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1. Introduction

Let G be a finite group an U — X an equivariant map. A common way of
studying the properties of is looking at the restrictioé X% — Y to the spaces
fixed by the subgroup$/ off , as non-equivariant maps. For ebeanifpU and X
are G -CW complexes, theiff U — X is a G -equivariant homotopy equivalence if
and only if for everyH the mapf is a homotopy equivalence; alainmesult re-
lated to aG -retraction is due to Jaworowski: a locally compaeparable metric and
finite-dimensionalG -spac& is @ -ENR if and only if for evely e tfixed point
set X is an ENR [11]. This paper is addressed to studying fixedtpgup to com-
pactly fixed G -homotopy) of aG -equivariant self-magp U:Cc M — M, where M
is a G-ENR or a smoothG -manifold. If there is a compactly fixéd ordotopy f; ,

t € 1, such thatfy = f and f1 is fixed point free, then for every subgroup  there is
a compactly fixed homotopy;”  such th#” = f# and £ is fixed point free, and
this means that every restrictioi” ~ can be deformed to a fixddt free map. To
investigate under which conditions the converse of thisestant is true, it is neces-
sary to exhibit the algebraic obstructions of the existeat¢he equivariant deforma-
tion f;, and then relate them to the corresponding obstrustminthe non-equivariant
restrictions f# . Under some dimensional assumptions, Nietbeory is exactly what
describes these invariants; #  is a manifold of dimensidifecént from 2 then the
generalized Lefschetz numbé&( f) or equivalently the Nielsen numbe¥ f{ ) van-
ish if and only if f# can be deformed to be fixed point free (it i® tBonverse of
the Lefschetz Property). So the problem can be stated aligally as: under which
conditions does the knowledge of the generalized Lefschatmbers(f) allow to
compute the obstructions to an equivariant deformation&imM\dt is necessary to relate
the latter obstruction to a set of invariants (as done firsf7i), namely the general-
ized Lefschetz numbers of some restrictiofiéf’” |Uy) of a suitable approximation
f' of f. This set of homotopy invariants gives what might be tHduas an equiv-
ariant generalized Lefschetz number, and, under the samendion assumptions as
above, they vanish if and only if the map hasGa -deformatiora tiixed point free
map (compactly fixed). So the point is to relate the two setgwdriants above.

First results in this direction date back to the papers of kKam[13],
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D. Wilczyhski, [20] and Fadell and Wong [4]. The hypothese®ded there were in
some sense quite restrictive. It was necessary to assunwdi@ension ofx? inx#
to be at least 2. This assumption was still present in the rsapieWong [18, 19] on
equivariant Nielsen theory. In the present paper we use gooperties of the general-
ized Lefschetz numbers that were not known, and the factttfeasingular se” and
the singular set of the action of the Weyl grotigy H B are oftenthne same.
It should be clear from the examples given at the end of thiepthat the condition
needed is actually the weaker assumption (i) of Theorem @ther difference in the
approach is that by using generalized Lefschetz numbetsaidf Nielsen numbers it
is now possible to keep track of the indices of the fixed polasges at any isotropy
level, so that a formula becomes available, relating theoéihe GLN’s £( ) to the
set of £(f'|Uy). This is the aim of the first half of the paper.

The first step is done applying the addition formula for gatieed Lefschetz
numbers, first proved in [6], which give£(f?) as a sum of the images of the
L(f'"|Uy) under some homomorphisms. Inverting such formula in a iM®lvay is
what can give the solution of the initial problem: 4% f#) vanishes for everyd , then
the obstructions to defornf  equivariantly vanish. Furthamen the inversion formula
relates fixed point classes at different isotropy groupsthis way it is also possible
to describe some necessary conditions for the weightedo$diged point classes and
isotropies, extending the result of Dold [3] and Komiya [14]

The main results of the paper are the Mobius inversion féangiven in Theo-
rem 3 and the Converse of the Lefschetz Property for isovamaaps given in The-
orem 9, which follows from Theorem 3. The structure of the grafpllows the steps
needed in proving these theorems: in Section 2 the notatidnsame preliminaries are
given on properties of equivariant spaces and the genedalizfschetz number. Two
technical results (Lemma 1 and 2) are proved, which allowrtve the inversion for-
mula in Theorem 3 (Section 3). The first consequence of thedtar is the necessary
condition that must be satisfied by generalized Lefschetnbmus £(f7) of the re-
strictions of an equivariant map. In Section 4 we start prgviesults needed in order
to apply the inversion formula to the converse of the Leftrhmoperty: first, with
the aid of the key Lemma 5, the existence of a transfer hompin®m is shown, and
then its main property is proved in Proposition 6. Finalty,Section 5 the converse of
the Lefschetz property (Theorem 9) is proved, after two nédi Lemmas (Lemma 7
and 8). An immediate interesting consequence of Theoremgdvén in Corollary 10:
if the group G is 2-split, then for every; -map  the equivarianelden number
Ng(f) is zero if and only if f iSG -homotopic to a fixed point freg@ -mép Sec-
tion 6 some examples are given, showing the reason for whiethypotheses of The-
orem 9 are needed: in Examples 1 and 2 the Hypothesis (i) heldsally, G is
2-split) but not (ii) (the map is not isovariant, nar -hompitoto an isovariant map);
furthermore, in Example 3 it is shown how if (i) does not hotd ¢ourse for groups
not 2-split) then the CLP does not hold even for the identigpmAt the end, in Sec-
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tion 7, there are some comments which might help in undeatstgrthe perspective of
the paper and some relevant details.

| wish to thank R. Brown, A. Dold, K. Komiya, R. Piccinini, S.effracini and
P. Wong, because | could not have done this piece of resedthbut/their stimulating
discussions, help and support.

