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1. Introduction

In this paper, we will prove a non quasi-invariance of the Brownian motion on
loop groups.

In [9], Fang proved an integration by parts formula for a natural gradient on path
space over loop groups. His gradient is constructed on the parallel translation operator
which was first introduced by Driver [7].

On the other hand, on path spaces over finite dimensional Lie groups, there is
a natural constraction of the gradient based on the group translations. In this case,
the integration by parts formula is computed via the quasi-invariance under the group
translations of the reference measure.

And, there are many works on the quasi-invariance on path groups and loop
groups over finite dimensional Lie groups: See, for example,Albeverio-Høeph-
Krohn [3], Shigekawa [15], Malliavin-Malliavin [12].

On the contrary, our result shows that there is no extension of these results to
the case of the path group over loop groups. If a smooth path acts on the law of the
Brownian motion, the shifted measure is singular to the original measure except the
case of the constant path.

The proof of this non quasi-invariance relies on two recent results.
One is the two parameter stochastic calculus on Lie groups which is developed

in Driver-Srimurthy [8], Srimurthy [17]. This plays an essential role in the non quasi-
invariance of the Brownian motion on path groups (Section 3). For two parameter
stochastic calculus on manifolds, see also Norris [13].

The other one is the equivalence between the heat kernel measure and the pinned
measure which is shown in Driver-Srimurthy [8] and Aida-Driver [1]. This theorem
enables us to reduce the result in the path group case to the loop group case.

The organization of this paper is as follows. In Section 2, wefix some notations
and give a proof for the key lemma (Lemma 2.2). In Section 3 andSection 4, we
will prove the non quasi-invariance of the Brownian motion on path groups and loop
groups, respectively.
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2. Preliminaries

The aim of this section is to fix some notations and collect several results which
we will need in the next section.

Let be a compact semi-simple simply connected Lie group, and∈ be the
identity, be the dimension of . We denote byk = the Lie algebra of . On
k, we fix an -invariant inner product which is denoted by〈· ·〉.

For a topological space with a base point , we denote byP ( ) the space of
based continuous paths over . Then,P ( ) denotes the group of based continuous
paths on . We will use the same symbol to denote the identity ofP ( ).

We set, for ,τ ∈ [0 1], ( τ ) = ∧ τ . Let {β( )}( )∈[0 1]2 be k valued Brow-
nian sheet, i.e.,β is a k valued centered Gaussian process such that

[〈 β( )〉〈 β(τ σ)〉] = 〈 〉 ( τ ) ( σ)

for all , τ , , σ ∈ [0 1], and , ∈ k.
Let { α}α=1 be an orthonormal basis ofk. For ∈ k, set α = 〈 α 〉 We

denote by ˜
α the left invariant vector field corresponding toα.

Let ( ) denote the solution to the following Stratonovich stochastic differential
equation in with as a parameter:

(2.1) ( ) =
∑

α=1

α̃( ( )) ◦ βα( ) with (0 ) =

By Malliavin [11] and Driver [7, Theorem 3.8], we may choose aversion of ( )
which is jointly continuous in ( ). And then, the law of{ ( )}( )∈[0 1]2 is a prob-
ability measure on ([0 1]2 → ) which is supported onP (P ( )). We denote byν
this measure.

It is shown in Driver-Srimurthy [8, Theorem 2.15] that, for afixed ∈ [0 1], 7→
( ) is a Brownian motion on with variance . From this fact, we obtain another

Brownian motion 7→ ( ) on k with variance by

(2.2) ( ) =
∫

0
ω(◦ σ ( σ))

whereω denote the left invariant Maurer-Cartan form on . More precisely, ω is the
k valued one form which is determined byω( ˜ ) = ( ∈ k). It is equivalent that
{ ( )} satisfies the following stochastic differential equation with parameter :

(2.3) ( ) =
∑

α=1

α̃( ( )) ◦ α( ) with ( 0) =

REMARK. By the same proof of Srimurthy [17, Theorem 4.1], we shall obtain a
Brownian sheet from ( ) by using the right invariant Maurer-Cartan form instead
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of ω in (2.2). But since we do not need this fact, we will use the left invariant one,
to avoid confusion.

