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1. Introduction

In a series of papers ([9], [14], [15], [16]) one has studibé t\Veyl quantized
Hamiltonian of a relativistic spinless particle with a matjo vector potential: :

x+ty

L0p" () = @) [ [[¢0290, (S5 €) )y

where \,(x, &) = (|¢€ — a(x)?> + 1)2. For simplicity we suppose here that the
mass of the particle is equal to 1. All the differential andeydodifferential opera-
tors considered in this paper are, possibly unbounded atgsrin L2(R"), defined on
the Schwartz spacé of rapidly decreasing smooth functions &f.

In [14] it was proved that if the derivatives of any positiveder of a €
C>(R";R") are bounded, thep™ )\{) is essentially selfadjoint o. Let k, be its
unique selfadjoint extension. In [16] the authors proveat ih a itself is bounded and
if all its derivatives converge to zero at infinity, then thesential spectrum ok, is
equal to the essential spectrum ¢fF, + 1, where H, is the quantum nonrelativistic
magnetic Hamiltonian with vector potential , i.e. the séjéént operator generated by
the differential operator — a(X))>.

We shall prove in this paper that the essential spectra,of dingH, +1 are
still equal if we drop the condition of boundedness of . Thusctor potentialsa
which behave at infinity age|*—¢, ¢ positive and arbitrary small, are allowed.

More precisely, the main result of the paper is the followthgorem.

Theorem 1.1. Suppose that
(i) the vector potentiab € C*°(R"; R") is such that

lim 0%(x)=0, VBeN', §>0;

|x|—o00

(ii) the scalar potentialv is a continuous function such that,|_ . V(x) = 0.
If h, is the unique selfadjoint extension ofp*()\,) and H, is the unique selfad-
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joint extension of D — a(X))?, then
Oesdha +V) = 0esd(H, + 1)1/2]-

Let us also mention, that as a by-product of our proof, we mby cecover some
results from [13] and [15] concerning the essential setfitijess of some pseudodif-
ferential operators, but we can also obtain the domain ofhidiefh of the generated
self-adjoint operator (Theorem 3.4).

We now give the plan of the paper.

In the second section we recall some results on the calcdlpseudodifferential
operators. These results will be used in the next two sextion

In the third one, we introduce what we call the -magnetic $®bspaces, a par-
ticular case of weighted Sobolev spaces defined in [2]. As @lleoy of the re-
sults proved in this section, we shall obtain that the domeinhi, is equal to
the form domain ofH, . If all the derivatives af are bounded,sitalso proved that
the a -magnetic Sobolev space of order is equal to the domaiH,;’Hfz. We think
that this kind of results are already known, but we never daamt explicitly stated.

The last section contains the proof of the main theorem.

Always in this paper Dom#f ) denotes the domain of the oper&foand (¢) =
(1+|¢/2Y2. All the functions which appear are defined on the whole spRiteThere-
fore we shall write, for exampleL? instead of L2(R"). B(X1, X,) denotes the space
of bounded linear operators from the locally convex topimalyvector spaceX; to
the locally convex topological vector spade.

2. A class of pseudodifferential operators

Derinimion 2.1, A vector valued functiom € C*°(R"; R") is called anadmissible
vector potentialif 0%a is bounded for anyx € N"\{0}.

For an admissible vector potential we define a weight functly: R —
[1; 00) by the formula

Aa(x, €) = (€ — a(x)).
When there is no risk of confusion, we shall omit the subsarifrom this notation.
Lemma 2.2. If a is an admissible vector potential then
(i) the weight function\ is a basic weight function in the sense of Kumano-go and

Taniguchi[10];
(ii) the pair (A\; 1) is a pair of smooth weight functions in the sense of BE2ls

For the convenience of the reader we recall here the definitiobasic weight
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functions. A smooth functiom\: R%* — [1;00) is called a basic weight function if
there exist positive constants r,and C.s, a, § € N" such that:
() Ax, &) < C{x)7(&), V(x, &) € R,
(i) [9g0K Al < CapAl=lel;
(i) A(x +y,8) < C(y)"Ax. &), ¥, x, y, § €R™

It is easy to verify that the first assertion of Lemma 2.2 isetand this verifi-
cation was already made in [14]. The fact that)ifis a basic weight function, then
the pair (;1) is a pair of smooth weight functions was pointed out in [2]

DeriniTioN 2.3, The space
sm = {q € C(R™); Va, f €N, 3Cas >0 st gs)] < cagx"*la\}
is called thespace of symbols of ordet € R associated to the weight functio¥,.