2. Preliminaries

Let G be a finite group acting on a spag& . The isotropy subg@up- G of
an elementx € X is the subgroupG, =g € G | gx = x}. The set of isotropy
subgroups is a poset, with respect to inclusion, denotecstix ). If H C G is a sub-
group of G, thenX” denotes the subspaceXof fixediby ,{uec X | Hx = x}.
The singular set inx*” is the set of points with isotropy not édoaH: X# = {x €
X" | G, 2 H}. If His an isotropy subgroup then the complementXgff X is
denoted byXy ={x € X | G, = H}. The Weyl groupWsH of the isotropy sub-
group H is the quotient of the normaliz&f¢ H {2 € G| g 'Hg = H} modulo H ,
that is WeH =NgH/H. The spacex” is endowed with a natural actionViaé H ,
with trivial isotropy type (wheneveH s isotropy): its singr set is denoted by 7.
It is contained inX but it might be properly contained (seenepies in [7, 8]). It
is not difficult to see thatxf is the set of points inc € X# with the property that
G:NNgH # H.

2.1. The generalized Lefschetz number. Let f: U C X — X be a compactly
fixed (continuous) map defined on an open subset of an BNR JLet thé unit
interval [0, 1], andX’ the space of continuous maps- X (with the compact-open
topology). Let E (f ) denote the subspace Xf consisting of adl thaps) ¢ X’
such thatA(0) € U and fA(0) = \(1) (they are the Brouwer translation paths), and
R(f) the set of (connected) componentsoff (). TheB€Y) is called Reidemeister
setof the mapf . Its elements are also callRdidemeister classe¥he class of a path
A is denoted with A]. It has some interesting functional properties, andif U= is
connected it is isomorphic to the set of twisted Reidemeistejugacy classes in the
fundamental groupri(X). The free Abelian group generated IR/ f) is denoted by
ZR(f): an element ofZR(f) is simply a function¢: R(f) — Z, and the sum of two
such functions is done component-wise. Any functionR(f1) — R(f2), induces in
a standard way a homomorphisg : ZR(f1) — ZR(f2).

The fixed point set Fix{ ) {x € U | fx = x} can be embedded i& f( ), by
sending the fixed poink € Fix(f) to the constant path\(r) = x, A € E(f). The
composition cd: Fixf )— E(f) — R(f) is said thecoordinate function The pre-
image cd ¢ of an element € R(f) is a set of fixed points called theielsen class
of fixed points corresponding to the clagsEvery such a class is compact and has an
isolating neighborhood iV . Thus there is only a finite humbkNielsen classes of
fixed points.
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The generalized Lefschetz number 6f , denoteddfy), is the element(f) €
ZR(f) defined by £(f)(€) = ind(f, cdt¢) for all € € R(f), where indf, cdl¢)
denotes the fixed point index of in any isolating neighbothad the fixed point
class cdl¢. With an abuse of notation, by identifying with the dual functioné €
ZR(f) which send<t to 1 and{’ # £ to O, it is possible to write

L(f)= ) ind(f cdte)-&.
EER(S)

If X is a CW-complex andU a subcomplex, thefi(f) can be written as the
Lefschetz number of the homomorphism induced in homologigh wespect to the
Hattori-Stallings trace with coefficients Ar(X) (see [5, 9]). The number of elements
of the support ofL(f) (i.e. the number of non-zero terms in the sum above) is the
local Nielsen numbeN(f) of f. If U = X then it is the classical Nielsen number
of f. If G is a finite group andM & -manifold, then the equivariarielsen num-
ber is the vector(N(f")),, where H ranges over the isotropy groufls C G for
M. 1t is the analogous of the equivariant Lefschetz numbgr f Fuyther details on
Nielsen fixed point theory can be found in the books of R.FvBr¢l] and B.J. Jiang
[10]; on equivariant Nielsen fixed point theory the papersPofWong [18, 19] are a
good reference. The common reference for equivariant edigeliopology is the book
of tom Dieck [17]. A different approach on generalized Léfstz numbers (for equiv-
ariant maps) was given by E. Laitinen and W. Lick in [15].

2.2. Index properties of the generalized Lefschetz number.We recall here
some properties of the generalized Lefschetz number whisbmble the properties of
the fixed point index (see [2] and [7]) and the Nielsen number.

If XandY are ENR's,f1: U C X — X and f»: V C Y — Y are compactly fixed
maps defined on open subséfs dnd , and — Y is a map such that/ &1V
andif; = f»i, then there is a map

i« R(f1) — R(f2)

defined byi.[A] = [i )], for every class k] € R(f) (we can use the same symhql
for the homomorphism induced GaR(f;)). If i is an inclusion, and there is a retrac-
tion » of a neighborhood o in¥ , and if, is defined as fir: r—*U — Y, then
the induced map

ix: ZR(f1) — ZR(f2)
sendsL(f1) to L(f2):
L(f2) = i L(f1).

