) 0 + ( )
0

( ) ( ) ( )

0
( ) 1 ( ) ( )

0
( ) 1

0 0 0 0

Summing up these estimates, we conclude that

( ) ( ) 2 ( ) ( ) ( ) 0 0 0

It is similar for the estimation of ( ) ( ) . We may argue as for (3.15) and
(3.16) with = 0.

5. Exponential attractors

Let be a Banach space with norm . LetX be a subset of ,X being
a metric space with the distance ( ) induced from . A family of nonlinear
operators ( ), 0 , fromX into itself is called a semigroup onX if (0) = 1
(identity in X ) and ( + ) = ( ) ( ) for 0 . A semigroup is called
a continuous semigroup onX if

(5.1) ( 0) = ( ) 0 is a continuous mapping from [0 ) X into X

Let ( ) be a continuous semigroup onX . Then the set of allX -valued continuous
functions ( ) 0, 0 X , on [0 ) is called a dynamical system determined by
the semigroup ( ) on the phase spaceX in the universal space . The system is de-
noted by ( ( )X ).
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From now on we assume that the phase space is a compact set of . From
the compactness ofX , it is immediately seen that the set

A =
0

( )X

is a global attractor of ( ( )X ). That is, A is a compact set of ,A is an in-
variant set of ( ) (this means that ( )A = A for every 0), andA attractsX in
the sense that ( ( )X A) converges to 0 as , where ( ) is the Hausdorff
pseudodistance defined by (1.1).

The exponential attractor is then defined as follows (see Eden et al. [4]). a sub-
setM such thatA M X is called an exponential attractor of ( ( )X ) if
(1) M is a compact subset of with finite fractal dimension;
(2) M is a positively invariant set of ( ), namely ( )M M for every 0;
(3) M attracts the whole spaceX exponentially in the sense that

( ( )X M) 0

with some exponent 0 and a constant 0.
Concerning construction of exponential attractors we present a method of [6]. We

assume the following two conditions. There exists another Banach space with
a compact embedding such that the operator ( ) with some fixed 0satisfies
a Lipschitz condition of the form

(5.2) ( ) 0 ( ) 0 1 0 0 0 0 X

with a constant 1 0. The mapping ( 0) = ( ) 0 from [0 ] X into X

satisfies the usual Lipschitz condition

(5.3) ( 0) ( 0) 2 + 0 0 [0 ] 0 0 X

Theorem 3. Let ( ) satisfy (5.2) with some Banach space embedded com-
pactly in and let satisfy(5.3). Then, an exponential attractorM is constructed
for the dynamical system( ( ) X ).

Proof. It is known by [6, Proposition 1] that, under the Lipschitz condition
(5.2), an exponential attractorM is constructed for a discrete dynamical sys-
tem ( ( ) X ) defined by ( ). Then it is easy to construct an exponential attrac-
tor for the continuous dynamical system on the basis ofM and (5.3), see [4, Theo-
rem 3.1].

In the second half of this section we shall describe a generalstrategy for applying
Theorem 3 to a dynamical system determined from the Cauchy problem of an abstract
parabolic evolution equation.
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Let be a reflexive Banach space. We consider the Cauchy problem for an ab-
stract parabolic evolution equation

(5.4)
+ ( ) = ( ) 0

(0) = 0

in . For each , ( ) is a densely defined closed linear operator inwith
a constant domainD( ( )) D, where is a second Banach space with a con-
tinuous embedding. The domainD is a Banach space with a graph norm D =

(0) . is a nonlinear operator from into .
For 0 , let

= ;

We assume that, for each 0, the family of linear operators ( ), , and
the nonlinear operator : satisfy all the structural conditions (3.2)–(3.5) an-
nounced in Section 3 with a third Banach space such that which
is independent of . If necessary, we may replace ( ) (resp. ) by( ) +
(resp. + ) in the equation of (5.4), where is some sufficientlylarge constant
depending on , for verifying (3.2) and (3.3). Since

( ) ( ) = ( ) + ( ) + D

such replacement does not cause any essential change of equations.
In addition to these conditions, we assume that

(5.5) is compactly embedded in

Let , where 1, be an exponent such that the condition

(5.6) D D( ( ) )

holds. Of course this condition is always true if we take = 1.D is a Banach space
with a graph norm D = (0) . SinceD = D( (0) ) D( (0) ) , (5.5)
implies naturally thatD is also compactly embedded in . Meanwhile, the reflexivity
of implies that ofD .