We have used the notati g)) = agafq. We shall also use the following notation:

= 19l = MB g <t SURRer la (G IA1, Vg € S, VI EN;

-8, =, S0

In the following remark we list some simple properties of #pacesS)’ and clar-
ify their relation with the spaces of standard symbols.

Remarks 2.4. (i) Ifa is an admissible vector potential, thenc S2.
(i) If ais an admissible vector potential andoo < mq1 < my < oo, thenSi2 C S
(i) If a and b are admissible vector potentials, then the daling assertions are
equivalent:

(a) there exists a real number  such ti§gt S;=

(b) Syt =Sy for anym € R;

(€) a—be LR R").

In particular, ifa is bounded, thef) &', the space of standard symbols of or-
derm, usually denoted by’
(iv) A function ¢ is in S if and only if there exists a (unique) skl p € S§' such
thatg (x, &) = p.(x, &) = p(x, £ —a(x)); for any admissible vector potential and every
m, [ € N, there exists a positive consta@it C=a,(,m ) such that

1Pallgms < ClIPllogm,» VP €SS

Proof. The proof of the first property consists in a straighwiard verification,
based on the definition of our basic weight functions. It iseesial that the deriva-
tives of ¢ are bounded. The second assertion follows diretyn Definition 2.3.
The proof of (iii) is based on the following remark: if we pgt= a(x) in the in-
equality (¢ — b(x)) < C{¢ — a(x)), then we obtain{a(x) — b(x)) < C. The proofs
of (iv) and (v) consist in a little tedious, but again strafghward computation, which
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we shall not perform here. The fact that all the derivativés:are bounded is also
crucial for this points. [l

In what follows, we shall always suppose that is a fixed adbilss/ector po-
tential.
Let us introduce the class af -pseudodifferential opegator
DeriniTion 2.5, Forg inS)' andu inS we define
0P @) = @n) " [ g, 9(e) de,

x +

0p"(@ut) = (2r) " Ose- [ [ r9g (172 ) uty) e

Op(q) is called the right quantization or Kohn-Nirenberg quzation (follow-
ing [5]) of ¢ and Op® ) is called the Weyl quantization gf . Osc imriit of an in-
tegral means that the integral is defined as an oscillatdegial.

Proposition 2.6 ([2, Proposition 3.11 and Corollary 4.8])If ¢ < S, then
Op(g), Op“(gq) € B(S, S) and they have continuous extensions fréMmto S’.

It is also known that

(6N {0p™(q); g € S’} ={0p"(q); g € S}

We shall denote this space withpS? . It is the space of pseudwdiitial oper-
ators of ordern associated to the weight functign If A € OpS)', then there exists
a uniqueqg € S™ such thatA =0p'(g). The symbolg is called the Kohn-Nirenberg
symbol of A and is denoted with'(A). Analogously,A has a unique Weyl symbol
G € S such thatA =0p" {).

Due to Lemma 2.2, the results proved in [2] and [10] are applie to our sym-
bols and pseudodifferential operators. We shall state nomesof them in a form
which is more convenient for our purposes.