Another important property is the union property: I¢t U: C X — X be a
map; if U (open) is the union of two open subséts and U,, and f is compactly
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fixed in U; and Uy, then there exist the generalized Lefschetz numl&s|U;) (the
map f restricted td/1), L(f|U2), L(f|UrNUy) and L(f). There are functorial maps
induced by the inclusions;: ZR(f|U1) — ZR(f), i2: ZR(f|U2) — ZR(f) and
io: ZR(f|UrNUz) — ZR(f). The union property is the following:

L(f) = i1 L(f|U1) + i2L(f|U2) — ioL(f|UL N U2).

This is a consequence of a more general property of the debefischetz number of
pushout maps ([6]), but can be proved directly just using gheperties of the fixed
point index and the Reidemeister sets.

The last properties are the most significative: fif ~ fo: U ¢ X — X are
compactly fixed and homotopic (via a compactly fixed homojoiwen there is a bi-
jection b : R(f1) = R(f2) such thatb.L(f1) = L(f2). This implies that if the map
is fixed point free, thenZ(f) = 0. This is called the Lefschetz property (in analogy
with the Wecken property). Furthermore, X is a manifold afdnsion at least 3,
f:U C X — X a compactly fixed map witlC(f) = 0, then there is a fixed point free
compactly fixed deformation off (i.e. the converse of the tle&z property holds
for manifolds of dimension at least 3).

2.3. The taut approximation lemma. Let G be a finite group andr¥r a
G-space. IfA C Y is a G-subset, then & -map Y. — Z is taut over A if there
is a G -retractionr Y — A such thatf =fr . IfU is aG -neighborhood of iH
then f is said to beaut over A in U if the restrictionf|U is taut overA . AG -map
f:U C X — X is taut if for every isotropy subgroupgd C G of X the restriction
fH:U" — X" is taut over the singular séf  in a suitable neighborhood/§f
in UH. The assertion of the taut approximation lemma is whatvetere (e.g. [14])
was called the existence ofreormal formof any G-mapf :U € X — X defined on
enough regulaiG -spaces. The most general spaces in whithaspecoposition holds
are, to my knowledgeG -ENR's.

Lemma 1 (Taut approximation). Let G be a finite groupX a G-ENR U an
open G -subspace oK ang: U — X a compactly fixedG -map. Then for every
e > 0 there is a compactly fixed-approximation f’ of f, such thatf’ is taut in a
neighborhood ofFix(f”).

Proof. It is a consequence of the fact that for every isotrépyof X the in-
clusion X¥ — X is a W H -cofibration (actuallyX is &¥cH -neighborhood re-
tract in X ). Then, by induction over orbit types, it is possittb deformf? relatively
to UX and outside a compadVsH -neighborhood of F&( ), in order itaio an
e-approximationf’H of f# which is taut in a neighborhood of Fix(H). Alterna-
tively, there is a compacG -neighborho@d  of Fix( ) th , andGa efedmation
of the identity & :C — C which can be extended to an equivariaftdeformation¢
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of 1y leavingU \ C fixed such thatf o ¢ is the wantede-deformation, withe’ small
enough. O

The main point about such taut approximatighis that the generalized Lefschetz
numbersZ(f'?|Uy) of the mapsf'” restricted toUy are well-defined, for every
isotropy H (because it turns out that jf is taut in a neighborhood of Fix() then
every restrictionf’H|UH is compactly fixed andVzH -equivariant). Another important
property is that if f1 and f> are taut approximations of the same mgp (they are taut
in a neighborhood of their fixed point sets), then for evemtrispy H the general-
ized Lefschetz number£(ff |Uy) = L(fF|Un) coincide (more precisely, there is a
compactly fixed homotopyfs ~ f> inducing a bijectionf: R(f1) = R(f2) such that
0. LU |Un) = LU |Un)).

2.4. The Mobbius coefficients. Let iso(X) be the poset of isotropy groups ¥f
in G. The Mobius coefficientg.(K, H) are the unique integers with the property that
if a, b: is0(X) — Z are arbitrary integer-valued maps such that

b(H)= Y a(K).

KDH

then

a(H)= Y p(K. H)b(K).
KDH
The coefficientsu(K, H) do not depend upon the functioms ahd , but only upon
the poset isaX ). A slight generalization of the Mobius isien formula is given by
the following lemma.

Lemma 2. Consideriso(X) as a category(the inclusions are the morphisins
and let A: iso(X) — Ab be a contravariant functor froniso(X) to the category of
Abelian groups(Z-module}. Let iZ denote the image of the inclusigh — K un-
der A, and A(H) the Abelian group corresponding t& . Theh (VH) b(H) is the
element ofA(H) defined by

b(H)= ) iga(K).
KDH
the following inversion formula is true

a(H)= Y (K, H)if b(K).
KDH

Proof. It follows the same lines of the proof of the Mobiusdrsion formula.
Instead of considering a poset, it is possible to consideritiage of the poset em-
bedded inAb , and write the formula as the inverse of a matrix N + her@ N is
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nilpotent and/ is the identity. In this case the entries of ithegtrix N are the homo-
morphismsi¢ , and the formal inverse &f M can be obtained 4s, (—1)'N/ for
a suitable integen . O

3. The Mobius inversion formula

Let G be a finite group,X aG -ENR ang U C X — X a compactly
fixed G-map defined on an open subdét  Xf and taut ilGa -neighbdrho
of Fix(f). The generalized Lefschetz numbé(f”|Uy) is well-defined for every
isotropy H (and if f’ is anotherG -map compactly fixed homotopic fo  and taut in
a G -neighborhood of its fixed point sef(f¥|Uy) = £(f'"|Un)); let iy denote the
homomorphismiy ZR(f?|Uy) — ZR(f) induced by the inclusio/y c UX.