By (2.3), we obtain the following lemma:

Lemma 2.1. ( )−1 satisfies the following matrix stochastic differential equa-
tion with parameter :

(2.4) ( )−1 = −
∑

α=1
α ( )−1 ◦ α( )

Proof. This is a consequance of Itô calculus. See [16, Proposition 2.1].

We will state our key lemma, which will be used in the next section. Let 1(k)
be the space of 1-paths onk. More precisely, we set

1(k) =

{
∈ ([0 1] → k);

is an absolute continuous function such that

(0) = 0 and
∫ 1

0 |( / ) ( )|2k <∞

}

Lemma 2.2. Let ∈ 1(k) and set ( ) = ( )−1( ( )). Then, for any
fixed ∈ [0 1], { ( )} ∈[0 1] is a semi-martingale and its quadratic variation process
〈 ( )〉 is given by

(2.5) 〈 ( )〉 = −
∫

0
( (σ) (σ)) σ

where denotes

( ) = tr( ◦ )

the Killing form of k.

Proof. From (2.4), we deduce that ( ) = ( )−1( ( )) satisfies

( ) = −
∑

α=1
α

( ( )) ◦ α( ) + ( )−1

(
( )
)

And then, we have the quadratic variation of ( ) as follows:

〈 ( )〉 =
∑

α=1

∫

0
|

α ( σ)−1( (σ))|2k σ

By noting that{ α}α=1 is an orthonormal basis ofk and -invariance of the Killing
form, we have obtained (2.5). This proves the lemma.
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Since we will use the Hellinger integral to show the non quasi-invariance, we re-
view some properties of it. Letρ be the Hellinger integral:

ρ(ν1 ν2) =
∫ √

ν1

ν3

√
ν2

ν3
ν3

where, ν1, ν2, ν3 are probability measures on in relation thatν1, ν2 ≪ ν3. It is
well-known that this definition is independent of the choiceof suchν3. See, e.g. [18,
Section 1.4].

For a probability measureν on ( F), we denote byν the restriction ofν to the
σ-algebraF , and byν( |F ) the conditional expectation of with respect toF .

Proposition 2.1. The following properties holds forρ .

1. ρ(ν1 ν2) = lim
→∞

ρ(ν1 ν2)(2.6)

2. ρ(ν1 ν2) = 0 is equivalent to ν1 ⊥ ν2(2.7)

Proof. We set

α ( ) :=
ν

ν3
( ) α ( ) :=

ν

ν3
( ) ( = 1 2)

for short. First, as for (2.6), we note that

ρ(ν1 ν2) =
∫ √

α1( )
√
α2( ) ν3

=
∫ √

α1( )
√
α2( ) ν3

where we regardα ( ) as a function on ( F ) in the first line and as on ( F) in
the second line. Sinceα = ν3(α |F ), α converges toα in 1( ν3). (see, e.g.,
[10, Proposition 2.2.4 and Theorem 2.6.6].) We have obtained (2.6).

As for (2.7), we refer to [18, Lemma 1.4.1].

3. Non quasi-invariance: over path groups

The purpose of this section is to show a non quasi-invarianceof the measureν
under the group transformations. For the proof, we need the approximation from fi-
nite dimensional subgroup which was first introduced by Driver-Lorentz [6]. First, we
review Driver-Lorentz’s approximation quickly.

