
Ferrario, D.L.
Osaka J. Math.
40 (2003), 345–363
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1. Introduction

Let be a finite group and : → an equivariant map. A common way of
studying the properties of is looking at the restrictions : → to the spaces
fixed by the subgroups of , as non-equivariant maps. For example, if and
are -CW complexes, then : → is a -equivariant homotopy equivalence if
and only if for every the map is a homotopy equivalence; a similar result re-
lated to a -retraction is due to Jaworowski: a locally compact, separable metric and
finite-dimensional -space is a -ENR if and only if for every the fixed point
set is an ENR [11]. This paper is addressed to studying fixed points (up to com-
pactly fixed -homotopy) of a -equivariant self-map : ⊂ → , where
is a -ENR or a smooth -manifold. If there is a compactly fixed -homotopy ,
∈ , such that 0 = and 1 is fixed point free, then for every subgroup there is

a compactly fixed homotopy such that0 = and 1 is fixed point free, and
this means that every restriction can be deformed to a fixed point free map. To
investigate under which conditions the converse of this statement is true, it is neces-
sary to exhibit the algebraic obstructions of the existenceof the equivariant deforma-
tion , and then relate them to the corresponding obstructions of the non-equivariant
restrictions . Under some dimensional assumptions, Nielsen theory is exactly what
describes these invariants; if is a manifold of dimension different from 2 then the
generalized Lefschetz numberL( ) or equivalently the Nielsen number ( ) van-
ish if and only if can be deformed to be fixed point free (it is the Converse of
the Lefschetz Property). So the problem can be stated algebraically as: under which
conditions does the knowledge of the generalized LefschetznumbersL( ) allow to
compute the obstructions to an equivariant deformation? Again, it is necessary to relate
the latter obstruction to a set of invariants (as done first in[7]), namely the general-
ized Lefschetz numbers of some restrictionsL( ′ | ) of a suitable approximation
′ of . This set of homotopy invariants gives what might be thought as an equiv-

ariant generalized Lefschetz number, and, under the same dimension assumptions as
above, they vanish if and only if the map has a -deformation toa fixed point free
map (compactly fixed). So the point is to relate the two sets ofinvariants above.

First results in this direction date back to the papers of Komiya [13],
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D. Wilczyński, [20] and Fadell and Wong [4]. The hypothesesneeded there were in
some sense quite restrictive. It was necessary to assume thecodimension of in
to be at least 2. This assumption was still present in the papers of Wong [18, 19] on
equivariant Nielsen theory. In the present paper we use someproperties of the general-
ized Lefschetz numbers that were not known, and the fact thatthe singular set and
the singular set of the action of the Weyl group on are often not the same.
It should be clear from the examples given at the end of this paper that the condition
needed is actually the weaker assumption (i) of Theorem 9. Another difference in the
approach is that by using generalized Lefschetz numbers instead of Nielsen numbers it
is now possible to keep track of the indices of the fixed point classes at any isotropy
level, so that a formula becomes available, relating the setof the GLN’s L( ) to the
set ofL( ′ | ). This is the aim of the first half of the paper.

The first step is done applying the addition formula for generalized Lefschetz
numbers, first proved in [6], which givesL( ) as a sum of the images of the
L( ′ | ) under some homomorphisms. Inverting such formula in a Möbius way is
what can give the solution of the initial problem: ifL( ) vanishes for every , then
the obstructions to deform equivariantly vanish. Furthermore, the inversion formula
relates fixed point classes at different isotropy groups: inthis way it is also possible
to describe some necessary conditions for the weighted setsof fixed point classes and
isotropies, extending the result of Dold [3] and Komiya [14].

The main results of the paper are the Möbius inversion formula given in Theo-
rem 3 and the Converse of the Lefschetz Property for isovariant maps given in The-
orem 9, which follows from Theorem 3. The structure of the paper follows the steps
needed in proving these theorems: in Section 2 the notation and some preliminaries are
given on properties of equivariant spaces and the generalized Lefschetz number. Two
technical results (Lemma 1 and 2) are proved, which allow to prove the inversion for-
mula in Theorem 3 (Section 3). The first consequence of the formula is the necessary
condition that must be satisfied by generalized Lefschetz numbersL( ) of the re-
strictions of an equivariant map. In Section 4 we start proving results needed in order
to apply the inversion formula to the converse of the Lefschetz property: first, with
the aid of the key Lemma 5, the existence of a transfer homomorphism is shown, and
then its main property is proved in Proposition 6. Finally, in Section 5 the converse of
the Lefschetz property (Theorem 9) is proved, after two technical Lemmas (Lemma 7
and 8). An immediate interesting consequence of Theorem 9 isgiven in Corollary 10:
if the group is 2-split, then for every -map the equivariant Nielsen number

( ) is zero if and only if is -homotopic to a fixed point free -map. In Sec-
tion 6 some examples are given, showing the reason for which the hypotheses of The-
orem 9 are needed: in Examples 1 and 2 the Hypothesis (i) holds(actually, is
2-split) but not (ii) (the map is not isovariant, nor -homotopic to an isovariant map);
furthermore, in Example 3 it is shown how if (i) does not hold (of course for group
not 2-split) then the CLP does not hold even for the identity map. At the end, in Sec-
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tion 7, there are some comments which might help in understanding the perspective of
the paper and some relevant details.