Theorem 3. If f: U — X is compactly fixed and taut in & -neighborhood of
Fix(f), then for every isotropy group! C G,

inL(f1UR) =Y (K, H)ig L(F5),

KDH

Proof. Let H be an isotropy group, and consider thig# -m@dp U™ —
X, Its fixed point set Fixf? ) is the disjoint union

Fix(f7) = | Fix(f*|Ux),
KDH

i.e. of the sets of fixed points with isotropy exactly , wikh O H. Becausef is
assumed to be taut in a neighborhood of Fix( ), every compodenf Fix(f”) has
just one isotropyK: . Moreover, i is an isolating neighbartidn U of C then,
by the retraction property of the fixed point index, ifd(, Vo ) d@fi%, Ve NUk). In

other words, if we denote wittVx  the union of all tH& , wich  compat with

isotropy exactlyk , the fixed point set Fik! ) has a neighbothdo which is the
disjoint union

Fix(f"ycv =[] Vk.

KDH

Now we can use the union property (the union is disjoint) drelfact that the indexes
are preserved, by the retraction property, i.e.

Ly =" L"vk) = > LUk,

KDH KDH

where.# is the homomorphism induced by the inclusion

M IR(fK |\ Uk) — ZR(fT).
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It is worthwhile to note that the homomorphistff = iy : ZR(f¥|Un) — ZR(fH)
needs not to be the identity, and tHa{ f|Uy) and R(f*") can differ. Moreover, for
every choice ofK O H, the equality. = i¥ oix is true. Thus the previous formula
can be written as

L™= i [ik£(f|Ux)] -

KDH

The formal properties of the Mobius coefficieni$K, H) (Lemma 2) imply that for
every isotropyH

L Un) =Y (K, H)ig L(F5),

KDH

i.e. the thesis. O

Corollary 4. Let G be a finite groupX a G-ENR U an open subspace of
and f: U — X a compactly fixeds -map. If the elemeiit is defined as

L= (K. H)EL(rX) e ZR(f),

KDH
then for every¢ € R(fH),
L) =0 mod|W],

where W, denotes the isotropy subgroup of the clasgrelative to the action of the
Wey! groupWsH on the Reidemeister setf")).

Proof. By lemma 1 it is possible to find a taut approximation fofvia a com-
pactly fixed G -homotopy (and the generalized Lefschetz nusmbwolved in the for-
mula remain the same). Without loss of generality we can #tssume thatf is taut
in a neighborhood of its fixed point set. Because of TheorenfoB,every isotropy
group H C G,

L= wK H)gL(f*) = eul(f"|Un).

KDH

So the proof is complete once it is shown that, for evefy € R(f),

e L(f71UR)(E) = 0 mod|We|. This comes from the fact that the Weyl group acts
freely on Uy : the fixed point set Fif(|Uy) is the union of the free orbits of its
components. Without loss of generality we can assume khat ix& #|Uy) is a fi-
nite number of points: thus

L™ Uy) =) ind(f. x) - cd(x),

xEF
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where cdg ) is the coordinate iR(f#) of the fixed pointx . By splittingF into orbits
we get

LU= Y D ind(f x) - cdr).

[x]€F/W x€[x]

But for every | 1€ F/W the elements of{ ] have the same index, thus

3" ind(f. x) - cd(x) =ind(f, x) > cd(x) = ind(f. x W - cdx)

x€[x] x€[x]

This means that every term of the sum is a multiple of an elerika W - ¢, with
& € R(fM), and the conclusion follows. O

Remark 1. Another way of stating the proposition of Corollary 4 i tfollow-
ing. The action of the Weyl groupVg H mak&R () into a ZWsH-module. Let
W =3, cw.n w denote the diagonal element BWH and Iy C ZR(f") the sub-
module of the multiples oW IZR(f"), Iy = W-ZR(f"). The statement of Corol-
lary 4 is simply that

> K. H) i L(fX) € Iy C ZR(F1).
KDH

4. The transfer homomorphism

Now consider a finite group¥  acting locally smoothly on a maldifX, and a
compactly fixedW -mapf U C X — X defined on an ope& -subspaceXf . With-
out loss of generality we can assume that the principalapgttype ofU is the trivial
subgroup, so that/ is the union 0k (the free part) and/; (the singular part, which
is the union of the spaces fixed by the elementd¥of ). The iimwiug; — U induces
the mapi.: R(f|U1) — R(f). A class inR(f|U,1) is denoted by Jf], where X is a
translation path (that is, an element Bf f|U1), i.e. \: I — X such that\(0) € U;
and fA(0) = A\(2)).

Lemma 5. If A\; and )\, are two translation paths such thag 7, Ao/ C U; and
i.[A1] = i[A2] € R(f), then there is an element € W such that[\;] = [wA1] €
R(f|U1).