For a partition

(3.1) P = {0< 1 < · · · < < 1}
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of [0 1], we set

kP =
︷ ︸︸ ︷
k × · · · × k P =

︷ ︸︸ ︷
× · · · ×

We define〈~ ~ 〉P for ~ = ( 1 . . . ), ~ = ( 1 . . . ) ∈ kP by

〈~ ~ 〉P =
∑

=1

P 〈 〉

where ( P ) denotes the inverse matrix of ( ( )) ∈P . Let 1(kP ) denote the
space of based 1-paths onkP . The map :kP → 1(kP ) defined by

(( 1 . . . ))( ) =
∑

=1

( )

is an isometric embedding ofkP into 1(kP).
We now state our theorem. For∈ P (P ( )), we denote byν the image mea-

sure ofν by the map :P (P ( )) → P (P ( )). In other words,ν is the measure
which is characterized by

∫
( ) ν =

∫
( ) ν

for all bounded Borel function onP (P ( )).
And, we introduce the notion of 1-paths onP ( ) as follows.

1(P ( )) =





∈ P (P ( ));

For each ∈ [0 1], the map 7→ ( ) is an
absolute continuous function, and for a.a. ,
the map 7→ (∂ )( ) ( )−1 is in 1(k),

and
∫ 1

0 |(∂ )( ) ( )−1|2 1(k) <∞





where we set (∂ )( ) = (∂/∂ ) ( ) and (∂ )( ) ( )−1 = ( )−1∗((∂ )( )),
for ease of reading.

Theorem 3.1. Let ∈ 1(P ( )) be a non-constant path. Then, ν and ν are
mutually singular.

To show Theorem 3.1, we need some notations. We set

(3.2) P =

{
1
2

< · · · < 2 − 1
2

}

And then, we set

F = σ
(

( ); ∈ [0 1] ∈ P
)
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and denote byν and ν the restrictions ofν and ν to F respectively.
For in Theorem 3.1, we define∈ 2([0 1] → 1(k)) by

(3.3) ( ) = (∂ )( ) ( )−1

and then define ∈ 1(P ( )) by the following ordinary differential equation with
parameter :

(3.4) ( ) =
1
2

( ) ( ) with (0 ) =

For γ ∈ P (P ( )) (resp.γ ∈ P (P (k))), we useγ to denote the following path in
P (resp. inkP ):

γ =
(
γ
( 1

2

)
. . . γ

( 2 − 1
2

))

The following proposition is well-known ([3],[15]), but for its importance, we will
give a proof for this case.

Proposition 3.1. Let ∈ 1(P ( )). Then, ν and ν are equivalent and the
Radon-Nykodim derivative is given by

(3.5)
ν

ν
( ) = exp

(∫ 1

0
〈 −1( ) β 〉P − 1

2

∫ 1

0
| −1( )|2P

)

where is the path onP0(k) given in (3.3), and denotes the Adjoint representation
of P .

Proof. First, noting that P is compact, we set = sup∈ P ‖ ‖. Here,
‖ · ‖ denotes the operator norm with respect to the inner product〈· ·〉P .

By Itô formula, we have that−1 satisfies

(3.6) ( −1 ) =
∑

α=1

˜
α( −1 ) ◦ ( βα − −1( )α )

As we note above, P is compact and the Novikov condition is satisfied as follows:

[
exp
{1

2

∫ 1

0
| −1( )|2P

}]
≤ exp

( 2

2

∫ 1

0
| |2P

)

≤ exp
( 2

2

∫ 1

0
| ( ·)|2 1(k)

)
<∞

By [14, Chapter VIII, Proposition (1.15)], (3.5) holds.
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Lemma 3.1. The Hellinger integral ofν and ν is given by

(3.7) ρ(ν ν ) =
[
exp
(
−1

8

∫ 1

0
| −1( −1( ))|2P

)]

Proof. First, by (3.4) and (3.5), we have

ν

ν
= exp

(
1
2

∫ 1

0
〈 −1( ) β 〉P − 1

8

∫ 1

0
| −1( )|2P

)

Then, by using the expressionρ(ν ν ) =
∫ √

ν / ν ν , we obtain (3.7) as follows:

ρ(ν ν ) =
∫

exp

(
1
2

∫ 1

0
〈 −1( ) β )〉P − 1

4

∫ 1

0
| −1( )|2P

)
ν

=
∫

exp

(
−1

8

∫ 1

0
| −1( )|2P

)
ν

ν
ν

=
∫

exp
(
−1

8

∫ 1

0
| −1( )|2P

)
ν

=
∫

exp
(
−1

8

∫ 1

0
| (( ) )−1( )|2P

)
ν

=
[
exp
(
−1

8

∫ 1

0
| −1( −1( ))|2P

)]

The proof is completed.