Let be any bounded set ofD , and take a semidiameter of sufficiently
large in such a way that . By Corollary 1, for every0 , there exists
a unique local solution to (5.4) on a fixed interval [0 ], 0 is determined
from . If we can show a priori estimates for all local solutions starting from ,
then the global solutions are constructed. In fact, assume that there exist constants
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and such that the estimates

(5.7)
( ) 0

( ) D 0

hold for every local solution on [0 ] with (0) = 0 . Then, (5.4) possesses
a global solution on [0 ) for every 0 .

Furthermore, if such a result is true for each bounded set D , then (5.4)
possesses a global solution for every initial value0 D in the space:

([0 ); ) ([0 ); ) ([0 );D ) 1 ([0 );D)

As a result, we can define a semigroup ( ) which mapsD into itself and mapsD
into D for 0 by setting ( ) 0 = ( ), where is the global solution with (0) =

0. Set, for each bounded set ,

(5.8) B =
0

( ) (the closure in the norm ).

The second estimate of (5.7) jointed with reflexivity ofD implies thatB is a bounded
set of D . Therefore,B is a compact set of . Utilizing Theorem 2 finite times in
view of (5.7), ( ) is, for any , a continuous mapping from (B ) into . Conse-
quently,

( )
0

( ) ( )
0

( )
0

( )

this shows thatB is a positively invariant set of ( ). According to Theorem 2
again, ( ) is Lipschitz continuous from (B ) into and the Lipschitz constant is
uniform in any bounded interval [0 ]; this then yields that (0) = ( ) 0 is
a continuous mapping from [0 ) (B ) into . In this way we have constructed
a dynamical system ( ( )B ) determined from the problem (5.4).

The crucial part is to establish an absorbing estimate. We show that there is an ab-
solute constant such that, for every bounded set ofD , there is a time 0
for which the following estimate holds:

sup sup
0

( ) 0 D

Using this constant , we define a set

X1 = D ; D

In terms of the dynamical system, whenB X1, X1 is always an absorbing set
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of ( ( ) B ), that is there is a timeB 0 such that

(5.9) ( )B X1 for all B

In addition we set

(5.10) X =
0

( ) ( X1)X1 =
X1

( )X1 X1

where X1 0 is a time such that ( )X1 X1 for all X1. Then, by the same ar-
gument as above,X is a compact set of and is a positively invariant set of ( ); in
particular, ( ( )X ) is also a dynamical system. Furthermore in the sense of (5.9),
every dynamical system ( ( )B ) with B X is reduced to the dynamical sys-
tem ( ( ) X ) in finite time ( B + X1).

We are now ready to apply Theorem 3 to the system ( ( )X ). From Theo-
rem 2, ( ) satisfies with sufficiently small time 0 the condition (5.2). Similarly,
we have

( ) 0 ( ) 0 0 0 0 0 0 X

In addition, for ( ) 0 = ( ),

( ) 0 ( ) 0 = ( ) = ( ( )) ( ( )) ( )

( ) sup
0

( ) D ( ) 0

Therefore, (5.3) is also fulfilled.
In this way we can construct an exponential attractor for ( ( )X ).

