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1. Introduction

Suppose thatG is a finitp -solvable group, where is a prime.IBHIG) be
the set of irreducible Brauer characters®@f , and let,i&F) be thosep € IBr(G) of
degree not divisible by .

The Glauberman correspondence, in the important case wdesegroup acts
on a p’-group, can be viewed as a natural correspondence betwegndB and
IBr(Ng(P)), where P € Syl (G) andG is a group with a norma -complement. Our
point in this note is to show that it is not necessary to asstimeG has a normal
p-complement: it suffices to assume thég(P) does.

Theorem A. Suppose thaG ip -solvahleand let P € Syl,(G). Assume that
Ng(P) has a normalp -complement. Then for everyc IBr,(G), there is a unique
©* € IBr(Ng(P)) such that

ONg(P) = €p" + DA,

wheree is not divisible by and is some Brauer characteNgf(P) or zero. Alsg
the maplBr,/(G) — IBr(Ng(P)) given byy — ¢* is a bijection. On the other hand
if 7 € IBr(G) has degree divisible by, then

™Ng(P) = PE,
where E is some Brauer character bi;(P).

Even in the case wherBs(P) = P, Theorem A above tells us something non-
trivial (although well-known): a Sylowp -subgroup of@a -sable groupG is self-
normalizing, if and only if all nontrivial irreducible Braw characters ol have de-
gree divisible byp .

The condition ofNg(P) having a normalp -complement is natural enough that
can be read off from the character table@f (whenaVer pis abddy.

Theorem B. Suppose thatG ip -solvable and I€t € Syl,(G). ThenNg(P)
has a normalp -complement iff the numberof -regular clase§ of size not divis-
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ible by p is the number of irreducible Brauer characters@f  efyoke not divisible
by p.

Theorem B is already false fa& #As and p = 2. In this case¢; has only one
irreducible Brauer character of odd degree and only oneg@lae class of odd size.
However the Sylow 2-normalizer af  does not have a normal rBgiement.

2. Proofs

We begin with a lemma.

Lemma 2.1. Suppose thaG is @ -solvable and IBt be a Sylew -subgroup
of G. Suppose thatv <G and that6 € IBr(N) is P-invariant of p’-degree. Then there
existsy € IBr(G) of p’-degree lying ovel.

Proof. We argue by induction ofG : N|. If N = G, we let ¢ = and the proof
of the lemma follows. Now, lefM /N be a chief factor ofG . IfM/N is a p-group,
then 6 is M-invariant sinceM C NP. By Green’s Theorem (8.11) of [3], there ex-
ists a uniquen € IBr(M) lying over 6. Furthermorey extendsé. In particular,n has
p’-degree and by uniqueness B -invariant. No@,: M| < |G : N| and by induction
there is somep € IBr(G) of p’-degree lying over). Then¢ lies overd and the proof
of the lemma is complete. Suppose now théfN is a p’-group. In this case, all ir-
reducible constituents o have p’-degree by Theorem (8.30) of [3]. Now?  acts
on the irreducible constituents of the Brauer charadtér Since this character has
p’-degree, necessarily it follows th&  fixes some irreduciddastituent € 1Br(M)
of 6. Now, ¢ lies overd (by Corollary (8.7) of [3]) and the proof of the lemma fol-
lows by induction (as in the previous case). ]

Proof of Theorem A. LetN =0,/(G) and letC =Cy(P). If N = G, then
there is nothing to prove. We claim th&ig(P) = P x C. Write M = Ng(P). By
hypothesis, we know that/ # x K. Hence,K =0,(M) C N, by a well-known
group theoretical fact. Hence, the claim easily follows.

Let ¢ € IBr,/(G). We claim thatyy has a unique irreduciblé® -invariant con-
stituentd € Irr(N). Let v € Irr(N) be an irreducible constituent aby. Since ¢ has
p’-degree it follows that the inertia group ofin G has p’-index (by the Clifford cor-
respondence, Theorem (8.9) of [3]). Hence, some conjufabé v has stabilizerr
containing P . Thereford is P-invariant. Suppose that € Irr(N) is some otherP -
invariant irreducible constituent aby. Then p = 68, by Clifford’s theorem. Now, we
have thatP andP¢ = are insideT . Thereforep’s = for somee T, and we
deduce thaty and 6 are M -conjugate. Howeved € P , and therefqre= 6, as
claimed.

Now, let § € Irr(N) be P -invariant. We claim that there is a uniqyec IBr,/(G)
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over . By Lemma (2.1), we see that there is somec IBr(G) of p’-degree ly-
ing over #. We prove thaty is unique by induction onfG|. By hypothesis, we have
that MN/N C PN/N C OP/(G/N). Hence, by the Frattini argument, we have that
O’ (G/N) = G/N. So letK/N = O?(G/N) < G/N, and letL/N = O” (K/N).
Write U = LP. Hence, G =KU andK NU = L. SinceM =CP C NP, we have
that M C U. In particular,Cg . (P) = 1. Now, N =0,/(L) since L < G. SinceU /L
is a p-group, it follows thatv. =O,/(U). If U = G, then K =L =N and we have
that G = NP . In this caseyp is unique by Green's Theorem (8.11) of [3]. Hence,
we may assume thdl is proper @ . By induction, there is a @nige& IBr, (U)
lying over 6. Suppose now that € IBr,/(G) also lies overd and hasp’-degree.
Now, 4y has ap’-degree irreducible constituegt Also, {y has aP -invariant con-
stituent (by the second paragraph, for instance). Sincehbysecond paragrapliy
has a uniqueP -invariant irreducible constituent, we dedbheg¢y containsé. By in-
duction, we have thay = £. By the same reasonyy containsn. Now, by using re-
peatedly Corollary (8.22) of [3], we have that and px are P -invariant irreducible
Brauer characters oK  lying ovej.. Now, let 61, 1 € Bp/(K) andn1 € Bp (L)
be the canonical Isaacs liftings ok, ¢x and n., respectively (see Corollary (10.3)
of [1]). By unigueness, we have that these three characters @nvariant. Also, by
Corollary (7.5) and Corollary (10.3) of [1], it easily folis thatd; and s lie over n;.
By Problem (13.10) of [2], we have thai = ¢1. Hencepx = 0x. By Theorem (8.11)
of [3], we have thatp = ¢, and the claim is proven.