Theorem 2.7 ([2, Theorem 4.13]). If ¢; € S,7,VjeNand if m;j | —oo, then
there exists a symbal € S such that

N—-1
qg-> g €S, VYNeN
j=0

In this case we writgj ~ > ,-0q;-
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Theorem 2.8([2, Theorem 4.1]; [10, Theorem 2.3])If ¢; € S;”7, j =1, 2,then
Op*(q1)Op*(g2) € OpS;** and

o (0p*(q1) Op*(g2)) (x, &)
= (2r) " Osc— / / 0 gy (v, € +)galx + v, €) dydn
= C]]_(X, f)qz(X, 5) + r(xv g)
where
1
r(r, &)= @0 [ D 0sc— [ [ e 0D (x, &+ 0n)ga.)(x + y. €) dydnd?.
), Zo=- ]

For any! € N there existly, I, € N and C > 0 such that
||r||a;m1+m2—l,l S c ||a€q1||a;m171,[1 ||8xq2||a;m2,12 .

For Weyl symbols there exists also a result similar to Theo2e8. Since our goal
is the study of some selfadjoint operators, it seems moraraato use the theorem
of multiplication of pseudodifferential operators in itergion for Weyl symbols in-
stead of Theorem 2.8. But we prefer to work with Kohn-Nirengpsymbols because
the formulas are simpler in this case.

Theorem 2.9([2, Theorem 5.1]; [10, Theorem 2.7))If g € S2, then Opt(q) can
be extended to a bounded operator i(R"). Moreovey there existC > 0 and € N
which do not depend op such that

10P* (@) lg(r2) < € lldlluo, -

Derinimion 2.10. A symbolg € S7 is called elliptic if there exist two positive
constantse and®  such that|§ — a(x)| > R, then

lg(x, ) = A" (x, &).

If the Kohn-Nirenberg symbol of a pseudodifferential operds elliptic, then the op-
erator is said to be elliptic.

Remark 2.11. If ¢ € S™, then Op” ¢ )— Op'(qg) € OpS™*. Therefore if
the Weyl symbol of an operator is elliptic, then the operasostill elliptic.

Theorem 2.12. If ¢ € S is elliptic, then there exists a symbgl € S, (also
elliptic) such that

Op"“(q)0p”(q) — I, Op"(q)Op"(q) — I € OpS,; ™.
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The operatorOp™(g) is unique moduloOpS; > and is called a parametrix 0Dp™(g).

Results of this type are standard in the theory of pseudwmdifitial operators, but
we prefer to sketch a proof.

Sketch of proof of Theorem 2.12. If we take into consideratRemark 2.11
and (1), we see that it is sufficient to prove the theorem fer ¢ase wherop” is
replaced withOp!.

Let R be as in Definition 2.10 and lgt be a smooth function such thg(n) =0
if |n| <R andx(n)=1if |n| >2R. We put

Go(x, €) = x (€ — a(x))q(x, &)

Thengo € ;™ and Op*(q)Op*(Go) = I — Op*(r_1), wherer_; € S; 1. Therefore

N
0p'(9)0p*(Go) > [0p*(r—1))' — 1 =[0p*(r_1)]" ' € OpS) ™.
i=0

We define
G = ot {0p*@Go) Op*(r-1)1'} .

According to Theorem 2.7, we can choose a sympa S, such thatg™~ > .., §i.
The symbolg™ has all the desired properties. For the verifinabf this statement
one also uses the fact that the Kohn-Nirenberg symbol of arabgr fromOpS) is
uniquely defined.

Theorem 2.15 below can be regarded as a particular case afréhe3.1 from
[13]. But we shall give its proof because it is not very coroaled and part of it will
be used also for the proof of other theorems of our paper.

We shall need a result concerning the existence of appraiparametrices of el-
liptic pseudodifferential operators which depend on a ipeter. A first step in this di-
rection is the following lemma.

