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Abstract
Laws of the occupation times on a half line are studied for one-dimensional dif-

fusion processes. The asymptotic behavior of the distribution function is determined
in terms of the speed measure.

1. Introduction

Let be a one-dimensional standard Brownian motion and let+( ) =

0 1 0 . Thus +( ) ( 0) denotes the sojourn time on the half line (0 ) and
the following fact is well-known as P. Lévy’s arc-sine law:

0 1
+( ) = 0( +(1) )

=
2

arcsin 0 1

Many authors have tried to extend this result for more general stochastic processes and
in the present paper we are interested in linear diffusions.

A typical, interesting example is the case of the skew Besseldiffusion processes

and in this case Barlow-Pitman-Yor ([1]) obtained the law of+( ) = +(1) =:
explicitly (see Section 2). In connection with their result, S. Watanabe [11] determined
all possible limiting distributions as of +( ) for general linear diffusion
processes. Since they have calculated the double Laplace transform of the distribution
function of +( ), we may say that the law of+( ) is already known in a sense. How-
ever, it would still be of interest to derive further properties of the law, and our aim
of the present paper is to study the asymptotic behavior of

(1.1) 0( +( ) ) as 0+

for every fixed 0.
To state our results, we first recall that the generator of a conservative lin-

ear diffusion has the following canonical representation:= ( ( ))( + ( ))
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where ( ) and ( ) are called the scale and the speed measure, respectively. Chang-
ing the scale, if necessary, we may and do assume that the scale ( ) is identi-
cally equal to and thus we shall consider stochastic processes with generator of
the form = ( ( ))( + ). Our main result (Theorem 1) is as follows: the or-
der of infinitesimal of 0( +( ) ) as 0+ depends on the asymptotic behav-
ior of +( ) := [0 ] as 0+ and the multiplicative constant is determined
by ( ) := [ 0) . The proof will be carried out analytically as an easy appli-
cation of Krein’s string theory. In fact we also have a probabilistic proof based on
the excursion theory, but we shall not go into details here.

Another result of the present paper is related to a result of S. Watanabe [11]
which treats the limiting distributions of +( ) as , and we shall study the
asymptotic behaviour of 0((1 ) +( ) ) when not only but 0. This
may be regarded as a sort of large deviation problem in the sense of W. Feller ([2,
p.548]).

The contents of this paper are as follows. In Section 2, we shall first introduce
some notations and review well-known facts not only on linear diffusions but also on
Krein’s string theory, and then we shall state our main theorem with the proof. In Sec-
tion 3, we shall study the case that = ( ) varies with in S. Watanabe’s result.

2. Main result and the proof

Let : [0 ) [0 ) be a right-continuous, nondecreasing functionwhere 0
. We put (0 ) = 0 and ( ) = for when so that the Borel

measure is defined on [0 ). Such is referred to as an inextensible measure.
Let M be the class of all such functions . For 0, let ( ), ( ) be the so-
lutions of the following integral equations:

( ) = 1 +
0

+

0
( ) ( )(2.1)

( ) = +
0

+

0
( ) ( )(2.2)

on the interval [0 ). So ( ) and ( ) are solutions of the differen-
tial equation ( ( ))( + ) = with initial conditions (0) = 1, +(0 ) = 0
and (0) = 0, +(0 ) = 1, respectively. Set

(2.3) ( ) = lim
( )

( )

In particular, if ( ) 0, then ( ) . The correspondence between () and ( )
is called Krein’s correspondence and ( ) is called the characteristic function of
the string . For the details of Krein’s correspondence we refer to Kotani-Watanabe [9].
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The function is known to have the following representation:

(2.4) ( ) = +
0

( )

+
0

for some 0 and nonnegative Radon measure on [0 ) such that

0

( )

1 +

In fact it holds that = inf 0: ( ) 0 . LetH be the class of all functions
of the form (2.4) with 0 . The important result is that Krein’scorre-

spondence is one-to-one and onto so that we may write . Let1 M be
the right-continuous inverse of M. If is Krein’s correspondence, then

1( )
1

( )

is also Krein’s correspondence. 1 is called the dual string of . Let be the class
of functions ( ) of 0 which have the form

(2.5) ( ) = 0 + 1 +
0

(1 ) ( )

where 0 1 0 and ( ) is a nonnegative Radon measure on (0 ) with

0 1 +
( )

If H, then 1 .
Now let + M such that

: [0 ) [0 )

and (0) = 0. We define the Radon measure ( ) on ( +) by

( ) =
+( ) on [0 +)