6. Outline of application to chemotaxis-growth system

6.1. Chemotaxis-growth system. We are concerned with the Cauchy problem
of the following chemotaxis-growth system

(6.1)

= ( ) + ( ) in (0 )

= + in (0 )

= = 0 on (0 )

( 0) = 0( ) ( 0) = 0( ) in

where is a bounded convex domain inR2.
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Here, ( ) is a real smooth function of ( ) with uniformly bounded
derivatives up to the third order

(6.2) sup ( ) = 1 2 3

The function ( ) is a real smooth function of ( ) such that (0) = 0and

(6.3) ( ) = ( + ) for sufficiently large

with two constants 0 and .
As for derivation of this system, see [14] and [18].
In this section we use the following notations. is a bounded convex domain in

the plane. As well known, a convex domain is a Lipschitz domain (cf. [9, Corollary
1.2.2.3]). For 0 , ( ) denotes the Sobolev space, its norm being denoted
by (see [9, Chap. 1] and [27]). For 0 0 1 2, ( ) coincides
with the complex interpolation space [0( ) 1( )] , where = (1 )0 + 1, and
the estimate

(6.4) 1
0 1

holds. When 0 1, ( ) ( ), where 1 = (1 ) 2, with continuous
embedding. When = 1, 1( ) ( ) for any finite 1 with the estimate

1
1

where 1 (by virtue of Stein [21, Chap. VI,Theorem 5] this can be
verified even in a Lipschitz domain). When 1, ( ) () with continuous
embedding.

We shall make use of the following known estimates (see [18]). For any 0 1,

(6.5) 1+ 1+ 1+
1+ ( )

Let 1( ) be a smooth function defined for . Then, for any 0 1,

1(Re ) 1+ ( 1+ ) 1+ ( )(6.6)

1(Re ) 1(Re ) 1+ ( 1+ + 1+ ) 1+

1+ ( )
(6.7)

where ( ) denotes some continuous increasing function determined from 1( ).
From these facts we immediately verify that

1 2 1+ 1 1+ 2

1+ ( ) 1
1+ ( ) 2 ( )

(6.8)
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with an arbitrary , 0 1. For the definition of the space2 ( ), see (6.11).
The 1( ) -norm of 1 is estimated as follows. We have

1 ( 1) 1

= 1

2 (1 ) 1 2 ( ) 2 1 1+ 2 1

with 0 1. Therefore,

1 ( 1) 1 1+ 2

( ) 1
1+ ( ) 2 ( )

(6.9)

with an arbitrary 0 1. Let us consider 1 as a linear operator with
respect to , then it is a bounded operator from1+ ( ) to 2( ) and, at the same
time, from ( ) to 1( ) . So by interpolation we obtain that

1 ( 1 2) 1 2+ 1 1+ 2

1 2+ ( ) 1
1+ ( ) 2 ( )

(6.10)

with 0 1.
Consider a sesquilinear form

( ) = + 1( )

From this form we can define realization of the Laplace operator + 1 in un-
der the Neumann boundary conditions on (see Lions and Magenes [11, Chap. 2,
No 9]). Identifying 2( ) and its dual 2( ) , we consider a triplet of spaces1( )

2( ) 1( ) . Then,A = + 1 becomes a densely defined closed linear operator
of 1( ) with D(A) = 1( ). Meanwhile, the part ofA in 2( ), which is defined
by = A for D( ) = 1( );A 2( ) , is a positive definite self-
adjoint operator of 2( ) with

(6.11) D( ) = 2 ( ) = 2( ) ; = 0 on

By the convexity of , one can conclude 2( ) from 2( ) (see Gris-
vard [9, Theorem 3.2.1.3]). Then, we have

(6.12) D(A ) = [ 1( ) 1( )] =

1 2 ( ) when 0
1

2
2 1( ) when

1

2
1
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(cf. [11, Chap. 1, Proposition 2.1]), and

(6.13) D( ) = [ 2( ) 2 ( )] =

2 ( ) when 0
3

4
2 ( ) when

3

4
1

(see [16, Sec. 2]).