Proof. By definition, becausé.[\1] = i.[X2], A1 and A\, belong to the same
component ofE f ), that is, there is a map I' — E(f) such thaty(0) = \; and
F(1) = X2. The mapTl’ I x I — X defined byl {, ¢ ) =y(\)(s)(¢) is therefore a homo-
topy such thatl' (O ) =\1(r) and " (1 ¢) =X2(¢), while fT (s, 0) =T (s, 1) for every
s € 1. This is equivalent to the existence of a path I' (s, 0) such that\1 f(y) ~ vz
(homotopy rel. endpoints). Let us call such a patipath connecting\; and X».
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A o:1 — U connecting); and A\, can be deformed in a way such that N U
is a finite number of singular points with minimal isotropyeiibg the action locally
smooth, ifo(r) € U™ NU™2, o can be deformed in a way that this single intersection
point gives rise to at least two points with isotrofyy;) and (w)). Moreover, without
loss of generality we can assume thais smooth and crosses eath’ transversally.
If o has these properties, we say thais a normal connecting pathEvery connecting
path is homotopic to a normal connecting path rel. endpoints

For each normal connecting path let |o| be defined as followslo| = #{r €
o~1U}. Thus|o| = 0 if and only if o does not touch the singular set (and thus it is
a path inU;). Now considerA; and A,. Using this terminology, the assertion of the
lemma says that there isw@ € W such that\; and w - A\, can be connected by a
normal connecting patlr with |o| = 0. Assume it is false: thus, up to replacing
with w- A, for a suitablew € W, A\; and A\, can be connected by a normal connecting
path o with |o| > 0 and such thato| is the minimum among all the possible choices
of w and normal connecting paths. Because forwalle W the fixed subspaceX"
have transverse regular intersection (the actioniof islioemooth), if o attains
the minimum of |s|, then also the sets~1U* have minimum cardinality among all
the normal connection paths homotopicdo Let so = mino~1U; and Wy the isotropy
of o(so).

Consider the mag® I x I — X defined as before by the connecting pathBe-
causef is supposed to be isovaridnty| = |o| ando U = (fo) LU for everyw .
Moreover, becausd’ acts locally smoothly En , @t must have codimension 1
in U, Wy must be a cyclic group of order 2 generated by an elemert W (locally
it must be a reflection along a hyperplane). FurthermoreAldte the component in
I x I\ T~y containing {0} x I. By minimality of |o|, and consequently by min-
imality of o=1U", A cannot contain points i x oI different from [Q so) x {0, 1}
(otherwise the minimality ofo| would be contradicted, because there would exist a
normal connecting path’ with less intersection points with/;  thar). Therefore the
complementd’ =1 x I\ A of A in I x1 contains{1} x1, andI xI = AUA’. Because
AN A’ cT~lym™, the following homotopy is well-defined:

, _[wo-T(s,t) if(s,)cA
F(S”)‘{ Ry i (s0) € A"

But if o/ =T'(—, 0), thens’ is a path connectinguo - A1 and )\, and it can be easily
deformed only in a neighborhood e so thato’(so) € Uy, thuswp- A1 and A\, can be
connected by a normal connecting path with less thantransversal simple intersec-
tion points withU; , which contradicts the hypothesis of miality of |o|. This means
that the minimal|c| cannot be different from 0, that is the thesis. O

Let f: U C X — X be an isovarian® -map, with trivial principal isotropy type
in U, andU; the complement of the singular paitt ~ &f . The purpose of theipre
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ous lemma is to define @ansfer homomorphisrir: ZR(f) — ZR(f|U1). We need
only to consider the value of Tr on the free generator&Z®f(f), i.e. the elements of
R(f). If Xo € E(f) is such that\; U, = 0, then let Tr(Po]) = Y owewlw - Ad). It is

an element ofZR(f|U1), because\o(0) ¢ U, by assumption. Otherwise, X € E(f)

is an element such that='U, # 0, there are two cases: either every translation path
in the same componenf] € R(f) has a nontrivial intersection witl/; , or there is
at least\g € [\] such that)\glUS = (). In the first case, define TX]) = 0. In the
second case, define simply TX{] = Tr([Ao]). What now we need is to show that the
definition does not depend upon the choice of sucky @r upon the representative in
a class Al € R(f).

Proposition 6 (Transfer). If f: U € X — X is an isovariantW -mapthen the
transfer homomorphisnr defined as above is well-definethoreover if f is com-
pactly fixed inU; then the generalized Lefschetz number verifies the identity

Troi, L(f|Ur) = |W|L(f|U1)

in ZR(f|U1), wherei.: ZR(f|U1) — ZR(f) is the homomorphism induced by the
inclusionU; C U.

Proof. It is only needed to show that ¥; and A\, are two translation paths in
the same component of f( ), that do not touth , then Xiff[ = Tr([)\2]). By
Lemma 5, becausé.[M\1] = i.[\2] € R(f), there is an elemeni; € W such that
[A2] = [wiA1] € R(f|U1). But this implies that

T = Y [w- A=) [wwy Aol = Tr(a),

wew wew

that is the thesis.

Because the action dV  ib/; is free, one can assume without loss of generality
that Fix(f )N Uy is the disjoint union of a finite number d¥ -orbits of fixed ptsinTo
prove the second part of the proposition, consider an iBdléixed pointx € Fix(f)N
U; and its coordinate cd( & R(f|U1). The orbit W - x contributes in the expression
of L(f|Uy) with the term

ind(f, x) > w-cd().
wew
Its image inR(f) is simply the sum

ind(f, x) > w- i cd(x).

wew
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The image under the transfer Tr is given by

ind(f, x) > Tr(w - i.cdx)) = ind(f, x)> > v-w-cdx)

weWw weWveWw
= [Wlind(f,x) Y wcd(x).
wew
By adding these terms if(f|U;) the proof is complete. ]

5. Consequences: the converse of the Lefschetz property

Lemma 7. Let G be a finite groupM a smooth -manifold afd C M an
open G -subspace. Assume that for every isotrépy the space  ndaompo-
nent of dimensior2. Then a compactly fixed® -map: U — M is G-homotopic to a
fixed point freeG -magvia a compactly fixeds -homotopjf and only if there exists
a G-map f': U — M, compactly fixed homotopic t¢ and taut in a neighborhood
of Fix(f’), such that the generalized Lefschetz numBéy’”|Uy) vanishes for every
isotropy H .