˜ ( ) on ( 0)

where ˜ ( ) is the image measure of under the mapping . A stochas-
tic process associated with = ( ( ))(+ ) can be constructed as follows.
Let 0 be a standard Brownian motion onR with 0 = 0 and let ( ) 0

R be its local time, i.e., the mapping ( ) ( ) is jointly continuous a.s. and

0
1 ( ) = 2 ( )
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for every B(R). Let

( ) =
( +)

( ) ( )

and put

= ( 1( ))

Then 0 is a strong Markov process on the support of ( ) whose lifetime
is identified with the first hitting time for+ or . This process is called the gen-
eralized diffusion process corresponding to the pair+ . Notice that this is one
of the standard methods of constructing one-dimensional diffusion processes (and birth
and death processes) which allow the killing only on the boundary.

Let be a (generalized) diffusion process on ( +) corresponding to
the pair + so that M with (0) = 0 and let be characteristic func-
tions of , respectively. Set = 1 . Since the process is also characterized by
the pair + , we may say that is the generalized diffusion process corre-
sponding to the pair of characteristic functions+ or to the pair of characteristic
exponents + .

A positive function ( ) is said to vary slowly at 0 [or at ] if, for every 0,
lim 0[ ] ( ) ( ) = 1 and a function ( ) is said to vary regularly at 0 [ ] with
exponent ( ) if lim 0[ ] ( ) ( ) = , 0. Thus varies
regularly with exponent if and only if ( ) = ( ) for some slowly varying .
If = 0, then the (asymptotic) inverse 1( ) is defined and varies regularly with
exponent 1 .

Now the main result of the present paper is the following.

Theorem 1. Let be a diffusion process on( ) corresponding to
the pair + and +( ) = 0 1 0 . Let ( ) be a regularly varying function
at 0 with exponent = 1 (0 1). If

(2.6) +( )
( )

0+

then

(2.7) 0( +( ) )
1

(1 ) (1 )
( ) 1( ) 0+

where ( ), 0 is a continuous, decreasing function satisfying

(2.8)
0

( ) =
1

( )
0

We postpone the proof and consider, as an example, the case ofthe skew
Bessel diffusion process of dimension 2 2 , 0 1 with the skew parameter ,
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0 1; SKEWBES(2 2 ) in notation. This is the case of the diffusion process
on ( ) corresponding to the pair + is given by

+( ) = 1 1 1
+ =

( ) = (1 )1 1 1 =

SKEWBES(2 2 ) corresponds to the pair+ given by

+( ) = 1 ( ) = (1 ) 1

where = (1 ) (1 + ) (1 ). In the case of SKEWBES(2 2 ), we
put

1
+ = +(1) =:

particularly. Note that, because of the self-similarity ofthe skew Bessel diffusion pro-

cess, the law of +( ) is independent of , i.e., +( ) = +(1), so that +( ) =
. Therefore Theorem 1 implies

0( )
1 1

(1 ) (1 + )
0 +

This fact can be also obtained directly from J. Lamperti’s density formula (see [10]):

( ) =
sin (1 ) 1(1 ) 1

2(1 )2 + (1 )2 2 + 2 (1 ) (1 ) cos

for 0 1. If = = 1 2, then the skew Bessel diffusion process is in fact
the usual Brownian motion up to a multiplicative constant and the above result implies
that

0 1
+( ) = 0( +(1) )

2 1 2 0 +

This is of course compatible with P. Lévy’s arc-sine law.
For the proof of Theorem 1, we introduce the following result, which is due to

Barlow-Pitman-Yor ([1]) and Watanabe ([11]).

Lemma 1 (Barlow-Pitman-Yor, Watanabe).Let be a diffusion process
on ( +) corresponding to the pair + and let be the characteristic func-
tion of and = 1 , respectively. Then, for 0, 0,

(2.9)
0

0[ +( )] = +( + ) ( + ) + ( )

+( + ) + ( )
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In particular, if 0 is SKEWBES(2 2 ), then

(2.10)
0

0[ +( )] =
( + ) 1 + (1 ) 1

( + ) + (1 )

and if 0 is the Brownian motion, then

(2.11)
0

0[ +( )] =
( + ) 1 2 + 1 2

( + )1 2 + 1 2
=

1

+

We refer to Watanabe ([11]) for the proof but we remark that this formula can
also be shown by using the Feynman-Kac formula (cf. Itô [5],Karatzas-Shreve ([7]))
as follows. Let 0, 0 and define

( ) =
0

exp
0

1(0 )( )

Then ( ) is a bounded positive solution of

+ 1 0
( )

+

= 1

So if we solve this equation, then (0) is the right-hand side of (2.9).