I wish to thank R. Brown, A. Dold, K. Komiya, R. Piccinini, S. Terracini and
P. Wong, because I could not have done this piece of research without their stimulating
discussions, help and support.

2. Preliminaries

Let be a finite group acting on a space . The isotropy subgroup⊂ of
an element ∈ is the subgroup ={ ∈ | = }. The set of isotropy
subgroups is a poset, with respect to inclusion, denoted by iso( ). If ⊂ is a sub-
group of , then denotes the subspace of fixed by , i.e.{ ∈ | = }.
The singular set in is the set of points with isotropy not equal to : = { ∈

| 6⊃ }. If is an isotropy subgroup then the complement of in is
denoted by ={ ∈ | = }. The Weyl group of the isotropy sub-
group is the quotient of the normalizer ={ ∈ | −1 = } modulo ,
that is = / . The space is endowed with a natural action of ,
with trivial isotropy type (whenever is isotropy): its singular set is denoted by 0.
It is contained in but it might be properly contained (see examples in [7, 8]). It
is not difficult to see that 0 is the set of points in ∈ with the property that

∩ 6= .

2.1. The generalized Lefschetz number. Let : ⊂ → be a compactly
fixed (continuous) map defined on an open subset of an ENR . Let be the unit
interval [0 1], and the space of continuous maps→ (with the compact-open
topology). Let ( ) denote the subspace of consisting of all the mapsλ ∈
such thatλ(0) ∈ and λ(0) = λ(1) (they are the Brouwer translation paths), and
R( ) the set of (connected) components of ( ). The setR( ) is calledReidemeister
set of the map . Its elements are also calledReidemeister classes. The class of a path
λ is denoted with [λ]. It has some interesting functional properties, and if = is
connected it is isomorphic to the set of twisted Reidemeister conjugacy classes in the
fundamental groupπ1( ). The free Abelian group generated byR( ) is denoted by
ZR( ): an element ofZR( ) is simply a functionξ : R( ) → Z, and the sum of two
such functions is done component-wise. Any functionφ : R( 1) → R( 2), induces in
a standard way a homomorphismφ∗ : ZR( 1) → ZR( 2).

The fixed point set Fix( ) ={ ∈ | = } can be embedded in ( ), by
sending the fixed point ∈ Fix( ) to the constant pathλ( ) ≡ , λ ∈ ( ). The
composition cd : Fix( )→ ( ) → R( ) is said thecoordinate function. The pre-
image cd−1 ξ of an elementξ ∈ R( ) is a set of fixed points called theNielsen class
of fixed points corresponding to the classξ. Every such a class is compact and has an
isolating neighborhood in . Thus there is only a finite numberof Nielsen classes of
fixed points.
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The generalized Lefschetz number of , denoted byL( ), is the elementL( ) ∈
ZR( ) defined byL( )(ξ) = ind( cd−1 ξ) for all ξ ∈ R( ), where ind( cd−1 ξ)
denotes the fixed point index of in any isolating neighborhood of the fixed point
class cd−1 ξ. With an abuse of notation, by identifyingξ with the dual functionξ̂ ∈
ZR( ) which sendsξ to 1 andξ′ 6= ξ to 0, it is possible to write

L( ) =
∑

ξ∈R( )

ind( cd−1 ξ) · ξ

If is a -complex and a subcomplex, thenL( ) can be written as the
Lefschetz number of the homomorphism induced in homology, with respect to the
Hattori-Stallings trace with coefficients inZπ( ) (see [5, 9]). The number of elements
of the support ofL( ) (i.e. the number of non-zero terms in the sum above) is the
local Nielsen number ( ) of . If = then it is the classical Nielsen number
of . If is a finite group and a -manifold, then the equivariant Nielsen num-
ber is the vector

(
( )

)
, where ranges over the isotropy groups ⊂ for

. It is the analogous of the equivariant Lefschetz number ( ).Further details on
Nielsen fixed point theory can be found in the books of R.F. Brown [1] and B.J. Jiang
[10]; on equivariant Nielsen fixed point theory the papers ofP. Wong [18, 19] are a
good reference. The common reference for equivariant algebraic topology is the book
of tom Dieck [17]. A different approach on generalized Lefschetz numbers (for equiv-
ariant maps) was given by E. Laitinen and W. Lück in [15].

2.2. Index properties of the generalized Lefschetz number. We recall here
some properties of the generalized Lefschetz number which resemble the properties of
the fixed point index (see [2] and [7]) and the Nielsen number.

If and are ENR’s, 1 : ⊂ → and 2 : ⊂ → are compactly fixed
maps defined on open subsets and , and :→ is a map such that =−1

and 1 = 2 , then there is a map

∗ : R( 1) → R( 2)

defined by ∗[λ] = [ λ], for every class [λ] ∈ R( ) (we can use the same symbol∗
for the homomorphism induced onZR( )). If is an inclusion, and there is a retrac-
tion of a neighborhood of in , and if 2 is defined as 1 : −1 → , then
the induced map

∗ : ZR( 1) → ZR( 2)

sendsL( 1) to L( 2):

L( 2) = ∗L( 1)

Another important property is the union property: let : ⊂ → be a
map; if (open) is the union of two open subsets1 and 2, and is compactly
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fixed in 1 and 2, then there exist the generalized Lefschetz numbersL( | 1) (the
map restricted to 1), L( | 2), L( | 1 ∩ 2) andL( ). There are functorial maps
induced by the inclusions1 : ZR( | 1) → ZR( ), 2 : ZR( | 2) → ZR( ) and

0 : ZR( | 1 ∩ 2) → ZR( ). The union property is the following:

L( ) = 1L( | 1) + 2L( | 2) − 0L( | 1 ∩ 2)

This is a consequence of a more general property of the general Lefschetz number of
pushout maps ([6]), but can be proved directly just using theproperties of the fixed
point index and the Reidemeister sets.