Lemma 2.13. Letq € S be an elliptic symbol and leh ¢ C\{0} be such that
lg(x, &) + ul > emax(\"(x, &), [ul), ¥ (x,§) € R, V€A,

for some positive constamt . &, (x, &) = (¢(x, £)+u) 2, then for anya, 3 € N there
exists a constanC,g such that

@){) . O < CapA™ll(x, MIn(A"(x, €), |u| ™Y, ¥ (x,€) €R™, Y€ A,

Proof. The proof of the lemma consists in a straightforwagedfication. [l
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Theorem 2.14. Letq = qm + qm-1, Gm € S™, gu_1 € S™ 1, m > 0, be an ellip-
tic symbol and letA ¢ C\{0} be such that the paifg,, A) satisfies the hypothesis
of Lemma 2.13 Then there exist symbolg, € ™, r, € S, and u € A such that

(0p*(a) + 1) OP*(4) = 1+ Op*(r,)
and such that, satisfy the estimates

Irull o, < Cilpaf = MG/

with some positive constanty  which depend/ @nN and do not depend op € A.
Proof. We takeg, (x, ) = (gm(x, &) + ©)~*. Then
(0p*(q) + 1) OP™(G,) = (Op*(gm) + 11) OP (G,.) + (0P (Gm-1)OP™(d,.))-
The conclusion of the theorem follows from Theorem 2.8 arkB2. U

Theorem 2.15. If g € S, m > 0 is real and elliptic then Op™(q) is essentially
selfadjoint onS.

Proof. According to Remark 2.110p" ¢( ) Op(q) + Op*(gm_1) for some
gn-1 € S™ 1. Therefore we can apply Theorem 2.14 with iR\(—i;i). Next,
applying Theorem 2.9, we deduce tha®x” ¢ ( ¥#)Op(G,) can be extended to
a bounded invertible operator ab?(R"), for 1 real and sufficiently large. Therefore,
for such values ofu, (Op¥(q) +iu)(S) (O (0Op¥(q) +in)Op*(g,)(S)) is a dense sub-
space ofL2(R"). The corollary of Theorem VIII.3 in [17] completes the pfaaf The-
orem 2.15. ]

3. Magnetic Sobolev spaces

The magnetic Sobolev spaces which we define below are a yarticase of
weighted Sobolev spaces defined in [2]. We shall use the sataion for various
extensions of a pseudodifferential operator to subspate®.0A distinct notation will
be used only for the selfadjoint extensionZiR(R"), if it exists, of a pseudodifferential
operator.

DeriniTion 3.1, Form € R,
H™ = spa{ Au; u € L>(R"), A € OpS,™}.

The spaceH” is endowed with the finest topology with respect to which each
mappingA :L? — H™, A € OpS,™ is continuous.
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Theorem 3.2 ([2, Theorem 6.1]). (i) For anym € R, S C H™ C S’ continu-
ously and densely.
(i) (H™) ="H_, ™ topologically Vm € R.
(i) If A€ OpSy, veR, thenA: H'™ — H? is continuousVm € R.
(iv) For any m, v € R there exists an elliptic operatod € OpS/such that
A H"™ — H™ is a topological isomorphism. Therefofg” is a Hilbertizable topo-
logical vector space.

The most important result we shall prove in this section & #2" = Dom(H"),
where H, is the magnetic Hamiltonian, i.e. the unique seliatljextension of the op-
erator defined onS by the differential expression — a(X))?, D = —id. We shall
also prove that ify € Si*, m > 0 is real and elliptic and ifQ is the unique selfadjoint
extension ofOp™ § ), then Don®{ ) #.

We start with a theorem which gives an alternative charaetiéon of H2. We
recall thata is always an admissible vector potential.

Theorem 3.3. If B € OpSY?, m > 0 is elliptic, then
H™ ={u € L% Bu <€ L?}.

Proof. The hypothesis implies that there exists an elligifcbol ¢ such that
B =0p”(q).

“C” Let A € OpS;™ be such thatd L? — H™ is a topological isomorphism and
let u be an arbitrary function fror””. Then there exists a function€ L? such that
u = Av. ThereforeBu =0p™ ¢ Jv € L?, since Op” ¢ A € OpSL.