6.2. Abstract formulation. In formulating the chemotaxis-growth system as
an abstract equation, we set the underlying space as

(6.14) = ; 1( ) and 2( )

In addition, and are set as

= ; 1( ) and 1+ 1( )(6.15)

= ; 2( ) and 1+ 2( )(6.16)

with arbitrarily fixed two positive exponents 0 1 2 1 2.
For each = , a linear operator ( ) is defined by

(6.17) ( ) =
A1 B1( )
0 2

= D( ( ))

Here, A1 = + 1 is a closed linear operator of 1( ) with D(A1) = 1( ),

2 = + is a self-adjoint operator of 2( ) with D( 2) = 2 ( ). And B1( ) is
a linear operator of 1( ) defined by

B1( ) = (Re ) D(B1( )) = 2 ( )

We notice by (6.6) and (6.9) that, for any 0 2,

(6.18) B1( ) ( 1) ( 1+ ) 2 = 2 ( )

with some continuous increasing function ( ) determined by (). The domain
of ( ) is therefore given by

D( ( )) D = ; 1( ) and 2 ( )
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The nonlinear operator of (5.4) is defined by

(6.19) ( ) =
+ (Re )

=

We notice from (6.3) that

(Re ) ( 1) 1 ( 2 + 1)

( 2
2 (1 2) + 1) 1 ( 2) ( 2

2 + 1) 1 2( ) 1( )

Consequently,

(Re ) ( 1) ( 2
2 + 1) 2( )

In this way we have an abstract formulation of (6.1) as the Cauchy problem of
the form (5.4) in the product space .

6.3. Construction of local solutions. Let 0 , and set

= ;

We have to verify that all the structural assumptions (3.2)–(3.5) are fulfilled by ( ),
, and .

For C (0 ),

( ( )) = = = D =

if and only if

= ( A1) 1 B1( )( 2) 1 +

= ( 2) 1

By (6.18) ( = 2), we observe that

( 1) ( A1) 1
L(( 1) ) ( 2) 1

2 + ( 1)

2 ( 2) 1
L( 2) 2

Then, for an arbitrarily fixed 0 2, the spectral set ( ( )) is contained in
an open sectorial domain

( ( )) = C ; arg
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with the estimate

( ( )) 1
L( )

+ 1

Hence, (3.2) is verified.
Let with = and = . Then, since

( ) ( ) 1 ( ) 1 = ( ) ( ) ( ) 1

=
0 B1( ) B1( )
0 0

( ) 1

(3.3) is reduced to the condition

B1( ) B1( ) ( 1) ( 1 + 1+ 1 ) 2
2 ( )

But this is verified by similar calculations as for (6.9), utilizing (6.6) and (6.7)
with = 1.

From (6.3) we observe that

(Re ) (Re ) ( 1) 1 ( + + 1)

2 (1 1)( 2 (1 2) + 2 (1 2) + 1) 2 ( 1+ 2)

1 ( 2 + 2 + 1) 1 2( ) 1( )

Then, from (6.19), (3.4) is also verified.
To verify (3.5) we consider a decomposition ( ) = + ( ) with

=
A1 0
0 2

and ( ) =
0 B1( )
0 0

From (6.12) and (6.13) it is seen that, for 0 1,

(6.20) D( ) = ; [ 1( ) 1( )] and [ 2( ) 2 ( )]

Meanwhile (6.18) ( = 2) yields that

B1( ) ( 1) 2 2
2 ( )

Therefore, on account of (6.13),

( ) 2 D
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with 2 = (2 2) 2 1. This shows that ( ) is dominated by with an expo-
nent 2. From the relation of resolvent

( ( )) 1 ( ) 1 = ( ( )) 1 ( )( ) 1

it follows that

( ( )) 1 ( ) 1
L( ) ( + 1) 1 ( 2 2)

By a standard argument (cf. [10, Chap. 1,Theorem 7.6]), we can then verify that

(6.21) D( ( ) ) = D( ) 0 1

with uniform norm equivalence. Hence, in view of (6.15) and (6.16), it is sufficient to
take

=
1 + 1

2
and =

1 + 2

2

for the space condition (3.5).
Therefore, by virtue of Theorem 1, for any initial functions0 2( ) and 0

1+ 2( ), there exists a unique local solution to (5.4). Moreover,Corollary 1 provides
that, if

(6.22) 0 ( ) and 0
1+ ( ) with 2

1

2

then the local solution belongs to the function space:
(6.23)

1((0 0];
1( ) ) ( 1) 2([0 0]; 1( )) ([0 0]; ( ))

(1 ) 2 ([0 0];
1( ))

1((0 0];
2( )) ( 1) 2([0 0];

1+ 1( )) ([0 0];
1+ ( ))

(1 ) 2 ([0 0];
2 ( ))

Here, 0 0 is determined by the norm (0) 0 alone, where = (1 + ) 2;
and, from (6.20) and (6.21), this norm is equivalent to0 + 0 1+ .