The last properties are the most significative: if1 ∼ 2 : ⊂ → are
compactly fixed and homotopic (via a compactly fixed homotopy) then there is a bi-
jection : R( 1) ∼= R( 2) such that ∗L( 1) = L( 2). This implies that if the map
is fixed point free, thenL( ) = 0. This is called the Lefschetz property (in analogy
with the Wecken property). Furthermore, if is a manifold of dimension at least 3,

: ⊂ → a compactly fixed map withL( ) = 0, then there is a fixed point free
compactly fixed deformation of (i.e. the converse of the Lefschetz property holds
for manifolds of dimension at least 3).

2.3. The taut approximation lemma. Let be a finite group and a
-space. If ⊂ is a -subset, then a -map : → is taut over if there

is a -retraction : → such that = . If is a -neighborhood of in ,
then is said to betaut over in if the restriction | is taut over . A -map

: ⊂ → is taut if for every isotropy subgroup ⊂ of the restriction
: → is taut over the singular set in a suitable neighborhood of

in . The assertion of the taut approximation lemma is what elsewhere (e.g. [14])
was called the existence of anormal form of any -map : ⊂ → defined on
enough regular -spaces. The most general spaces in which such a proposition holds
are, to my knowledge, -ENR’s.

Lemma 1 (Taut approximation). Let be a finite group, a -ENR, an
open -subspace of and : → a compactly fixed -map. Then for every
ǫ > 0 there is a compactly fixedǫ-approximation ′ of , such that ′ is taut in a
neighborhood ofFix( ′).

Proof. It is a consequence of the fact that for every isotropyof the in-
clusion → is a -cofibration (actually, is a -neighborhood re-
tract in ). Then, by induction over orbit types, it is possible to deform relatively
to and outside a compact -neighborhood of Fix( ), in order to obtain an
ǫ-approximation ′ of which is taut in a neighborhood of Fix(′ ). Alterna-
tively, there is a compact -neighborhood of Fix( ) in , and a -deformation
of the identity 1 : → which can be extended to an equivariantǫ′-deformationφ
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of 1 leaving \ fixed such that ◦ φ is the wantedǫ-deformation, withǫ′ small
enough.

The main point about such taut approximation′ is that the generalized Lefschetz
numbersL( ′ | ) of the maps ′ restricted to are well-defined, for every
isotropy (because it turns out that if′ is taut in a neighborhood of Fix(′) then
every restriction ′ | is compactly fixed and -equivariant). Another important
property is that if 1 and 2 are taut approximations of the same map (they are taut
in a neighborhood of their fixed point sets), then for every isotropy the general-
ized Lefschetz numbersL( 1 | ) = L( 2 | ) coincide (more precisely, there is a
compactly fixed homotopy 1 ∼ 2 inducing a bijectionθ : R( 1) ∼= R( 2) such that
θ∗L( 1 | ) = L( 2 | )).

2.4. The Möbius coefficients. Let iso( ) be the poset of isotropy groups of
in . The Möbius coefficientsµ( ) are the unique integers with the property that
if , : iso( ) → Z are arbitrary integer-valued maps such that

( ) =
∑

⊃

( )

then

( ) =
∑

⊃

µ( ) ( )

The coefficientsµ( ) do not depend upon the functions and , but only upon
the poset iso( ). A slight generalization of the Möbius inversion formula is given by
the following lemma.

Lemma 2. Consider iso( ) as a category(the inclusions are the morphisms),
and let : iso( ) → be a contravariant functor fromiso( ) to the category of
Abelian groups(Z-modules). Let denote the image of the inclusion → un-
der , and ( ) the Abelian group corresponding to . Then, if (∀ ) ( ) is the
element of ( ) defined by

( ) =
∑

⊃

( )

the following inversion formula is true

( ) =
∑

⊃

µ( ) ( )

Proof. It follows the same lines of the proof of the Möbius inversion formula.
Instead of considering a poset, it is possible to consider the image of the poset em-
bedded in , and write the formula as the inverse of a matrix + , where is
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nilpotent and is the identity. In this case the entries of thematrix are the homo-
morphisms , and the formal inverse of + can be obtained as

∑
=0 (−1) for

a suitable integer .

3. The Möbius inversion formula

Let be a finite group, a -ENR and : ⊂ → a compactly
fixed -map defined on an open subset of and taut in a -neighborhood
of Fix( ). The generalized Lefschetz numberL( | ) is well-defined for every
isotropy (and if ′ is another -map compactly fixed homotopic to and taut in
a -neighborhood of its fixed point set,L( | ) = L( ′ | )); let denote the
homomorphism :ZR( | ) → ZR( ) induced by the inclusion ⊂ .

