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1. Introduction

In this paper, we will prove a non quasi-invariance of the via&rimn motion on
loop groups.

In [9], Fang proved an integration by parts formula for a natgradient on path
space over loop groups. His gradient is constructed on thallglatranslation operator
which was first introduced by Driver [7].

On the other hand, on path spaces over finite dimensional toepg, there is
a natural constraction of the gradient based on the groupslations. In this case,
the integration by parts formula is computed via the quagiiiance under the group
translations of the reference measure.

And, there are many works on the quasi-invariance on patlupgrcand loop
groups over finite dimensional Lie groups: See, for exampMbheverio-Hgeph-
Krohn [3], Shigekawa [15], Malliavin-Malliavin [12].

On the contrary, our result shows that there is no extensiothese results to
the case of the path group over loop groups. If a smooth pathacthe law of the
Brownian motion, the shifted measure is singular to the ioalgmeasure except the
case of the constant path.

The proof of this non quasi-invariance relies on two recesults.

One is the two parameter stochastic calculus on Lie groupshwis developed
in Driver-Srimurthy [8], Srimurthy [17]. This plays an esgil role in the non quasi-
invariance of the Brownian motion on path groups (Section B)r two parameter
stochastic calculus on manifolds, see also Norris [13].

The other one is the equivalence between the heat kerneluneeasd the pinned
measure which is shown in Driver-Srimurthy [8] and Aidaa@ri [1]. This theorem
enables us to reduce the result in the path group case to dipegl@up case.

The organization of this paper is as follows. In Section 2, fiuesome notations
and give a proof for the key lemma (Lemma 2.2). In Section 3 8edtion 4, we
will prove the non quasi-invariance of the Brownian motiom gath groups and loop
groups, respectively.
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2. Preliminaries

The aim of this section is to fix some notations and collecessvresults which
we will need in the next section.

Let K be a compact semi-simple simply connected Lie group, @adK be the
identity, d be the dimension ok . We denote by 7,K the Lie algebra ofK . On
¢, we fix an Adg -invariant inner product which is denoted py-).

For a topological spac& with a base paint , we denotePhfX) the space of
based continuous paths ov&r . ThéP,(K) denotes the group of based continuous
paths onK . We will use the same symhkwol to denote the identit{.¢K).

We set, fort ,7 €[0,1], G(t,7) =t A 7. Let {B(t, 5) }(.5)cpo.12 e € valued Brow-
nian sheet, i.e.3 is at valued centered Gaussian process such that

E[(A, B(t. $))(B, B(r, 0))] = (A, B)G(1, )G (s, 0)

forall #, 7, s, 0 €[0,1], and A ,B € &.

Let {A,}¢_, be an orthonormal basis df For C € ¢ setC® = (A,,C). We
denote byZla the left invariant vector field corresponding 1y,.

Let X (¢, s) denote the solution to the following Stratonovichcstastic differential
equation ins withs as a parameter:

d
(2.1) AT, 5)=)  Aa(Z(t, ) 0dif(t,5) with E(0,s)=e.

a=1

By Malliavin [11] and Driver [7, Theorem 3.8], we may chooseversion of = ¢, s )
which is jointly continuous in# s ). And then, the law §&(z, 5)} ,)ecf0.12 iS @ prob-
ability measure orC ([0 #]— K) which is supported oP,(P.(K)). We denote by
this measure.

It is shown in Driver-Srimurthy [8, Theorem 2.15] that, foffiaed ¢ € [0, 1], s —
%(t, s) is a Brownian motion onk with variance . From this fact, wdadh another
Brownian motions — x(z, s) on £ with variancer by

(2.2) x,s) :/05 w(od, X(t, 0))

wherew denote the left invariant Maurer-Cartan form & . More pselyi, w is the
t valued one form which is determined by(A) = A (A € £). It is equivalent that
{Z(¢, s)} satisfies the following stochastic differential equatioithwparameter :

d
(2.3) AT s) =) Au(S(t,5)) odix(t,s) with Z(,0)=e.
a=1

Remark. By the same proof of Srimurthy [17, Theorem 4.1], we shallaob a
Brownian sheet fromz ¢#(s ) by using the right invariant Maurearan form instead



NON QUASI-INVARIANCE 951

of w in (2.2). But since we do not need this fact, we will use thd Ievariant one,
to avoid confusion.