Proof. A fixed point freeG -mapfy compactly fixedG -homotopic tof is also
taut in a neighborhood of Fixp), and clearly the generalized Lefschetz number
L(f§|Uy) vanishes for every isotropy . On the other hand, if therstexa G -map
f': U — M compactly fixed homotopic tof and taut in a neighborhood of Fix
then by induction over orbit types it is possible to deforntatbe fixed point free,
once one can prove that for every isotroply  the restrictféfi: Uy — M* can be
deformed to be fixed point free via a compactly fix8¢tH  -homotofyis can be
done by using the Wecken-Jiang modification on simple patmnecting fixed points
in the same Nielsen class, in the standard way, because wasawening that every
component ofUy has dimension different from 2. O

RemArRk 2. |If there is aG -mapf’: U — M, compactly fixed homotopic to
f and taut in a neighborhood of Fik(), such that the generalized Lefschetz num-
ber £(f'"|Uy) vanishes for every isotropy/ , then every other -map: U —
M, compactly fixed homotopic tof and taut in a neighborhood of(Fi) has
L(f""|Uy) = 0 for every isotropyH . A simple way of proving this is to ciner
a compactG -submanifold o/ and WsH -deformation retraction rofeguivariant
neighborhood ofM? x 91 U M x I in M* (due to the fact tha? — M" is a
W H-cofibration).

Lemma 8. Let G be a finite groupM be a smoothG -manifold antf C M an
openG -subspace. If : U — M is an isovariant compactly fixed® -map then there is
a compactly fixed deformatioi: U — M, ¢ € [0, 2], such that
0 fo=1;
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(i) f2 is taut in a neighborhood oFix( f2);

(i) f; is isovariant for every € [0, 1];

(iv) for every isotropyH the restrictiorf,” is compactly fixed iV and(f{|Uy) =
L(f;|Un).

Proof. It is possible to definef; by induction over orbit types fallows.
For every isotropyH the singular s’ hasVé;H  -neighborhdbd  twiidc
W H-homeomorphic to the mapping cylinder of a suitable mapv,; — M? c M
from a free smooth compad¥sH -manifoll; to M.

N1—1>M;1

L

N1><Ij—>N

T

Thus N D M has coordinatesn(t ), with € N; andt € I, with (z, 0) = (n’, 0)
wheneverj ¢ ) =j #’). Assume now thatf,? is defined oli : we want to extend
it to a map £,/ :U" — M*™. First, consider a compad¥;H -subspace (with bound-
ary) C of U containing the fixed point set Figfl) N UX. There existsc > 0 such
that fj(n,t) € N for all (n,t) € C x [0, €]. Now, it is easy to define a deforma-
tion through aWgH -isotopyi, C — C, t € I, with the property that:o = 1c and
prafhij(n,t) < (1/2), where pr, means the projection onto the second factor. Such
a deformation can be extended & , identically outside a emtpeighborhood of
jC x [0, €] (small enough so that no other fixed point is involved ouwsttle fixed
points in N'), and thus we obtain a deformatigh f= h,, ¢t € [0, 1], with the prop-
erty that f; is isovariant for every € [0, 1] and that for g, ¢t )¢ C x [0, €],

MH

- 1 -
pr2fij(n,t) = prafhy < Eprzj(n, ).

Furthermore,C contains the fixed points ¢f in the singular part/¥ (actually; =

f in the singular part), and by construction Fi{) N Uy is compact. Then we pro-
ceed by induction over orbit types and we have defined a -pfiawith the desired
properties. Now we need to show that a tdaut -approximagiprof f; has the same
generalized Lefschetz numbefg £ |Uy). To prove it, simply consider that a taut ap-
proximation can be defined by considering, for evédy , a fionct: [0,¢] — I,
constant in a neighborhood ,[0] of 0, with 0 < ¢ < € (notation as before), and
equal to the identity ire: if (n,7) € C x [0, €], and then defining

f27(n’ t) = (Prlflj(”’ t)’ (b(t) : perlj(n’ t)) .
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Such a function has a suitab&;H -extensionitf , and it is clear it gives rise
to a Wg H -homotopy, relative td/7 and compactly fixed ih; . This coetgs the
proof. O

Theorem 9 (CLP). Let G be a finite group M a smooth G -manifold and
f:U — M a compactly fixeds; -map. Assume that the following conditiois:
(i) For every isotropyH C G the codimension oM \ MH in M" is at least2;
(i) The mapyf is isovariant.
(i) For every H no component dfy  has dimensian
Then there exists a fixed point fr&g -mgp compactly fixedG -homotopic tg  if
and only if for every isotropyy C G the Nielsen numbeN(f?) =0, i.e. if and only
if the equivariant Nielsen humbe¥s(f) vanishes.