Theorem 3. If : → is compactly fixed and taut in a -neighborhood of
Fix( ), then for every isotropy group ⊂ ,

L( | ) =
∑

⊃

µ( ) L( )

Proof. Let be an isotropy group, and consider the -map : →
. Its fixed point set Fix( ) is the disjoint union

Fix( ) =
⋃

⊃

Fix( | )

i.e. of the sets of fixed points with isotropy exactly , with ⊃ . Because is
assumed to be taut in a neighborhood of Fix( ), every component of Fix( ) has
just one isotropy, . Moreover, if is an isolating neighborhood in of then,
by the retraction property of the fixed point index, ind( ) = ind( ∩ ). In
other words, if we denote with the union of all the , with component with
isotropy exactly , the fixed point set Fix( ) has a neighborhood which is the
disjoint union

Fix( ) ⊂ =
⋃

⊃

Now we can use the union property (the union is disjoint) and the fact that the indexes
are preserved, by the retraction property, i.e.

L( ) =
∑

⊃

L( | ) =
∑

⊃

ι L( | )

where ι is the homomorphism induced by the inclusion

ι : ZR( | ) → ZR( )
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It is worthwhile to note that the homomorphismι = : ZR( | ) → ZR( )
needs not to be the identity, and thatR( | ) andR( ) can differ. Moreover, for
every choice of ⊃ , the equalityι = ◦ is true. Thus the previous formula
can be written as

L( ) =
∑

⊃

[
L( | )

]

The formal properties of the Möbius coefficientsµ( ) (Lemma 2) imply that for
every isotropy

L( | ) =
∑

⊃

µ( ) L( )

i.e. the thesis.

Corollary 4. Let be a finite group, a -ENR, an open subspace of
and : → a compactly fixed -map. If the element is defined as

=
∑

⊃

µ( ) L( ) ∈ ZR( )

then, for everyξ ∈ R( ),

(ξ) ≡ 0 mod | ξ|

where ξ denotes the isotropy subgroup of the classξ (relative to the action of the
Weyl group on the Reidemeister setR( )).

Proof. By lemma 1 it is possible to find a taut approximation ofvia a com-
pactly fixed -homotopy (and the generalized Lefschetz numbers involved in the for-
mula remain the same). Without loss of generality we can thusassume that is taut
in a neighborhood of its fixed point set. Because of Theorem 3,for every isotropy
group ⊂ ,

=
∑

⊃

µ( ) L( ) = ι L( | )

So the proof is complete once it is shown that, for everyξ ∈ R( ),
ι L( | )(ξ) ≡ 0 mod | ξ|. This comes from the fact that the Weyl group acts
freely on : the fixed point set Fix( | ) is the union of the free orbits of its
components. Without loss of generality we can assume that = Fix( | ) is a fi-
nite number of points: thus

ι L( | ) =
∑

∈

ind( ) · cd( )
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where cd( ) is the coordinate inR( ) of the fixed point . By splitting into orbits
we get

ι L( | ) =
∑

[ ]∈ /

∑

∈[ ]

ind( ) · cd( )

But for every [ ]∈ / the elements of [ ] have the same index, thus

∑

∈[ ]

ind( ) · cd( ) = ind( )
∑

∈[ ]

cd( ) = ind( ) · cd( )

This means that every term of the sum is a multiple of an element like · ξ, with
ξ ∈ R( ), and the conclusion follows.

REMARK 1. Another way of stating the proposition of Corollary 4 is the follow-
ing. The action of the Weyl group makesZR( ) into a Z -module. Let

=
∑

∈ denote the diagonal element inZ and ⊂ ZR( ) the sub-
module of the multiples of inZR( ), = ·ZR( ). The statement of Corol-
lary 4 is simply that

∑

⊃

µ( ) L( ) ∈ ⊂ ZR( )

4. The transfer homomorphism

Now consider a finite group acting locally smoothly on a manifold , and a
compactly fixed -map : ⊂ → defined on an open -subspace of . With-
out loss of generality we can assume that the principal isotropy type of is the trivial
subgroup, so that is the union of1 (the free part) and (the singular part, which
is the union of the spaces fixed by the elements of ). The inclusion 1 → induces
the map ∗ : R( | 1) → R( ). A class inR( | 1) is denoted by [λ], whereλ is a
translation path (that is, an element of (| 1), i.e. λ : → such thatλ(0) ∈ 1

and λ(0) = λ(1)).

Lemma 5. If λ1 and λ2 are two translation paths such thatλ1 , λ2 ⊂ 1 and

∗[λ1] = ∗[λ2] ∈ R( ), then there is an element ∈ such that[λ2] = [ λ1] ∈
R( | 1).