Lemma 2. Let ( ) 0 ( = 1 2 ) and ( ), 0 be nonnegative
monotone functions and let , be their Laplace transforms, i.e.,

( ) =
0

( ) 0

( ) =
0

( ) 0

We assume that ( ) and ( ) are finite for all 0 and that ( ) ( ) + for
every 0 and for some constant. Then ( ) ( ) for all continuity points
of .

Proof. By the well-known continuity theorem for Laplace transforms (see
Feller ([2])), we have

0
( )

0
( ) + 0

and hence

( ) ( ) 0
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By monotonicity of , it is easy to complete the proof.

We are now ready to prove Theorem 1. We start with proving the existence of the
unique continuous function ( ) which satisfies (2.8). Since 1( ( )) is the charac-
teristic function of the dual string of (i.e., ( ) = 1( )), there exists a non-
negative Radon measure on [0 ) such that0 ( ) (1 + ) and

1

( )
=

( )
=

0

( )

+

Here, we used the assumption that (0) = 0 and hence inf 0: ( ) 0 = 0,
although this will not play any essential role. Put

( ) =
0

( ) 0

Then, it is easy to see that ( ) is continuous, nonincreasing and satisfies (2.8). Now
by Lemma 1, we have

(2.12)
0

0[ +( )] = +( + ) ( + ) + ( )

+( + ) + ( )

for 0, 0. On the other hand, our assumption on+ combined with a result
of Y. Kasahara ([8]) yields that

(2.13) +( ) =
1

+( )
1 1

Consequently, +( ) varies regularly at with exponent 0 1 and hence+( +
) ( + ) 0 as . Therefore, the right-hand side of (2.12) is asymptotically

equal to (1 +( ))( ( ) ) as . Thus,

0
+( ) 0[ +( )]

0
( )

as . By Lemma 2, this implies

+( ) 0[ +( )] ( )

Combining this with (2.13), we obtain

0[ +( )] ( ) 1 1

Therefore, by Karamata’s Tauberian theorem (cf. Feller [2]), we have

0( +( ) )
(1 + )

( ) 1( ) 0+
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which completes the proof of Theorem 1.

REMARK. We shall not go into details but we remark the following fact. Let
( ) be a diffusion process corresponding to 0 ( ) and let ( ) be the tran-

sition density. Then,

( ) = ( 0 0)

3. Large deviations

The following result was obtained by S. Watanabe ([11]).

Theorem A. For 0 1, 0 1 and every fixed0 1,

(3.1)
0((1 ) +( ) )

0( )
1

if and only if

(3.2) ( ) ( ) 0

where ( ) are slowly varying functions at = 0 with

(3.3) lim
0+

( )

+( )
=

1

We remark that the latter condition is equivalent to

(3.4) ( ) 1 1 ( )

where ( ) are slowly varying functions at = with

(3.5) lim
( )

+( )
=

(1 )1

1

by Y. Kasahara ([8]).
Now it is a natural question to ask how = ( ) can vary with in sucha way

that 0 as in order that the relation (3.1) remains true. The answer to this
question is as follows.

Theorem 2. Let 0 1 and 0 1. Assume that(3.2) and (3.3) hold, or
equivalently, (3.4) and (3.5) hold. Then (3.1) remains true if varies with in such a
way that 0, and +(1 ) +(1 ) 1 as .
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Proof. Let ( ) be a function of such that ( ) 0, ( ) 0 and ( ) 0
as 0. Using Lemma 1 of the previous section, we have

+( ( ))

( ) 0 0

0
+ ( )

= +( ( ))

( ) 0 0

( ( )) 0( +( ) )

= +( ( ))

( )

+( ( )+ )
( )+ + ( )

+ ( ( ) + ) + ( )

=
( ) ( + ( )) +( ( )+ )

( ) + ( ) ( )

+( ( )+ )
+( ( )) + ( )

+( ( ))

0 + (1 )

+ 0
=

1

=
1

0 (1 )
0

By Lemma 2 of Section 2, this implies

+( ( ))

( ) 0

0
+ ( )

(1 )

1
0

Applying again the continuity theorem for Laplace transforms, we have

+( ( ))

( )
0

+ ( )
(1 ) (1 + )

0

Hence we obtain

0
+ ( )

1

(1 ) (1 + )

( )

+( ( ))
0

Assume further that +( ) +( ( )) 1 as 0. Then, setting = = 1 in this
formula, we have

0
+

1
( )

1

(1 ) (1 + )

1
( ( )) 0

This completes the proof if we set = 1 and = ( ).
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