“>" Suppose thatu is inL? and thatv = 0p®” ¢ ¥ < L2 If Op“(g) is
a parametrix forOp” 4 ), then

Op"(q)0p™(q)u =u + Op" (r)u,

for somer € S, >°. From Theorem 3.2 (iii), it follows thatr ©p™ ¢(V)— Op™(r)u
is in H2. U

Theorem 3.4. If ¢ € S, m > 0 is real and elliptic and ifQ is the unique
selfadjoint extension 0bp"(q), then Dom(Q) =H}.

Proof. “D" If uis in M, then there exists a sequence of functidrs }jen C
S such thaty; — u, j — oo, in HJ. Applying Theorem 3.2 (iii), we obtain that
Op”(q)p; — Op™(q)u, j — oo, in L2,

“c” If uis in Dom(Q), then there exists a function A2 and a sequence of
functions {¢;}jen C S such thatp; — u, j — oo, in L? and Op¥ @ )p; — v,
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j — oo in L2 Let Op"(G) be a parametrix foOp” ¢( ). Then
Op*(@)0p*(@)p; = ¢+ Op" (r)e,
for somer € S;°°,
0op"(@)0p"(a)p; — Op"(q)v, j — o0
in ‘K and
Op*(r)p; — Op™(rju, j — o0
in H2. Hence
@; = 0p"(@)0p* (q)p; — Op"(r)p; — Op*(q)v — Op*(rju, j — o0
in H2. Thereforeu =0p™ §™y — Op™(r)u is in HJ. O
Corollary 3.5. If a is an admissible symbothen Dom(H, ) =H2.

For the proof of the equality/?” = Dom(H™) we shall need the following
lemma.

Lemma 3.6. If

Gu(x. O = [ —a@*+ 117", Ren>0,
then
(D= atx)* + ] 0p*@,) = 1+0p*(r),

wherer, € S;2 depends continuously op in any seminorm||-|| .. ,, k = 0, 1, 2,
[ € N. For any! € N there exists a constaf; which does not depend:®uch that

[Fllai—is < Crlul~@R72 k=0, 1, 2
The symbolg,, has the same properties ag.
Proof. We have
(D —a(X))?+u = 0p*(G; ) +i diva(x).
Therefore, if we apply Theorem 2.8, we obtain that

(D — a(X))* + ) Op*(Gy) = I +i diva(X)Op*(G,) + Op*(rp1) = 1 + Op*(r,),
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where
_idiva(x)
R )
1 n
+(27T)—”/0 {ZOSC—4//e‘i<W) (& +0n; —a;(x))
Jj=1
(€ —alx +y),0jalx +Y))
R (T Eyy) "yd”}‘w‘
We put
_ae [ (€ —alx +y),9;a(x +y))
bu(x, y, & n) = 4;/0 (& +0n; —a;(x)) [(€ —a(x + y)j)z + )2
Then

i diva(x)

€ a@)?+n
+@n) / / e (y) IV (L= A () (L= A
“bu(x,y, &, n)dydn

ru(xs §) =

for N and L sufficiently large. We can apply Lemma 2.13 to the fiestmm and con-
clude that it satisfies the required estimates. For the attm of the second one, ap-
plying again Lemma 2.13 and the inequalities

(E+m) <206)(n), lalx +y)—a(x)| < Cly|

we obtain that

02020) b, (x, y.£,m) < Capysl€ — alx) 1) (y)1*|(€ — alx +y))? + | .

Taking L andN eventually larger, we get that the second term,oflso satisfies
the required estimates.
The proof of the continuity proceeds in the same manner. [l

Theorem 3.7. Dom[(H,)"] =H?" for any m > O.
Proof. If m € N, then the stated equality follows from Theorem 3.4. It remsai

to prove the equality forn € R\N.
(i) We prove first that the theorem is valid fer € (0;1). LetI" be the path

. 1 1\
r= se”r;—oo<s<—§ U 5)e <0<
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. 1
U {se‘”’; —00 < s < _E}

Then

i

(Hy+ 1y = o f i+ L)
r

We also define an elliptic pseudodifferential operator afeoran — 2

i . ~
Op*(gm-1) = > ]{ p"toptqa-,) du
T Jr
where

(9= [(€—al)*+1- 4]

is the symbol defined in Lemma 3.6. In fact, using the theorémesidues, we obtain
that