Proof. By definition, because∗[λ1] = ∗[λ2], λ1 and λ2 belong to the same
component of ( ), that is, there is a map ˜γ : → ( ) such thatγ(0) = λ1 and
γ̃(1) = λ2. The map : × → defined by ( ) =γ(λ)( )( ) is therefore a homo-
topy such that (0 ) =λ1( ) and (1 ) =λ2( ), while ( 0) = ( 1) for every
∈ . This is equivalent to the existence of a pathγ = ( 0) such thatλ1 (γ) ∼ γλ2

(homotopy rel. endpoints). Let us call such a patha path connectingλ1 and λ2.
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A σ : → connectingλ1 and λ2 can be deformed in a way such thatσ ∩
is a finite number of singular points with minimal isotropy (being the action locally
smooth, ifσ( ) ∈ 1 ∩ 2 , σ can be deformed in a way that this single intersection
point gives rise to at least two points with isotropy〈 1〉 and 〈 2〉). Moreover, without
loss of generality we can assume thatσ is smooth and crosses each transversally.
If σ has these properties, we say thatσ is a normal connecting path. Every connecting
path is homotopic to a normal connecting path rel. endpoints.

For each normal connecting pathσ, let |σ| be defined as follows:|σ| = #{ ∈
σ−1 }. Thus |σ| = 0 if and only if σ does not touch the singular set (and thus it is
a path in 1). Now considerλ1 and λ2. Using this terminology, the assertion of the
lemma says that there is a ∈ such thatλ1 and · λ2 can be connected by a
normal connecting pathσ with |σ| = 0. Assume it is false: thus, up to replacingλ2

with ·λ2 for a suitable ∈ , λ1 andλ2 can be connected by a normal connecting
path σ with |σ| > 0 and such that|σ| is the minimum among all the possible choices
of and normal connecting paths. Because for all∈ the fixed subspaces
have transverse regular intersection (the action of is locally smooth), if σ attains
the minimum of |σ|, then also the setsσ−1 have minimum cardinality among all
the normal connection paths homotopic toσ. Let 0 = minσ−1 and 0 the isotropy
of σ( 0).

Consider the map : × → defined as before by the connecting pathσ. Be-
cause is supposed to be isovariant,| σ| = |σ| andσ−1 = ( σ)−1 for every .
Moreover, because acts locally smoothly on , and0 must have codimension 1
in , 0 must be a cyclic group of order 2 generated by an element0 ∈ (locally
it must be a reflection along a hyperplane). Furthermore, letbe the component in
× \ −1 0 containing{0} × . By minimality of |σ|, and consequently by min-

imality of σ−1 0, cannot contain points in × ∂ different from [0 0) × {0 1}
(otherwise the minimality of|σ| would be contradicted, because there would exist a
normal connecting pathσ′ with less intersection points with thanσ). Therefore the
complement ′ = × \ of in × contains{1}× , and × = ∪ ′. Because
∩ ′ ⊂ −1 0 , the following homotopy is well-defined:

′( ) =

{
0 · ( ) if ( ) ∈

( ) if ( ) ∈ ′

But if σ′ = ′(− 0), thenσ′ is a path connecting 0 · λ1 and λ2 and it can be easily
deformed only in a neighborhood of0 so thatσ′( 0) 6∈ , thus 0 ·λ1 andλ2 can be
connected by a normal connecting path with less than|σ| transversal simple intersec-
tion points with , which contradicts the hypothesis of minimality of |σ|. This means
that the minimal|σ| cannot be different from 0, that is the thesis.

Let : ⊂ → be an isovariant -map, with trivial principal isotropy type
in , and 1 the complement of the singular part of . The purpose of the previ-
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ous lemma is to define atransfer homomorphismTr: ZR( ) → ZR( | 1). We need
only to consider the value of Tr on the free generators ofZR( ), i.e. the elements of
R( ). If λ0 ∈ ( ) is such thatλ−1

0 = ∅, then let Tr([λ0]) =
∑

∈ [ · λ0]. It is
an element ofZR( | 1), becauseλ0(0) 6∈ by assumption. Otherwise, ifλ ∈ ( )
is an element such thatλ−1 6= ∅, there are two cases: either every translation path
in the same component [λ] ∈ R( ) has a nontrivial intersection with , or there is
at leastλ0 ∈ [λ] such thatλ−1

0 = ∅. In the first case, define Tr([λ]) = 0. In the
second case, define simply Tr([λ]) = Tr([λ0]). What now we need is to show that the
definition does not depend upon the choice of such aλ0 or upon the representative in
a class [λ] ∈ R( ).

Proposition 6 (Transfer). If : ⊂ → is an isovariant -map, then the
transfer homomorphismTr defined as above is well-defined; moreover, if is com-
pactly fixed in 1 then the generalized Lefschetz number verifies the identity

Tr ◦ ∗L( | 1) = | |L( | 1)

in ZR( | 1), where ∗ : ZR( | 1) → ZR( ) is the homomorphism induced by the
inclusion 1 ⊂ .

Proof. It is only needed to show that ifλ1 and λ2 are two translation paths in
the same component of ( ), that do not touch , then Tr([λ1]) = Tr([λ2]). By
Lemma 5, because∗[λ1] = ∗[λ2] ∈ R( ), there is an element 1 ∈ such that
[λ2] = [ 1λ1] ∈ R( | 1). But this implies that

Tr([λ1]) =
∑

∈

[ · λ1] =
∑

∈

[ −1
1 λ2] = Tr([λ2])

that is the thesis.
Because the action of in 1 is free, one can assume without loss of generality

that Fix( )∩ 1 is the disjoint union of a finite number of -orbits of fixed points. To
prove the second part of the proposition, consider an isolated fixed point ∈ Fix( )∩

1 and its coordinate cd( )∈ R( | 1). The orbit · contributes in the expression
of L( | 1) with the term

ind( )
∑

∈

· cd( )

Its image inR( ) is simply the sum

ind( )
∑

∈

· ∗ cd( )
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The image under the transfer Tr is given by

ind( )
∑

∈

Tr( · ∗ cd( )) = ind( )
∑

∈

∑

∈

· · cd( )

= | | ind( )
∑

∈

· cd( )

By adding these terms inL( | 1) the proof is complete.