If we appeal to the maximal regularity of linear abstract equations, then we can
obtain the optimal regularity for also. In fact, belongs to

(6.24) ((0 0];
2 ( ))

To prove this we consider as a solution to the linear equation

(6.25) + A1 = 1( ) 0 0
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in the space 1( ) with 1( ) = B1( ( )) ( ) + ( ) + (Re ( )). By (6.10) and
(6.23), we observe that

B1( ) ((0 0];
1 2( ) )

From (6.3) it is clear that

(Re ) ((0 0];
2( ))

As a consequence,1 ((0 0];
1 2( ) ).

We now notice the fact that is written as

A
9 8
1 ( ) = A

9 8
1

( )A1 ( ) + A
7 8
1

( )A1A
1 4
1 1( ) 0 0

SinceA1 4
1 is a bounded operator from 1 2( ) to 1( ) (see (6.12)), we obtain that

( ) D(A9 8
1 ) 5 4( ) and ((0 0];

5 4( ))

Furthermore, since 1 2((0 0];
2( )), it follows by interpolation property (6.4)

that

1 20((0 0];
9 8( ))

We next notice that is a solution to the evolution equation

(6.26) + 2 = ( ) 0 0

in 1( ) = D( 1 2
2 ). As 1 20((0 0];

1( )), the maximal regularity of this
equation provides that 2

1 20((0 0];
1( )), that is

1 20((0 0]; D( 3 2
2 )) 1 20((0 0];

2( ))

Then we can use (6.8) with = 1 8 to obtain that1 1 20((0 0];
2( )).

This means that the evolution equation (6.25) can be considered in 2( ) substitut-
ing the part 1 of A1 in 2( ) for the coefficient operatorA1. As a result we obtain
the desired regularity (6.24).

6.4. Global solutions. We assume nonnegativity of initial functions0 and 0

in addition to (6.22). Then, by the truncation method (see [18, Theorem 3.5]) nonneg-
ativity of and is verified.

The goal of this subsection is to show a priori estimates of local solutions to (5.4)
in the space:

(6.27)
0 1((0 ]; 2( )) ([0 ]; ( )) ((0 ]; 2 ( ))

0 1((0 ]; 2( )) ([0 ]; 1+ ( )) ((0 ];D( 3 2
2 ))
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and to obtain global solutions.
Let 0 , and consider a set of initial functions

+ = 0

0
; 0 0 ( ) and 0 0

1+ ( )

with 0
2 + 0

2
1+ 2

1

2

(6.28)

We first notice local estimates of the solutions starting from initial values in + . As
a matter of fact, Theorem 1 and Corollary 1 provide not only (6.23) but also the esti-
mates

(6.29) ( ) + ( ) 1+ + (1 ) 2( ( ) 1 + ( ) 2) 0

for all local solutions on a fixed interval [0 ] with initial functions from + ,
and being dependent only on .