Now, given¢ € IBr,/(G), we have thatpy has a uniqueP -invariant irreducible
constituentd < Irr(N), and thatd and ¢ uniquely determine one each other. In partic-
ular, we have proven that

1B, (G)| = [Irrp(N)],

where, as usual, Ipr N ) denotes the irreducilfle -invaridr@racters ofN . Lef2 be
the set ofG -conjugates d@f. Hence,P acts o2 fixing only, and we may write

pv=d0+Y | > nl ],
(@]

neo

where O runs over the differen? -orbits not equéd}. Also, sincep(1) is not divis-
ible by p, we have that/ is not divisible by . Now, sin€e@ Gy P ( ), wetithat
nc = (M) for x € P andn € Irr(N). Therefore we may writepc = dfc + pV¥,
where W is some character ¢f  or zero. Now, by Theorem (13.14plpfwe have
that 0c = e0* + pA, wheref* € Irr(C) is the Glauberman correspondent @&f p does
not dividee andA is a character @ or zero. Simdg(P) = P x C, and the irre-
ducible Brauer characters &f;(P) are naturally identifiable with the irreducible char-
acters ofC , the first part of the theorem easily follows. Noince

IBr, (G)| = [Irr p(N)| = [Irr(C)| = [Irr(Ng(P)/ P)| = [IBr(NG(P))! .
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(where the equalitylrr p(N)| = [Irr(C)| follows from the Glauberman correspondence)
to prove that the map — ¢™* is bijective, it suffices to show thdtis one to one. As-
sume thatpy* = §*, wherey, § € IBr,/(G). By how our map is constructed and using
that the Glauberman correspondence is one to one, we easllycd thatp and ¢ lie
over the sameP -invariant irreducible characterhof . Hengethle third paragraph of
this proof, we have thap =4, as required.

Suppose now that € IBr(G) has degree divisible by . We distinguish two cases.
Suppose first thaty contains aP -invariant irreducible constituehte Irr(N). Let T
be the inertia group ofl in G, and lety € IBr(T | 6) be the Clifford correspondent
of 7 over § (Theorem (8.9) of [3]). SinceG : T| is not divisible by p , we conclude
that p dividesu(1) sincer(1) = |G : T|u(1). Now, sinceuy = d6# and p does not di-
vide 0(1), we conclude thap divide§ . Sinek is the multiplicity fn 7y (again,
by Theorem (8.9) of [3]), by Clifford’s theorem, we deducatth: = pE, for some
ordinary charactel2 o . In this case, the last part of the rém@ofollows. Finally,
suppose thaty does not contain any -invariant irreducible constituenttHis case,

we may write
ev=d | > (D 0],
O neO

where O runs over the different? -orbits on the action 8f on the ir@tdle con-
stituents ofry. Since elements in the sanie -orbit have the same restritdidh the
proof of the theorem is completed. [l

To prove Theorem B, we use the following notation. We denoteclfG) the set
of conjugacy classes a& . Also, ¢if) is the set of conjugacy classes pf -regular el-
ements ofG , and ofg® | P) is the set ofp -regular classes 6f  with defect graRp

Proof of Theorem B. First, we prove that in a groap  with a ndri@glow
p-subgroupP , we have thak  has a normpal -complement iff

[cl(G/P)| =[cl(G° | P)I.

Let K be ap -complement o . IK <G, thenG =P x K, and|cl(G/P)| = |cl(K)].
Also, if x € G is p-regular, therx € K and P C Cg(x). So

cl(G® | P)| = |el(G®)| = [el(K)],
and one direction is proven. Conversely, assume now that
cl(G/P)| = [cl(G° | P)|.
Hence, we have that

[cl(K)| = [el(G° | P)| < [el(GY)] < [cI(K))]
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and we conclude that app -regular classestf have defectpgfouHence, we have
that K C Cg(P), and the claim is proven.
Since G isp -solvable, it is well known that

|1Br, (G)| = [Irr(Ng(P)/ P)| .

(This follows, for instance, from Corollary (1.16) of [4],eimma (5.4) and Corol-
lary (10.3) of [1]). Now, by Lemma (4.16) of [3], it follows #t

cl(G® | P)| = [cl(NG(P°) | P)].
Hence

[1Br,(G)| = [cl(G° | P)|

[cl(NG(P)/P)| = [cl(NG(P°) | P)|
which happens ifiNg(P) has a normalp -complement, by the first paragraph. [

Of course, the number$Br, (G)| and |cl(G° | P)| can be read off from the char-
acter table ofG , whenevet ig -solvable. Higman's theorer@1(8of [2], allows us
to distinguish if an element € G is p-regular. In this case, the class.of has defect
group a Sylowp -subgroup ofi iffCq(x)| is divisible by |G|,. On the other hand,
Corollary (10.4) of [3], allows to construct the Brauer cheter table ofG from its
ordinary one, and we can easily count how many irreducibleuBr characters ofs
have degree not divisible by
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