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1. Introduction

Let (M?",w) be a symplectic manifold. Brylinski [2] defined the star wgier
w1 QK (M) — Q@"—*(M) for the symplectic structurer as an analogy of the star op-
erator for an oriented Riemannian manifold, whe®é M ( ) denhdke space of all
k-forms on M , and also defined an operatbr = (—1) * d*: Q¥(M) — Q—1(M).
Now a forma on M is called a symplectic harmonic form if it satisfiée = d*« = 0.
We denote by (M) the space of all harmonik -forms a . We define symplectic
harmonick -cohomology grougif. M ) byt*(M)/(B*(M) N ‘H*(M)). Brylinski con-
jectured that any de Rham cohomology class contains a hamgpresentation. How-
ever, Mathieu [6] proved the following result:

Mathieu’s Theorem. Let (M?", w) be a symplectic manifold of dimensi@m.
Then following two assertions are equivalent
(@) For any k, the cup-producfw]®: H{;‘,;"(M) — HP (M) is surjective.
(b) For anyk, Hj(M)= Hf, (M),

In particular, we see that iM is a compactlder manifold, then any de Rham
cohomology class contains a symplectic harmonic cocycen fM1] gave a simpler,
more direct proof of Mathieu’s Theorem. Mathieu [6] also prbvbat, fork =Q 1 2
HY (M) = HY, (M),

In this paper we study compact symplectic nilmanifolds. lgebe a Lie alge-
bra and putg® = g and let g% = [g,g®] for i > 0. We say that a Lie algebra
g is (r + 1)-step nilpotent ifg®) # (0) and g"*Y = (0). A Lie group G is called
(r +1)-step nilpotent if its Lie algebrg is (r + 1)-step nilpotent. IfG is a simply-
connected { + 1)-step nilpotent Lie group aid is a latticeGof that is, a dis-
crete subgroup of; such th& /T is compact, then we say th& /T is a compact
(r + 1)-step nilmanifold. We also identify\g* with the space of all leftG -invariant
forms on G . Nomizu [8] proved that, for each , the Lie algebr&arnology group
H*(g) = Z*(g)/B*(g) = (Kerd N \*(g*))/(Imd N A\*(g*)) is isomorphic to the de Rham
cohomology groupHy, M )=Z* M )BX(M) = (KerdNQk(M))/(ImdnQk(M)), where
M=G/T.



364 T. YAMADA

Benson and Gordon [1] have proved that the Hard Lefschetoréhe fails for
any symplectic structure on a non-toral compact nilmadiftd show that a non-toral
compact nilmanifold does not admit anyaKler structure. The proof of Benson and
Gordon also implies that the dimension &2"~*(M) is not equal to the dimension
H} (M) for a non-toral compact nilmanifold.

For a left G -invariant symplectic formv on a compact nilmanifolds /T", we de-
note by +*(g) the space of all lefG -invariant harmonic forms 6/T'. Moreover we
define a subspace of Lie algebra cohomology gréiipg) by Hf (g) = H*(g)/(B*(g)n
H*(g)).

Let M be a compact manifold and, «’ symplectic forms onM . We denote
w-harmonic {’-harmonic) ¢ -cohomology group by?, (M) (H?,, (M)). If for
somek , the dimension ofi*, (M) and H,, (M) are not equal, then there exists
no diffeomorphismsp: M — M such thaty*w = w’. Thus harmonic cohomology
groups play an important role in the classification of syrofiteforms.

We are also interested in the following question raised byKBesin and D. Mc-
Duff (see Yan [11]).

Question : On which compact manifold , does there exist aljamj of sym-
plectic forms such that the dimension &8 M( ) varies?

This question was considered by Yan [11] for compact syntigle¢-manifolds
and he constructed compact 4-manifold which have a famjlyof symplectic forms
such that the dimension onz_h,(M) varies. Yan also observed that for compact
4-dimensional nilmanifolds the dimension_h,(M) is independent of symplectic
forms. Now we consider the following question.

Question : On which compact nilmanifold , does there existrailfy w, of sym-
plectic forms such that the dimension &, M( ) varies?

In Section 4, we prove

Proposition 1. Let M?" be a compact manifold and, w’ symplectic forms on
M such thatw — ' = dv for somey € QM) (it is not necessary thaMl is a
nilmanifold. Then we have, for each

Hu(.I;-hr(M) = HZ’—hr(M)'

Proposition 2. Let (M = G/T",w) be a compact symplectic nilmanifold. Then we
have

HZ—hr(M) = Hzo—hr(M) = Hzo-hr(g)’

where wg is a left G -invariant closed2-form such thatw — wg = dv for some~y €
QY(M).

In Section 5, we prove the following:
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Theorem 3. Let M?" = G/T be a compac{r +1)-step nilmanifold. Then for any
symplectic structurev on M, we have

dim B (M) — dim H2"~*(M) > dimg®.
In particular, if M is a 2-step nilmanifold then
dim H (M) — dim H?" (M) = dim[g, g].