5. Consequences: the converse of the Lefschetz property

Lemma 7. Let be a finite group, a smooth -manifold and ⊂ an
open -subspace. Assume that for every isotropy the space hasno compo-
nent of dimension2. Then a compactly fixed -map: → is -homotopic to a
fixed point free -map(via a compactly fixed -homotopy) if and only if there exists
a -map ′ : → , compactly fixed homotopic to and taut in a neighborhood
of Fix( ′), such that the generalized Lefschetz numberL( ′ | ) vanishes for every
isotropy .

Proof. A fixed point free -map 0 compactly fixed -homotopic to is also
taut in a neighborhood of Fix(0), and clearly the generalized Lefschetz number
L( 0 | ) vanishes for every isotropy . On the other hand, if there exists a -map

′ : → compactly fixed homotopic to and taut in a neighborhood of Fix( ′),
then by induction over orbit types it is possible to deform itto be fixed point free,
once one can prove that for every isotropy the restriction′ : → can be
deformed to be fixed point free via a compactly fixed -homotopy. This can be
done by using the Wecken-Jiang modification on simple paths connecting fixed points
in the same Nielsen class, in the standard way, because we areassuming that every
component of has dimension different from 2.

REMARK 2. If there is a -map ′ : → , compactly fixed homotopic to
and taut in a neighborhood of Fix(′), such that the generalized Lefschetz num-

ber L( ′ | ) vanishes for every isotropy , then every other -map′′ : →
, compactly fixed homotopic to and taut in a neighborhood of Fix( ′′) has

L( ′′ | ) = 0 for every isotropy . A simple way of proving this is to consider
a compact -submanifold of and a -deformation retraction of an equivariant
neighborhood of × ∂ ∪ × in (due to the fact that → is a

-cofibration).

Lemma 8. Let be a finite group, be a smooth -manifold and ⊂ an
open -subspace. If : → is an isovariant compactly fixed -map then there is
a compactly fixed deformation : → , ∈ [0 2], such that
(i) 0 = ;
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(ii) 2 is taut in a neighborhood ofFix( 2);
(iii) is isovariant for every ∈ [0 1];
(iv) for every isotropy the restriction1 is compactly fixed in andL( 1 | ) =
L( 2 | ).

Proof. It is possible to define by induction over orbit types as follows.
For every isotropy the singular set has a -neighborhood which is

-homeomorphic to the mapping cylinder of a suitable map :1 → ⊂
from a free smooth compact -manifold1 to .

1

��

//

��

��

1 × //

,, ""
E

E
E

E
E

E
E

E

Thus ⊃ has coordinates ( ), with ∈ 1 and ∈ , with ( 0) ≡ ( ′ 0)
whenever ( ) = ( ′). Assume now that is defined on : we want to extend
it to a map : → . First, consider a compact -subspace (with bound-
ary) of containing the fixed point set Fix(0 ) ∩ . There existsǫ > 0 such
that ( ) ∈ for all ( ) ∈ × [0 ǫ]. Now, it is easy to define a deforma-
tion through a -isotopy : → , ∈ , with the property that 0 = 1 and

2 1 ( ) ≤ (1/2) , where 2 means the projection onto the second factor. Such
a deformation can be extended to , identically outside a compact neighborhood of

× [0 ǫ] (small enough so that no other fixed point is involved outside the fixed
points in ), and thus we obtain a deformation =◦ , ∈ [0 1], with the prop-
erty that is isovariant for every∈ [0 1] and that for ( )∈ × [0 ǫ],

2 1 ( ) = 2 1 ≤
1
2 2 ( )

Furthermore, contains the fixed points of1 in the singular part (actually1 =
in the singular part), and by construction Fix(1 ) ∩ is compact. Then we pro-

ceed by induction over orbit types and we have defined a -map1 with the desired
properties. Now we need to show that a taut -approximation2 of 1 has the same
generalized Lefschetz numbersL( 1 | ). To prove it, simply consider that a taut ap-
proximation can be defined by considering, for every , a function φ : [0 ǫ] → ,
constant in a neighborhood [0ǫ′] of 0, with 0 < ǫ′ < ǫ (notation as before), and
equal to the identity inǫ: if ( ) ∈ × [0 ǫ], and then defining

2 ( ) =
(

1 1 ( ) φ( ) · 2 1 ( )
)
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Such a function has a suitable -extension to , and it is clear that it gives rise
to a -homotopy, relative to and compactly fixed in . This completes the
proof.

Theorem 9 (CLP). Let be a finite group, a smooth -manifold and
: → a compactly fixed -map. Assume that the following conditionshold:
(i) For every isotropy ⊂ the codimension of \ 0 in is at least2;

(ii) The map is isovariant.
(iii) For every no component of has dimension2.
Then there exists a fixed point free -map′ compactly fixed -homotopic to if
and only if for every isotropy ⊂ the Nielsen number ( ) = 0, i.e. if and only
if the equivariant Nielsen number ( ) vanishes.