Proof of Theorem 3.1. First, set ={ ∈ [0 1]; ∀ ∈ [0 1] ( ) = 0}. Then,
by Lemma 3.1 and Jensen’s inequality, we have an estimation of ρ(ν ν ) as follows:

ρ(ν ν ) =
[
exp
(
−1

8

∫
| −1( −1( ))|2P

)]
(3.8)

≤ 1
| |

∫ [
exp
(
−| |

8
| −1( −1( ))|2P

)]

where | | denotes the Lebesgue measure of . By Lemma 2.2 and since is semi-
simple, 7→ ( )−1( ( )−1( ( ))) is a semi-martingale of positive quadratic
variation. In particular, the path 7→ ( )−1( ( )−1( ( ))) is not in 1(k)
almost surely. Since| · |P is increasing with respect to , and approximates the

1-norm, we have

(3.9) lim
→∞

exp
(
−| |

8
| −1( −1( ))|2P

)
= 0 a.s.
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And then by (2.6), we have

ρ(ν ν) ≤ lim
→∞

1
| |

∫ [
exp
(
−| |

8
| −1( −1( ))|2P

)]

= 0

The proof is completed.

4. Non quasi-invariance: over loop groups

In this section, we will deduce the non quasi-invariance on loop groups from The-
orem 3.1. To state the theorem precisely, we fix some notations.

We keep some notations in previous sections. We set, for ,σ ∈ [0 1], 0( σ) =
∧ σ − σ. Let {χ( )}( )∈[0 1]2 be k valued Brownian bridge sheet, i.e.,χ is a k

valued centered Gaussian process such that

[〈 χ( )〉〈 χ(τ σ)〉] = 〈 〉 ( τ ) 0( σ)

Let 0( ) denote the solution to the following Stratonovich stochastic differential
equation in with as a parameter:

(4.1) 0( ) =
∑

α=1

α̃( 0( )) ◦ χα( ) with 0(0 ) =

Following the notation in path group case, we set
L ( ) = the based loop space over with base point ,
ν0 = the law of 0( ), and ν0 = ν0 ◦ −1,
F0 = σ

(
0( ); ∈ [0 1] ∈ P

)
,

ν0 , ν0 = the restriction ofν0, ν0 to F0 repectively,
1(L ( )) = 1(P ( )) ∩ P (L ( )),
P
0 = the inverse matrix of ( 0( )) ∈P ,

〈~ ~ 〉0 P =
∑

=1
P
0 〈 〉.

In this case, the matrix P
0 is given as follows:

(4.2) P
0 =





2 +1 ( = )
−2 (| − | = 1)
0 (otherwise)

Our theorem in the loop group case is the following.

Theorem 4.1. Let ∈ 1(L ( )) be a non-constant path. Then, ν0 and ν0 are
mutually singular.
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The way of the proof is the same as in Theorem 3.1. First, we prepare a lemma
which is corresponding to Lemma 3.1. For ∈ 1(L ( )), we define and as
in (3.3) and (3.4) respectively.

Lemma 4.1. The Hellinger integral ofν0 and ν0 is given by

(4.3) ρ(ν0 ν0 ) =
[
exp
(
−1

8

∫ 1

0
| ( 0 )−1( −1( ))|20 P

)]

We omit the proof, since it is the same as in Lemma 3.1.
For the proof of the Theorem 4.1, we use the result on the equivalence between

the heat kernel measure and the pinned measure. For a later use of this fact, we fix
some notations.