By (2.3), we obtain the following lemma:

Lemma 2.1. Ady - satisfies the following matrix stochastic differential agu
tion with parameter::

d

(2.4) dyAdy( -1 ==Y ada, Adyg -1 0 dsx®(t, s).
a=1
Proof. This is a consequance of Itd calculus. See [16, Ritpon 2.1]. O

We will state our key lemma, which will be used in the next mectLet H(€)
be the space off!-paths ont. More precisely, we set

h is an absolute continuous function such t?at

1 —
H () = {h € C([0.1] — ¥); h(0) = 0 and [y |(d/ds)h(s)|2ds < oo

Lemma 2.2. Let h € H¥) and seti(t,s) = Ads s-1(h(s)). Then for any
fixeds € [0, 1], {I(z, s)}sep0,1 iS @ semi-martingale and its quadratic variation process
(I(z, s)) is given by

(2.5) (U(t,5)) = —t /0 K(h(0), h(0)) do
where K denotes
K(X,Y) =tr(adx o ady),

the Killing form of ¢.

Proof. From (2.4), we deduce that, { )&y ,)-1(h(s)) satisfies

d

dil(t,s)= = ada, (10t 5)) 0 dox®(t, s) + Ads.g) = (%h(s)) ds

a=1

And then, we have the quadratic variationlof, st ) as follows:

d s
(1) =1 / lady, Ads(.5)-1(h(0); do.
a=1 0

By noting that{A, }%-; is an orthonormal basis df and Ad -invariance of the Killing
form, we have obtalned (2.5). This proves the lemma. U
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Since we will use the Hellinger integral to show the non clilgriance, we re-
view some properties of it. Let be the Hellinger integral:

dvt |duv?

1 .2y — 3

o= [\ s

where, 11, 12, 3 are probability measures o2 in relation that 12 < 3. It is
well-known that this definition is independent of the choafesuch®. See, e.g. [18,
Section 1.4].

For a probability measure on (2, F), we denote by, the restriction ofv to the
c-algebra¥F,, and byv(X|F,) the conditional expectation of  with respect f.

Proposition 2.1. The following properties holds fop .

(2.6) 1. p@tv?) = lim p@?, ).

(2.7) 2. p@tv?) =0 is equivalent to vt 1 12

Proof. We set
dvl dv?
p = p = =
ah() = 5. ') =750 (=1 2)

for short. First, as for (2.6), we note that

Pk 1) = / Jad) Joz(y dv?
= [ o Jazman

where we regardyv) (x) as a function on, F,) in the first line and as ongy, F) in
the second line. Sinca) = v3(a”|F,), af converges ta” in LY(R2, 1%). (see, e.g.,
[10, Proposition 2.2.4 and Theorem 2.6.6].) We have obthi{2e6).

As for (2.7), we refer to [18, Lemma 1.4.1]. U

3. Non quasi-invariance: over path groups

The purpose of this section is to show a non quasi-invariafcthe measurer
under the group transformations. For the proof, we need pproaimation from fi-
nite dimensional subgroup which was first introduced by &rilorentz [6]. First, we
review Driver-Lorentz’s approximation quickly.

For a partition

(3.1) P={0<s1 < - <5, <1}
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of [0, 1], we set

—— —N—
P =tx-..-xt KF=Kx---xK.

We define(A, B)p for A = (A1,...,A,), B=(B1,...,B,) €t” by

(A, B)p ZQ,JA,,B
i,j=1

where Q) denotes the inverse matrix of5(si(s; .)),cr. Let H'(¢”) denote the
space of baseaH Lpaths ont”. The mapi *7 — H(t¥) defined by

i(Av o A0 = 3 Gl A

i=1

is an isometric embedding & into H(¢").

We now state our theorem. Fare P,(P.(K)), we denote by* the image mea-
sure ofv by the mapL; P.(P.(K)) — P.(P.(K)). In other words* is the measure
which is characterized by

/f(E)duk:/f(kZ)du

for all bounded Borel functiony ofP,(P.(K)).
And, we introduce the notion off*-paths onP,(K) as follows.

For eachs € [0, 1], the mapr — k(z, s) is an
absolute continuous function, and for ata.
the maps — (0,k)(t, s)k(t s)*l is in H(E), ’
and fo [(8:k)(t, s)k(z, s)~L Hl({,) dt < oo.

Hl(Pz)(K)) =qke PF(PF(K))

where we setdk)(t,s) = (0/0t)k(t,s) and Q,k)(t, s)k(t,s)™* = = Ry.5)-1((Gik)(2, 5)),
for ease of reading.

Theorem 3.1. Let k € HY(P,(K)) be a non-constant path. Then* and v are
mutually singular.

To show Theorem 3.1, we need some notations. We set

1 21
(3.2) 73,1-{§<---< 5 }

And then, we set

Fn = a()Z(t, s);t€]0,1],s € 7?,1)
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and denote by and, the restrictions of* andv to F, respectively.
For k in Theorem 3.1, we define € L?([0, 1] — H(¥)) by

(3.3) hit,s)= k)t s)k(t, )™t

and then defind € H(P.(K)) by the following ordinary differential equation with
parameter :

(3.4) %l(l, s) = %h(t, I, s) with [(0,s) =e.