Gn-1(. ) = [(§—a()*+ 1| = Q). 92

The two contour integrals converge iB(L?) in the uniform operator topology.
The following identity holds or#2:

(Hy + 19" = (o + D09 1) = (o + Dy " (Ha+ L01) 209 1)
Here r1_, is the remainder obtained in Lemma 3.6. Hence the last contdegral
defines an operator fromB(#?, +2). Therefore {, +1) —(H,+1)0p*(gn_1) € B(L?).
This, combined with the ellipticity of §, + X)p*(g..—1) and Corollary 3.5 gives that
Dom[(H,)"] = H?" for m € (0;1).

(i) The general case can be proved by using a bootstrap agunBuppose that
Dom[(H,)"'] = H?" for any m’ € [0; N] for some N € N and thatu € Dom[(H,)"]
for anm € (N;N + 1). This is equivalent with the fact that € Dom[(H,)"]
andv = (H, + 1y € Dom[(H,)""V], i.e. with the fact thatu is in*2¥ and
(H, + 1)Op*(gm_n—1) (H, + 1)¥u € L? wheregq,,_y_1 Was previously defined. But
(H, +1)0p*(gm_~—1) (H, + 1)V is an elliptic pseudodifferential operator of orden.2
Theorem 3.3 completes the proof. ]

Another proof of Theorem 3.7 could be based on an appropirégepolation the-
orem for weighted Sobolev spaces. Such results are prove@].inBut our weight
function does not satisfy the conditions imposed in thatepagherefore we had
to give a direct proof of Theorem 3.7 based on some ideas frb8). [Evidently,
the interpolation theorem for magnetic Sobolev spaces s a@onsequence of Theo-
rem 3.7. But we do not know how to prove it directly.
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4. The essential spectrum of the relativistic magnetic Hanftionian

We now prove Theorem 1.1. The proof will be made in severgissend uses the
next compactness criterion, which is a particular case aofém 6.11 from [2].

Theorem 4.1. If g € S¥ is such that

lim  Aa(x, )7 1lg{5(x,©) =0, Va, BeN,

x| +[€]—o0
then Opl(q) is a compact operator fron(™*" to H™ for any m € R.

Remark 4.2. If a is an admissible vector potential, thén + || — oo if and
only if |x| +1]¢ —a(x)| — oc.

From now on, it is always assumed that the vector potentialtisfes hypothesis
(i) of Theorem 1.1.

Lemma 4.3. If p € S§ does not depend om, then

im A, 1 (M [0p"(pa)] — pa}(y) (1, ©) =0, Va, FEN,

|x|+|€]—o00

Recall thatp, £, &) = p(§ —a(x)). The following elementary lemma will be useful
for the proof of Lemma 4.3.

Lemma 4.4. Let f € C°(R"; Rs)be such thatf(x) — 0, |x| — oc. Then

im / ()N F(x+0y)dy =0, YN >n.

|x|—o00

uniformly with respect td@ < [0; 1].

Proof. For anye > 0 we can choos& > 0 such that

/ W Ndy < e
[y|>R

and fk)<e, Vx| > R.
Let x € R", |x| > 2R. Then|x +0y| > R, ¥|y| > R, V0 € [0; 1]. It follows that

n

/|>'|>R<y>_Nf(x +0y)dy < s{s}gpf+/ (y)‘Ndy}

for any |x| > 2R and anyé € [0; 1]. O
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Proof of Lemma 4.3. Ley be equal 0'[Op”(p.)] — pa. Then

a(r.€) = @) " 0sc- [ [0 [p(cvn—a(x+3)) = ple+n - atw)] dyan

= (2m)~" Osc— //e*"@’"> {a(x) —a (x + %)}
-/Ol(ap) (¢+n—aw+0(aw —a(x+3))) dodyay

and

a(x+%)_a(x)_5{/ (9a )(x+—)d9}y_ x(x, y)y.