For the partitionP , we defineπ : L ( ) → P by

(4.4) π (γ) =
(
γ
( 1

2

)
. . . γ

(2 − 1
2

))

Let ( ) the heat kernel on . Letµ and µ0 be the Wiener measure and the
pinned Wiener measure onP ( ) with variance , respectively. More precisely,µ0

is the unique measure such that, if is a bounded function of the form (γ) =
(γ( 1) . . . γ( )) for some partitionP = {0< 1 < · · · < < 1},

(4.5)
∫

(γ) µ0 =
1

(1− )( )

∫
(γ) (1− )(γ(1− )) µ

Let ν0 be the heat kernel measure onL ( ). In other words,ν0 is the law of
{ 0( ·)}.

Proof of Theorem 4.1. Set ={ ∈ [0 1]; ∀ ∈ [0 1] ( ) = 0}. Then, as
in (3.8), we have

ρ(ν0 ν0 ) ≤ 1
| |

∫ ∫

L ( )
exp
(
−| |

8
| π (γ)−1( −1( ))|20 P

)
ν0(γ)

To complete the proof, it suffices to show that, for any∈ ,

(4.6) lim
→∞

∫

L ( )
exp
(
−| |

8
| π (γ)−1( −1( ))|20 P

)
ν0(γ) = 0

Since ∈ , we may takeα ∈ ⋃∞
=1P so that

(4.7)
∫ α

0
| ( )|2k > 0
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For this number, we definẽ( ) by

˜ ( ) =

{
( ) ( ≤ α )

0 ( > α )

From the definition of˜ ( ), if we write α = /2 , we can deduce

(4.8) | π (γ)−1( −1( ))|20 P ≥ | π (γ)−1( −1( ˜ ))|20 P ( ≥ )

To check (4.8), we set

ϕ( ) = γ( )−1( ( )−1( ( ))) ϕ̃( ) = γ( )−1( ( )−1( ˜ ( )))

Then, by (4.2), we have (4.8) as follows.

|ϕ |20 P = 2
2∑

=1

∣∣∣∣ϕ
(

2

)
− ϕ

( − 1
2

)∣∣∣∣
2

k

(4.9)

≥ 2
2 −∑

=1

∣∣∣∣ϕ
(

2

)
− ϕ

( − 1
2

)∣∣∣∣
2

k

= |ϕ̃ |20 P

The expression of| π (γ)−1( −1( ˜ ))|20 P in (4.9) also shows that

| π (γ)−1( −1( ˜ ))|20 P is σ(γ( ); ≤ α ) measurable.

By [8, Theorem 2.16] and (4.5),ν0 is absolute continuous with respect toµ on the
σ-field σ(γ( ); ≤ α ) with bounded density . By using this fact, we have, for≥

,
∫

L ( )
exp
(
−| |

8
| π (γ)−1( −1( ))|20 P

)
ν0(γ)

≤
∫

L ( )
exp
(
−| |

8
| π (γ)−1( −1( ˜ ))|20 P

)
ν0(γ)

=
∫

P ( )
exp
(
−| |

8
| π (γ)−1( −1( ˜ ))|20 P

)
µ (γ)

≤
∫

P ( )
exp
(
−| |

8
| π (γ)−1( −1( ˜ ))|20 P

)
µ (γ)

=
[
exp
(
−| |

8
| −1( −1( ˜ ))|20 P

)]

where = esssupγ∈P ( ) (γ). By (4.7), [0 α ] ∋ 7→ ( )−1( ( )−1( ( ))) is
a semi-martingale of positive quadratic variation, and then we have

(4.10) lim
→∞

exp
(
−| |

8
| −1( −1( ˜ ))|20 P

)
= 0 a.s
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We have obtained (4.6), and the proof is completed.
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