For v € P.(P.(K)) (resp.v € P.(P.(£)), we usev,, to denote the following path in

K7 (resp. in€”r):
(2 55)

The following proposition is well-known ([3],[15]), but foits importance, we will
give a proof for this case.

Proposition 3.1. Let k € HY(P.(K)). Then v* and v, are equivalent and the
Radon-Nykodim derivative is given by

dvk

1 1
1
@5 Lt (z):exp< /0 (Ady3(hn). dBi)p, = 5 /O |Ady1(h, )3, dt),

whereh is the path orPy(t) given in(3.3),and Ad denotes the Adjoint representation
of G7-.

Proof. First, noting thatG* is compact, we seM, = SWYPG P,
|| - || denotes the operator norm with respect to the inner produgtp, .
By Itd formula, we have that, =, satisfies

Ad,||. Here,

d
(3.6) d Gyt Zn) =Y AalkyT0) 0 (dBy, — Ads1(hy)* d1),
a=1

As we note aboveG”» is compact and the Novikov condition is satisfied as follows:

1 1 M2 1
E{exp{—/ |Ady—1(hni) |5 dtH exp( ”/ |
2 0 n,t n 2 0

)
M

2 1
< exp( == [ |h(t, )|y dt) < co.
2 Jo ®

IN

N

By [14, Chapter VIII, Proposition (1.15)], (3.5) holds. U
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Lemma 3.1. The Hellinger integral ofy, and v/} is given by

1 1
(3.7) ko) = E[exp(—5 [ 1Ady +(Ad, 1), ar)
| 1Adya(Ad,

Proof. First, by (3.4) and (3.5), we have

1 1
dyz :exp<§/0 (Adg-1(hn.), dBn.i)p, — / | Ady —1(ha, NS dt)

Then, by using the expressigiiv), v,) = [ \/dvk/dv, dv,, we obtain (3.7) as follows:

1
p(Wr v = /exp<1/ (Ady, _1(h,l,) dBn.))p, — / |Ad, _1(h,,,)|7> dt> dv,

- dv,
/eXp< / |Ad 1(hn,1)|%” dl) d_yn dV"
- 1 ) l
B /exp(_é/o |Ad>:,:,1(hn,f)|7>” dt) dv
1 1
/ EXP(__ / |Ad(s), )2 () |5, dt) dv,

The proof is completed. O

exp ——/ |Ad 1(Ad 1(/’1

Proof of Theorem 3.1. First, s&t & € [0,1];Vs € [0, 1], h(¢, s) = O}. Then,
by Lemma 3.1 and Jensen’s inequality, we have an estimafigi(z¢), ,) as follows:

(38) ok m) E[exp(—% / |Ady - (Ad (0 ), 1)

exp ——||Ad 1(Ad171(/’l .

)

where|T¢| denotes the Lebesgue measurelT6f . By Lemma 2.2 and &ince is sem
simple, s +— Ads s)-1(Ad), 5-1(h(t,5))) is a semi-martingale of positive quadratic
variation. In particular, the path +— Adys( )-1(Ady; 5)-2(h(z,5))) is not in H(¢)
almost surely. Sincg - |p, is increasing with respect ta , and approximates the
H'-norm, we have

<
- |T‘|

. T
(3.9) lim exp(—| 5 ||Ad2_11(Ad _ll(h,li,))ﬁ,") =0 as.
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And then by (2.6), we have

p(V*, v) < lim —/ exp Il C||Ad -1(Ad,. 1(hnt))|7? )}

|
o ¢

The proof is completed. O

4. Non quasi-invariance: over loop groups

In this section, we will deduce the non quasi-invariance awplgroups from The-
orem 3.1. To state the theorem precisely, we fix some nottion

We keep some notations in previous sections. We setys fore [0, 1], Go(s, o) =
s Ao —so. Let {x(t,s)}.sep1p be t valued Brownian bridge sheet, i.ey, is a ¢
valued centered Gaussian process such that

E[(A, x(z,5))(B, x(7, 0))] = (A, B)G(t, T)Gofs. 0).

Let x9, s) denote the solution to the following Stratonovich statia differential
equation ins withs as a parameter:

d
(4.1) d=%t.5)= Y Aa(Z%t.8) o dix*(t.5) with E°0,s)=e.
a=1

Following the notation in path group case, we set
L,(X) = the based loop space ov&  with base paint
vo = the law of 20z, s), and v = vgo L; %,
Fon =0 (200, 5);1 €[0,1], 5 € Py),
von, V§, = the restriction ofvg, v§ to Fo, repectively,
HY(Lo(K)) = HY(P(K)) N Pe(Le(K)),
Q%" = the inverse matrix of Go(si, 5;))s.s, e
(A, Blor, =2} ;- 1QZ>”;,<A:,B>
In this case, the matho” is given as follows:

2 (i =),
(4.2) Qoi; =4 =2 (i—jl=1),
0 (otherwise)

Our theorem in the loop group case is the following.