Proof. By definitionNg ( ) =0 if and only ifN £ ) =0 for every isotrgpH C
G, and this happens if and only £( ) = 0 for every isotropyH C G. Of course, if
S’ is compactly fixedG -homotopic tg¢ and fixed point free, thei#] 0 :E(f’H) =
L(f"). Thus it remains to prove that iff@) £(f") = 0 then there exists such a fixed
point free deformation off . Lel; be th@ -deformation of LemmaB&causef; is
taut in a neighborhood of Fix}) and VK L(fX) = L(fX) = 0, by applying Theorem 3,
one gets that for every isotropi{ C G,

inC(f3'|Un) =Y (K, H)ig L(f5)=0.

KDH

Thus iy L(fF|Ug) = 0. But by property (iv) of Lemma 8 the generalized Lefszhet
numbers coincideC(f|Uy) = L(f{|Ug), with f compactly fixed inUy . This
means thatvH, iz L(ff|Uy) = 0. Now considerff’: U? — M" as aw =
W H-equivariant map. Because we are assuming that for evetsopsoH C G the
codimension ofM\ M in M" is at least 2 (i), actually the homomorphism induced
by the inclusionUy =U#\ UH c U% \ UH is an isomorphism

ZR(f"|Un) = ZR (A1 (U \ Ug)) -

But U\ UZ is exactly the free part of the action &  d@n : thus, when coerindy
only the action ofW onM# | we obtain that the free parti§ = U \ UZ and so

i L(fH|\U) = 0 € ZR(f),

wherei, is the homomorphism induced by the inclusibh C U.
Now apply the transfer Tr to both sides of the equalitff’(is an isovariant
W-map, and compactly fixed it/;): by Proposition 6,

0=Tr(i,. L(f{'|U1) = |WIL(f|U) € ZR(f¥ |UL).
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Hence £(f|Uy) = 0, and thusC(ff|Ux) = L(f{|Uy) = 0. This holds for everyH ,
and thusf; is an isovariantG -map, such that for evetly it is compactlydike Uy
and L(f{'|Ux) = 0. Again by property (iv) of Lemma 8 this implies that foreey H

L(f3'|\Un) = L(f'|Ux) =0.

Now apply Lemma 7: we have found@ -mgp: U — M, compactly fixed ho-
motopic to f and taut in a neighborhood of Fi¥), such that the generalized Lef-
schetz numbetC(f)'|Uy) vanishes for everyd . The proof is therefore complete.

U

A finite group is 2-split if it is the direct product of its 2-8w subgroup and the
odd-order complement.

Corollary 10. Let G be a2-split finite group M a smoothG -manifold and
f: U — M an isovariant compactly fixed -map. If for evely  no compomért
has dimensior2, then f is compactly fixed; -homotopic to a fixed point f(ee -map
if and only if Ng(f) =0.

Proof. If G is 2-split, then condition (i) of Theorem 9 is autatically satisfied.
Under this assumption the Corollary follows directly frohretTheorem. O

6. Examples

ExampLE 1. Let G be the cyclic group of order 2, and  the genus 3 surface
(torus with three holes). Lety be a base-point il and ¢ (ht () ardt ():— M
the three simple closed paths M  basedrinsuch that the closure of the interior of
M (as a 3-manifold with boundary) is homotopy equivalent te wWedge (inxo) of the
loopsa,b, andc . We will denote by the image of M  as a set (and dmees
for b andc) or, equivalently, as a homotopy class of paths. It aé clear from the
context which meaning is correct. Embed smoothy Rifiso that, ifg denotes the
reflectiong :R3 — R® defined byg £1, x2, x3) = (—x1, X2, x3), the following properties
hold

(i) gM = M;

(i) Ve € I: ga(t) =b(t), gb(t) =a(t), gct) =ct)-
(iii) M= a U S
That is, M is endowed with a smooth action 6f (see [7], exampkefér a figure).
Let f:a — M be the map defined by a( ) a ‘b~lab. We can extend it to the
wedge ofa ,b andc by setting b( ) Fg& )zfa()anfic ()= . Nowf can
be retracted o VvV b V ¢, and the composition of the retraction with  gives rise to
a G-equivariant self-magf M — M. This map is not isovariant, and actually is not
G-homotopic to anyG -isovariant map: it is not difficult to séeatt N (f) =N (f¢) =
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0, but for any taut approximation of L(k|M \ M%) # 0. Now, it is possible to
consider the manifoldX =M x §? (trivial action of G on S'), with the mapF =
f x 1, where 1:52 — §? is the identity map. By the multiplication property of the
generalized Lefschetz number, the equivariant Nielsenh@unvg (F) vanishes, while
L(FY|X \ XY) # 0. The assumptions of Corollary 10 and thus of Theorem 9 ate n
fulfiled: G is 2-split, there are no components ¥  &r\ X¢ of dimension 2, but
f is not isovariant. Moreover, the conclusion of the Corglldoes not hold.