All the derivatives of the matrix valued functioy are bounded. Moreover, from
the hypothesis and Lemma 4.4 it follows that

lim /< ) 2N10¢ 0] x(x, y)|dy = 0

|x]—o0

for any «, g € N".
On the other hand, if we put

1
= _ _ Y
6= [ ) (¢+n-at)+0 (at)—a (x+3))) av,
then, for anyw, 3, v, 6 € N*, there exists a positive consta@t,g,s such that

08007 90g(x, v, £, m)| < Caprys(€ — alx))y™ 11 ((n) (y))lm 1ol

Using the definition of the oscillatory integrals, we seet tha

a0 = @ [[ ) - a) )
(I - y)Laé"af[x(x, )y - g, y. & n)ldydn,

for N and L suficiently large. Thereforig(")(x, ¢)| can be dominated by a finite sum

of terms of the form
const [ [ () 2V*3) 210 03 (. 0502 305 ¢(w. . & ] dy

< Const//<y>—2N+1+\m—l—\oc||<n>—2L+(m—1—|a\)
(€ — a())" 1108 95 (x, y)| dxdy
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< const¢ — a(x))" 1 lel /<y>*2N+1+""*1*‘0‘|||8f/8flx(x, y)|dy

for L sufficiently large. Now the conclusion of the lemma fol® if we take N suffi-
ciently large and use the decaying propertiesyodind Remark 4.2. O

In the statements of Lemmas 4.5 and 4.6 and in their proofs hal sise
the same notation as in the proof of Theorem 3.7.

Lemma 4.5. (H,+1)" —(H,+1)Op*(g._1) is a compact operator irL.? for any
m € (0; 1).

Proof. Recall that
(Hy + 3"~ (Ho+ DOp -2 = (H, + D " 3, + 1410 L0p s di
T Jr

where the integral is convergent in the uniform operatookogy in B(L?, H2).

Using the fact that lim_. 9°a(x) = 0, V|5 > 0, it can be checked, as in
the proof of Lemma 4.3, that,_,, satisfies the hypothesis of Theorem 4.1. All that is
important is that any term of,_, is in S, ! and contains a factor which is a deriva-
tive of a. Therefore Op(r1—,) is a compact operator il.? for any x such that
Rep < 1/2. Hence the above contour integral defines a compact opefratm .2
to H2. O

Lemma 4.6. (H,+1)0Op*(gm—_1) — Op*(¢.) is a compact operator irL.? for any
m € (0; 1).

Proof. The Kohn-Nirenberg symbol off;, +@p'(g.—1) — Op*(g.) is

i diva(x)

a2 2
1 n
@) /O { 2; Osc— / / 41— m)e=i0 (&5 + 0, — a;(x))

(€ —a(x+y). 0ja(x +y))
(€ —alx+y)P+2n

Again, as in the proof of Lemma 4.3, it can be verified that sias the hypothesis
of Remark 4.2 withv = 0. ]

q(x,8) =

dydn} deo.

Proof of Theorem 1.1. First we remark that

(H, + 1)Y2 — 0p”(\) = |(Ha + 1)Y2 — (H, + 1)Op*(\; 1Y)
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+[(H, + 1)Op* (A, 1) — Op*(\)]
+ [Opl(Aa) - Opw(Aa)]

is, according to Lemmas 4.3, 4.5, 4.6 and to Theorems 4.1 aha 3elatively com-
pact perturbation of, . Therefore

Tesdha) = Oess [(Ha + 1)1/2} .

Next, it is known that ifV is an operator of multiplication as the hypothesis
of the theorem, therV s relatively compact with respect i ( 1)4? (see, e.g.,
the proof of Lemma 4.4 from [12]). Since Don#f +13] = Dom(h,), V is relatively
compact with respect ta, and

Uesiha + V) = Uesiha). D

Corollary 4.7. Suppose that the hypothesesTbieorem 4.lare satisfied and that
n=2o0r 3. Thenoesdh, + V) =[1; 00).