In view of this fact, we can assume that initial functions satisfy

0 0
1( ) and 0 0

2 ( )

We next show global estimates of the solutions starting frominitial functions like
this. We can verify that the estimate

(6.30) ( ) 1 + ( ) 2 ( 0 1 + 0 2) 0

holds for every local solution in the space

0 1((0 ]; 2( )) ([0 ]; 1( )) ((0 ]; 2 ( ))

0 1((0 ]; 2( )) ([0 ]; 2( )) ((0 ];D( 3 2
2 ))

with some continuous increasing function ( ) determined absolutely.
In fact, this result is proved by an analogous method to the proof of [18, Propo-

sition 4.1]. The arguments in Steps 1–3 of [18] are availablewithout any change, be-
cause the norms 3 and 3 are not used yet. The arguments in Step 4 can be
recovered as follows, although 3 was used. Indeed, we have

( ) 2 2
3 ( 2 ) 3

2
3 ( 2 ) 1 3

1 ( 2 ) 2 3
2

2
3

3 2
2

1 3
2 2

2 3
2

2
3

3 2
2

2 3
2 1

utilizing the moment inequality

2 2
3 2
2

1 2
2

1 2
2

1 2
2 D( 3 2

2 )
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Similarly,

2 2

2
3

2
6

2
3

4 3
2

2 3
1

2
3

3 2
2

2 3
2

4 3
1

In this way we can substitute 3 2
2 2 for 3.

In the meantime we obtain from (6.26) that

1

2 2 ( ) 2
2 + 3 2

2 ( ) 2
2 = ( 1 2

2 ( ) 3 2
2 ( ))

1

2
3 2
2 ( ) 2

2 +
2

2
1 2
2 ( ) 2

2

Thus we have arrived at the same estimate as [18, (4.15)].
As the norms 3 and 3 are not used in the first half of Step 5, the same

estimate as [18, (4.17)] is valid. Hence we have established(6.30).
As an immediate consequence of (6.29) and (6.30), we obtain the global existence

of solutions. For any initial functions0 and 0 in + , (5.4) possesses a global solu-
tion in the space (6.27) with an arbitrary 0 .

6.5. Exponential attractor. We are ready to define a dynamical system from
the Cauchy problem (5.4) and to construct an exponential attractor.

We fix an exponent = (1+ ) 2 with2 1 2. Then, from (6.20) and (6.21),

D( ( ) ) D = 0 = 0

0
; 0 ( ) and 0

1+ ( )

is independent of . We then set

D+ = 0 = 0

0
D ; 0 0 and 0 0

We have already known, for each bounded set+ of D+ given by (6.28), that
(5.4) possesses a unique global solution. Since 0 is arbitrary, this means
that a nonlinear semigroup ( ) is defined onD+. We can now argue along the lines
announced in the preceding section. We define a setB+ from + by the same way
as (5.8), thenB+ is a compact set of and is a positively invariant set of ( ).
If B+ is equipped with the induced metric from , then ( ) satisfies (5.1).
Thus, ( ( ) B+ ) is shown to become a dynamical system.

Furthermore from the decaying estimate (6.3) of ( ), we can establish the ab-
sorbing estimates for ( ) as in [18]. In fact the same estimates as [18, (4.4), (4.9),
(4.12), (4.15)] and the first half of the estimate [18, (4.18)], namely

( ) 2
1 0

2
1 + ( 0 2 + 0 2) 0
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are all verified by the quite similar techniques as in [18]. These estimates then imply
existence of an absolute constant such that, for any boundedset + of D+, it holds
that

sup sup
0

+
( ) 0 D

with a suitable time 0 depending on . Furthermore, a set of theform X +
1 =

D+
1 ; D is an absorbing set.

We finally define a setX + from X +
1 by the same way as (5.10). Then,X + is

a compact set of and is an absorbing and positively invariantset of ( ). There-
fore a dynamical system ( ( )X + ) is defined which absorbs every larger sys-
tem ( ( ) B+ ) in finite time.

As the Lipschitz conditions (5.2) and (5.3) of ( ) and ( 0) are easily verified
by Theorem 2, we conclude by Theorem 3 that the dynamical system ( ( ) X + )
possesses an exponential attractor.
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2002.

Masashi Aida
Department of Applied Physics
Osaka University
Suita, Osaka 565-0871, Japan

Messoud Efendiev
Mathematisches Insititut A
University of Stuttgart
Pfaffenwaldring 57, 70569 Stuttgart, Germany

Atsushi Yagi
Department of Applied Physics
Osaka University
Suita, Osaka 565-0871, Japan