ExavpLE 2. Similar to the previous example, the following shows dretthe
crossing of the fixed point classes on non-isovariant maps.XL be the union of the
two circlesC; and C; in the complex planeC with centers ini and-i, and radius 2.
Let G be the cyclic group of order 2, generated by the conjogati: C — C, gz =7.
Consider the uniqu& -map X — X with the property that for every € R

= 2ie") = {i —2ie5"’. if tE'[—7r/3, /3]

[ —2ie™"! otherwise.
It is well defined, because — 2ie%3™ = i — 2ie=Y/3" = —\/3 andi — 2ie %/3" =
i — 2ie'/3" = \/3. Moreover, the fixed points arie —i, 3i, —3i, with indices—1, —1,
+1, +1. It is easy to see thaf f{ )=0. Moreover, the fixed poiatsks have mixed
indices (that is, they contain a fixed point of index +1 and adiyoint of index—1),
so that they are inessential, and thiisf ( ) = 0. Now take a neitjiolod of X in
C and consider this aX . The Nielsen numbers are preservedlothk Lefschetz
numbers of the magf restricted 6 \ X¢ = X; (which is equal toX minus the
intersection ofX with the real axis) are non-zero, becauseefamplei and 3 do
not belong to the same Reidemeister class. This again showsben if the groupG
is 2-split, without a further assumption (i.e. the map isvés@ant) the transfer is not
well-defined, and therefore no analogous of Corollary 1@$.00f course, it might be
that there is a weaker hypothesis than bejfhg isovariant.

ExavpLE 3. Let G be the dihedral grou@,, of order 2., withn > 3 odd,
and C the complex plane with the canonical action 6f . Thén acts loa t
4-dimensional unit spher&/ §* c C @ RS, where the action oz oiR? is trivial.
Representatives of the isotropy classesGn  @reH and 1, wHeig any sub-
group of order 2 representing a reflection Gh The fixed subspaces af® ~ S2,
M" ~ §3 M' = M. The Weyl group ofH inG is trivial, thusv? = (), while
ME = MS # 0, so thatM! \ M% = M!, and the codimension o  id#
is 1. Thus hypothesis (i) of Theorem 9 is not satisfied. In,factis not 2-split. As
it can be seen in [8], if a grou is not 2-split, then there atangles of smooth
G-manifolds with the property that the identity map (whichai€s -isovariant self-map)
cannot be deformed to be fixed point free. That result was garovith anad hoc
proof: it is easy to prove it in a different way, by using Lemmaand Lemma 8, to-
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gether with the basic properties of the generalized Letgchambers of taut approxi-
mations (see also [7] for further properties of an equivdriixed point index).

7. Remarks

Remark 3. We have seen in examples 1, 2, 3 how the hypotheses in Thedre
are not redundant. On the other hand, it is possible to censither assumptions on
f or M: for example, if M" is simply connected for evely , then iasteof the
generalized Lefschetz numbers it is possible to use theicklsfixed point index, and
the Mobius formula reduces to the one of Komiya [14]. In tb&se it is only needed
the codimension assumption (i) of Theorem 9. To overcomg phodblem, it is possi-
ble to suppose directly; of odd order: in this cakg’ has alwaygineension at
least 2 inM" | and thus we only need to suppose that no compotietohas di-
mension 2. Of course, this latter assumption can not be tthckecause the converse
of the Lefschetz property does not hold on surfaces (it holdly in the casef is a
self-homeomorphism, because of the Nielsen-Thurstorsifieation of surface homeo-
morphisms; for maps locally defined, in general it does nddho

Remark 4. The techniques used in this paper can be easily extend#u toase
of a compact Lie grous . The fact is thatif C G is an isotropy group of a smooth
G-manifold M, then by equivariant obstruction theory it is \ye#&s reduce the problem
to the WoH manifoldsM? withWgH finite. So that most of the tools usedHiis t
paper can be literally translated to the ca&e  compact Lie. drily difficulty is that
the Mobius inversion formula cannot be used as it is, bexdsre would be an infi-
nite sum. But considering the Euler characteristic of slétehomogeneous spaces and
some counting theorems of conjugacy classes of closed subgrofG , it is possible
to develop a theorem similar to the one for finite groups.

Remark 5. If f: M — M is an equivariant self-homeomorphism of a smooth
G-manifold M, then it is isovariant. It might be of some intéré&s know whether un-
der the same assumptions of Theorem 9 the nfiap can be defosotegically to a
fixed point free map. This, due to a modified version of a rest@ilM. Kelly [12], is
true if (vH) the dimension of the components & s at least 5. As far asolkit
is still unknown for lower dimensions. There is an equivatigersion of the Nielsen-
Thurston classification theorem, but it is needed a strosgetified version, because
M* is not only Wi H -equivariant, but stratified by isotropy stratehich might not
coincide with the singular sets of tH& -action.

RemarRk 6. As it was shown by Dold [3], Komiya [14] and others (conside
e.g. the Lefschetz or Nielsen dynamical zeta-functionglivariant fixed point theory
can be used to analyze properties of periodic points of magiag the natural action
of the cyclic groupZ, on the sets of: -periodic points FiR{ ). It might be of some
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interest to give a characterization of fixed point classes iadices that can occur as
generalized Lefschetz numbers of iterated mgps , and of ¢meomorphisms (the
so-calledboosting functionsZR(f™) — ZR(f"), whenm dividesn . Theorem 3 can
be seen as a first step in this direction, giving a necessanglitian.

Remark 7. The generalized Lefschetz number used in this paper i®liseuc-
tion in deforming the map to be fixed point free. What we haveved is also that,
under some assumptions, the set of generalized Lefschetbers £(f%)) is a kind
of universal invariantfor G-homotopy classes of maps, with respect to the fixed point
problem. All the properties oL(f”) and a different formulation as a fixed point in-
dex in a suitable ring can be found in [7]. The idea of univeiseariant is a slight
modification of the one exposed in [16].
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