Theorem 4.1. Letk € HY(L.(K)) be a non-constant path. Thep§ and v, are
mutually singular.
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The way of the proof is the same as in Theorem 3.1. First, wpgreea lemma
which is corresponding to Lemma 3.1. Fore H(L.(K)), we definer and as
in (3.3) and (3.4) respectively.

Lemma 4.1. The Hellinger integral ofvp, and 1/’5’” is given by

1 l
(4.3) p(u’a",yo,”):E[exp(—é /O |Adgss ) +(Ad, (b ) p, dt)].

We omit the proof, since it is the same as in Lemma 3.1.

For the proof of the Theorem 4.1, we use the result on the alguige between
the heat kernel measure and the pinned measure. For a la&eofubis fact, we fix
some notations.

For the partition?,, we definen,: £.(K) — K7 by

(4.4) () = (V(z—l,l)v-~"7(2n2: 1))

Let p;(g) the heat kernel onk . Let, and u0 be the Wiener measure and the
pinned Wiener measure oR,(K) with variancer , respectively. More precisely?

is the unique measure such that, ff is a bounded function efftim f () =
F(7y(s1), - - ., v(sa)) for some partitionP = {0 < s1 < --- <, < 1},

1
(4.5) / o= s / FO) Py (L — 52) d.

Let v0 be the heat kernel measure diy(K). In other words,»? is the law of

{=°%. )}

Proof of Theorem 4.1. Sef # € [0,1];Vs € [0, 1], a(¢, s) = O}. Then, as
in (3.8), we have

1 T
PVo s Vo) < / / exp(—u|Adﬂ(v)71(Ad171(hn,,))|(2,’P”) dvl(y)dr.
T Jre J 2ok 8

To complete the proof, it suffices to show that, for ang 7°¢,

. T*
(4.6) lim / exp(—% |Ad, )+ (Ady - ) p, ) 12() = 0.
L.(K) '

n—oo

Sincet € T¢, we may takexq, € U,j’il P, so that

(4.7) / h(t, s)[2ds > 0.
0
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For this number, we defin&(z, s) by

~ [ h(t,s) (s < ),
htt, s) = { 0 (s > au).

From the definition offz(t, s), if we write o, =i/2™, we can deduce
(48)  |Ady, ) 1(Ad ()3 p, = |Adr, ) 1(Ad)2(ha ) o5, (n > m).
To check (4.8), we set

o(t, s) = Ad, -1 (Adyy -2 (2, 5))), G(t, s) = Ady)-1(Adyy -2 (A2, 5))).

Then, by (4.2), we have (4.8) as follows.

2 v K 1n |2
(49) |<)Oﬂ,f|%,77,, =2 Z Pn.t (i) - gp”’”( on )‘
k=1 ¢
[2”7”’ 2
) k k=1 .
2 2 ; Pn,t (E) — Pn,t (T) L = |(Pll<l|(2177,,‘

The expression ofAdy, (,)-1(Ad)-1(.))I3 5, in (4.9) also shows that
|Ad,r”(w)_l(Ad,_ll(fz,,,,))|§,Pn is o(v(s); s < o) measurable.

By [8, Theorem 2.16] and (4.5),° is absolute continuous with respect o on the
o-field o(v(s); s < o) with bounded density;, . By using this fact, we have, fop
m,

TC
/ eXp(_ | - | |Admm,l(Adml(h",,))|§,p”) dvP(y)
L.(K) ‘

T -
< [ exp(- Il ade a0, ) an80)
LK) 8

T ~
/ eXp(_ |—8| |Ad7r,,(7)—1(Ad1"—I1 (hn.t))|(2).73,,) F d,uf ('V)
Pe(K) '

IA

T* ~
R [ exp(- ol ad i ad G, ) ano)
Po(K) 8

T .
R/ E [exp( - % (Ads—+(Adi (D 5, ) |

where R, =esssURp x) Fi(7). By (4.7), [Q au] 5 5 — Ads( 5)-1(Ad); -1 (h(t, 5))) is
a semi-martingale of positive quadratic variation, anchtixee have

7]

(4.10) lim exp(—T|Adzﬁ(Ad,':;(il,l,,))%ﬂ,") =0 as
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have obtained (4.6), and the proof is completed. O
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