Proof. Theorem 6.1 from [4] states that in this case(H,) = [0; c0). U

AcCKNOWLEDGEMENT.  The author was partially supported by the Grant ANSTI,
555/2000. The author is also indebted to Professor W.O. Amier his hospitality
at the Department of Physics of the University of Geneva, resftee final stage of
the work was done.

References

[1] J. Avron, |. Herbst and B. SimonSchrodinger operators with magnetic fields General in-
teractions Duke Math. J45 (1978), 847-883.

[2] R. Beals:A general calculus of pseudodifferential operatouke Math. J42 (1975), 1-42.

[3] R. Beals:Characterization of pseudodifferential operators and laggtions, Duke Math. J.44
(1977), 45-57.

[4] H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon: Schnggir Operators, Springer Verlag,
Berlin-Heidelberg-New York, 1987.

[5] G.B. Folland: Harmonic Analysis in Phase Space, Primeeatniv. Press, Princeton, N.J., 1989.

[6] C. Gerard, A. Martinez and J. Sjostranl:mathematical approach to the effective Hamiltonian
in perturbed periodic problemsComm. Math. Phys142 (1991), 217-244.

[71 L. Hormander:The Weyl calculus of pseudodifferential operaf@@®mm. Pure Appl. Math32
(1979), 359-443.

[8] B. Helffer and J. SjostrandOn diamagnetism and de Haas-Van Alphen efféain. IHP, Phys.
Théor, 52 (1990), 303-375.

[9] T. Ichinose and W. IchinoseOn the essential selfadjointness of the relativistic Henian
with a negative scalar potentiaReview of Math. Phys7 (1995), 709-721.



978 M. Pascu

[10] H. Kumano-go and K. Taniguch©scilatory integrals of symbols of pseudodifferential rape
tors onR”* and operators of Fredholm typéroc. Jap. Acad., Ser. A9 (1973), 397-402.

[11] H. Leinfelder: Gauge invariance of Schrodinger operators and spectrabpprties J. Operator
Theory, 9 (1983), 163-179.

[12] M. Mantoiu and M. PascuPerturbation of Schrodinger magnetic operatot®tt. Math. Phys.,
to appear.

[13] M. Nagase and T. Umedan the essential self-adjointness of pseudo-differerd@rators
Proc. Jap. Acad., Ser. /&4 (1988), 94-97.

[14] M. Nagase and T. Umed&Veyl quantized Hamiltonians of relativisticspinless s in mag-
netic fields J. Funct. Anal92 (1990), 136-154.

[15] M. Nagase and T. Umedarhe nonrelativistic limit for the Weyl quantized Hamiltani and
pseudodifferential operatord=orum Math.4 (1992), 377-381.

[16] M. Nagase and T. Umed&pectra of relativistic Schrodinger operators with magme/ector
potentials Osaka J. Math30 (1993), 839-854.

[17] M. Reed and B. Simon: Methods of Moderm Mathematical Physécademic Press, vol. |,
1972, vol. Il, 1975, vol. IV, 1978, New York.

[18] R. Seeley:Complex power of an elliptic operatoProc. Sympos. Pure Math., vol. 10, Amer.
Math. Soc., Providence, R.l., 1966, 288—-307.

[19] J. SjostrandMicrolocal analysis for the periodic magnetic Schrodingguation and related
questions(in Microlocal Analysis and Applications, Lect. 2nd sessME&, 1989, LNM 1495,
Springer Verlag, Berlin-Heidelberg-New York.

[20] T. Umeda:Absolutely continuous spectra of relativistic Schrodingperators with magnetic
potentials Proc. Jap. Acad., Ser. AQ (1994), 290-291.

Institute of Mathematics
Romanian Academy

P.O. Box 1-764

RO-70700 Bucharest
Romania

and

University Petrol-Gaze, Ploiesti
39, Bd. Bucuresti

2000 Ploiesti

Romania

e-mail: Mihai.Pascu@imar.ro