Proof. By definition ( ) = 0 if and only if ( ) = 0 for every isotropy ⊂
, and this happens if and only ifL( ) = 0 for every isotropy ⊂ . Of course, if
′ is compactly fixed -homotopic to and fixed point free, then (∀ ) 0 = L( ′ ) =

L( ). Thus it remains to prove that if (∀ ) L( ) = 0 then there exists such a fixed
point free deformation of . Let be the -deformation of Lemma 8. Because 2 is
taut in a neighborhood of Fix(2) and∀ L( 2 ) = L( ) = 0, by applying Theorem 3,
one gets that for every isotropy ⊂ ,

L( 2 | ) =
∑

⊃

µ( ) L( 2 ) = 0

Thus L( 2 | ) = 0. But by property (iv) of Lemma 8 the generalized Lefschetz
numbers coincideL( 2 | ) = L( 1 | ), with 1 compactly fixed in . This
means that∀ , L( 1 | ) = 0. Now consider 1 : → as a =

-equivariant map. Because we are assuming that for every isotropy ⊂ the
codimension of \ 0 in is at least 2 (i), actually the homomorphism induced
by the inclusion = \ ⊂ \ 0 is an isomorphism

ZR( 1 | ) ∼= ZR
(

1 |
(

\ 0

))

But \ 0 is exactly the free part of the action of on : thus, when considering
only the action of on , we obtain that the free part is1 = \ 0 and so

∗L( 1 | 1) = 0 ∈ ZR( 1 )

where ∗ is the homomorphism induced by the inclusion1 ⊂ .
Now apply the transfer Tr to both sides of the equality (1 is an isovariant

-map, and compactly fixed in 1): by Proposition 6,

0 = Tr
(

∗L( 1 | 1)
)

= | |L( 1 | 1) ∈ ZR( | 1)
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HenceL( 1 | 1) = 0, and thusL( 1 | ) = L( 1 | 1) = 0. This holds for every ,
and thus 1 is an isovariant -map, such that for every it is compactly fixed in
andL( 1 | ) = 0. Again by property (iv) of Lemma 8 this implies that for every

L( 2 | ) = L( 1 | ) = 0

Now apply Lemma 7: we have found a -map2 : → , compactly fixed ho-
motopic to and taut in a neighborhood of Fix(2), such that the generalized Lef-
schetz numberL( 2 | ) vanishes for every . The proof is therefore complete.

A finite group is 2-split if it is the direct product of its 2-Sylow subgroup and the
odd-order complement.

Corollary 10. Let be a 2-split finite group, a smooth -manifold and
: → an isovariant compactly fixed -map. If for every no componentof

has dimension2, then is compactly fixed -homotopic to a fixed point free -map
if and only if ( ) = 0.

Proof. If is 2-split, then condition (i) of Theorem 9 is automatically satisfied.
Under this assumption the Corollary follows directly from the Theorem.

6. Examples

EXAMPLE 1. Let be the cyclic group of order 2, and the genus 3 surface
(torus with three holes). Let0 be a base-point in and ( ), ( ) and ( ) :→
the three simple closed paths in based in0 such that the closure of the interior of

(as a 3-manifold with boundary) is homotopy equivalent to the wedge (in 0) of the
loops , , and . We will denote by the image of in as a set (and the same
for and ) or, equivalently, as a homotopy class of paths. It will be clear from the
context which meaning is correct. Embed smoothly inR3 so that, if denotes the
reflection :R3 → R3 defined by ( 1 2 3) = (− 1 2 3), the following properties
hold

(i) = ;
(ii) ∀ ∈ : ( ) = ( ), ( ) = ( ), ( ) = ( ).

(iii) = ⊔ 1.
That is, is endowed with a smooth action of (see [7], example 5.2 for a figure).
Let : → be the map defined by ( ) =−1 −1 . We can extend it to the
wedge of , and by setting ( ) = ( ) = ( ) and ( ) = . Now, can
be retracted on ∨ ∨ , and the composition of the retraction with gives rise to
a -equivariant self-map : → . This map is not isovariant, and actually is not

-homotopic to any -isovariant map: it is not difficult to see that ( ) = ( ) =
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0, but for any taut approximation of L( | \ ) 6= 0. Now, it is possible to
consider the manifold = × 2 (trivial action of on 1), with the map =
× 1, where 1 : 2 → 2 is the identity map. By the multiplication property of the

generalized Lefschetz number, the equivariant Nielsen number ( ) vanishes, while
L( | \ ) 6= 0. The assumptions of Corollary 10 and thus of Theorem 9 are not
fulfilled: is 2-split, there are no components in or\ of dimension 2, but

is not isovariant. Moreover, the conclusion of the Corollary does not hold.

EXAMPLE 2. Similar to the previous example, the following shows better the
crossing of the fixed point classes on non-isovariant maps. Let be the union of the
two circles 1 and 2 in the complex planeC with centers in and− , and radius 2.
Let be the cyclic group of order 2, generated by the conjugation : C → C, = .
Consider the unique -map : → with the property that for every ∈ R

( − 2 ) =

{
− 2 5 if ∈ [−π/3 π/3]

− 2 − otherwise.

It is well defined, because− 2 5/3π = − 2 −1/3π = −
√

3 and − 2 −5/3π =
− 2 1/3π =

√
3. Moreover, the fixed points are ,− , 3 , −3 , with indices−1, −1,

+1, +1. It is easy to see that ( ) = 0. Moreover, the fixed point classes have mixed
indices (that is, they contain a fixed point of index +1 and a fixed point of index−1),
so that they are inessential, and thus ( ) = 0. Now take a neighborhood of in
C and consider this as . The Nielsen numbers are preserved. Thelocal Lefschetz
numbers of the map restricted to \ = 1 (which is equal to minus the
intersection of with the real axis) are non-zero, because for example and 3 do
not belong to the same Reidemeister class. This again shows how even if the group
is 2-split, without a further assumption (i.e. the map is isovariant) the transfer is not
well-defined, and therefore no analogous of Corollary 10 holds. Of course, it might be
that there is a weaker hypothesis than being isovariant.

EXAMPLE 3. Let be the dihedral group 2 of order 2 , with ≥ 3 odd,
and C the complex plane with the canonical action of . Then acts on the
4-dimensional unit sphere =4 ⊂ C ⊕ R3, where the action of onR3 is trivial.
Representatives of the isotropy classes in are , and 1, whereis any sub-
group of order 2 representing a reflection inC. The fixed subspaces are ≈ 2,

≈ 3, 1 = . The Weyl group of in is trivial, thus 0 = ∅, while
= 6= ∅, so that \ 0 = , and the codimension of in

is 1. Thus hypothesis (i) of Theorem 9 is not satisfied. In fact, is not 2-split. As
it can be seen in [8], if a group is not 2-split, then there are examples of smooth

-manifolds with the property that the identity map (which isa -isovariant self-map)
cannot be deformed to be fixed point free. That result was proved with an ad hoc
proof: it is easy to prove it in a different way, by using Lemma7 and Lemma 8, to-
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gether with the basic properties of the generalized Lefschetz numbers of taut approxi-
mations (see also [7] for further properties of an equivariant fixed point index).

7. Remarks

REMARK 3. We have seen in examples 1, 2, 3 how the hypotheses in Theorem 9
are not redundant. On the other hand, it is possible to consider other assumptions on

or : for example, if is simply connected for every , then instead of the
generalized Lefschetz numbers it is possible to use the classical fixed point index, and
the Möbius formula reduces to the one of Komiya [14]. In thiscase it is only needed
the codimension assumption (i) of Theorem 9. To overcome this problem, it is possi-
ble to suppose directly of odd order: in this case has always codimension at
least 2 in , and thus we only need to suppose that no component of has di-
mension 2. Of course, this latter assumption can not be canceled, because the converse
of the Lefschetz property does not hold on surfaces (it holdsonly in the case is a
self-homeomorphism, because of the Nielsen-Thurston classification of surface homeo-
morphisms; for maps locally defined, in general it does not hold).

REMARK 4. The techniques used in this paper can be easily extended tothe case
of a compact Lie group . The fact is that if ⊂ is an isotropy group of a smooth

-manifold , then by equivariant obstruction theory it is easy to reduce the problem
to the manifolds with finite. So that most of the tools used in this
paper can be literally translated to the case compact Lie. The only difficulty is that
the Möbius inversion formula cannot be used as it is, because there would be an infi-
nite sum. But considering the Euler characteristic of suitable homogeneous spaces and
some counting theorems of conjugacy classes of closed subgroups of , it is possible
to develop a theorem similar to the one for finite groups.

REMARK 5. If : → is an equivariant self-homeomorphism of a smooth
-manifold , then it is isovariant. It might be of some interest to know whether un-

der the same assumptions of Theorem 9 the map can be deformed isotopically to a
fixed point free map. This, due to a modified version of a resultof M. Kelly [12], is
true if (∀ ) the dimension of the components of is at least 5. As far as I know, it
is still unknown for lower dimensions. There is an equivariant version of the Nielsen-
Thurston classification theorem, but it is needed a strongerstratified version, because

is not only -equivariant, but stratified by isotropy strata,which might not
coincide with the singular sets of the -action.

REMARK 6. As it was shown by Dold [3], Komiya [14] and others (consider
e.g. the Lefschetz or Nielsen dynamical zeta-functions), equivariant fixed point theory
can be used to analyze properties of periodic points of maps,using the natural action
of the cyclic groupZ on the sets of -periodic points Fix( ). It might be of some
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interest to give a characterization of fixed point classes and indices that can occur as
generalized Lefschetz numbers of iterated maps , and of the homomorphisms (the
so-calledboosting functions) ZR( ) → ZR( ), when divides . Theorem 3 can
be seen as a first step in this direction, giving a necessary condition.

REMARK 7. The generalized Lefschetz number used in this paper is theobstruc-
tion in deforming the map to be fixed point free. What we have proved is also that,
under some assumptions, the set of generalized Lefschetz numbers (L( )) is a kind
of universal invariantfor -homotopy classes of maps, with respect to the fixed point
problem. All the properties ofL( ) and a different formulation as a fixed point in-
dex in a suitable ring can be found in [7]. The idea of universal invariant is a slight
modification of the one exposed in [16].
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