Let G be a simply-connected nilpotent Lie group agde its Lie algebra. Note
that G has a lattice if and only i admits a basis with respect to which the constants
of structure are rational (see Raghunathan [9] Theorem 2f XZhapter II).

In Section 7, we prove the following:

Theorem 4. Let g be the 2-step nilpotent Lie algebra for dimensio® of the
form

g=spaf Xy, Xo, X3, X4 X5 X ¢,
where
[X1, Xe] = X5, [X1, X4 = X3, [X4, Xe] = X
and w1, wa, w3, wa, ws, wg denote its dual basis. Moreovdet
w=wi ANwzt+wr Awg+ws A\ weg
and
W= —2w Awy — w3 A ws — wa A ws.

Then{w, = (1 —rw +tw’; R 2 ¢t # xo} is a family of symplectic forms on compact
nilmanifold G /T", wherexg (xo = —3.8473)is a unique real solution foll — 3¢ + 3+
t3=0, such that

for wp = w, dimH2(G/T) —dimH;} (G/T) =1
for w, (t #0, xo), dimHZ(G/T) — dim H;. (G/T) = 0.

Since H3x(G/T") = H2,,,(G/T) for any symplectic forms, we have 6-dimensional
nilmanifold which has a familyw, of symplectic forms such that the dimension of
HY (M) varies.

The author would like to express his deep appreciation tofeBsor Yusuke
Sakane for his thoughtful guidance and encouragement giueing the completion of
this paper.
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2. Operators on 2*(M) and the relations

In this section, we define some operators on a symplecticfoldrand study their
relations.

Let (M?",w) be a symplectic manifold. We define a star operaiQr =
% QK(M) — Q¥ *(M). Let G be the skew symmetric bivector field dual do

By the Darboux’s theorem, we can write in canonical coorisa

W:dpl/\dfh""""'dpm /\df]m

and

G—i/\i+...+ 9 /\i
51]1 apl af]m 8pm

We define a star operator
w1 QK M) — Q" k(M)  for k=0,...,2m
by
al x B = (AG))(a, Buy for a, B € QX(M),

wherev,, =w™/m!.
We also define an operatat by d* = (—1) x dx: QK(M) — Q*—1(M).

DeriniTion 2.1, For a symplectic manifoldM, w), a k-forma € QX(M) is called
w-harmonic or simply, harmonic, if it satisfies

d*a=da=0.

We denote byH* (M) = H*(M) the space of all harmoni¢ -forms. We define
symplectic harmonick -cohomology grouli¥ , (M) = Hf (M) = H*(M)/(B*(M) N
H*(M)). We also defineL,, = L: QK(M) — QK3(M) by L(a) = a A w.

Lemma 2.2.

d* =[d,i(G)]
Proof. See [2]. L]

Remark. Sinced*? =0, we can define homology groups as follows.

H]"(M) = H"(M) /(B (M) N 'H (M),
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where B, (M ) = Imd* N QK(M). For anyk ,
*1 Hyl (M) — Hj™ (M)
is an isomorphism. In fact, for € H"~*(M), we have

d*(xa) = (1) x5 d x xa = (—=1)"* xda =0
d(xa) =*xd*a=(=1)"% xd*a =0.

Thus xa € H™* (M) . Similarly, *: B"%(M) — B,+(M). Thus x-operator induces a
homomorphism

w1 H'™ (M) — H"™*(M).

We can also define: H*** — H"  (M). Sincexx = Id, we see that
x: HI" (M) — H™*(M) is an isomorphism (cf. [2]).

Now, we define operatof.* by
L* = «Lx: QM) — Q2(Mm).

We can easily see thal*™ is the adjoint operator fol. , where we define an inner
product ( ) onQ*(M) by (o, 8) = [ *(a A *B)vy for a, 8 € QK(M).

Proposition 2.3 (Yan [11]).
i(G)=-L*
Moreover, we define
A= (m— k),

where, : Q*(M) — Qk(M) is the natural projection.
These operators satisfy the following relations:

Proposition 2.4 (Yan [11]). [L*,L]=A [A, L]= -2L [A, L*]=2L*

3. Duality on harmonic forms

First we introduce the following definition. LeX, H,Y  be the stardl basis of
sl(2,C) = s1(2) i.e.

w=(o 9) *=(50) (% 0)
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Derinimion 3.1, LetV be the (infinite-dimensional) vector space of a Ugelbra
representation. We say th&t is aff2)-module of finiteH -spectrum if the following
two conditions are satisfied:

(@) V can be decomposed as the direct sum of eigenspaée of
(b) H has only finitely many distinct eigenvalues.

By a basic result on anl(2)-representation we have the following:

Proposition 3.2. Let V be ansl(2)-module of finiteH -spectrum. Then we have
For any k, the maps

Y5 v — v
and
X V=W
are isomorphismgwhere V, is an eigenspace &  with eigenvalje

Now we can give a representation €2, R) on Q*(M) by the following corre-
spondence:

X —— %L, Y «— L, H+— A.
We can easily see th&*(M) is ansl(2)-module of finite H -spectrum. Thus we have
Proposition 3.3 (Duality on forms) (Yan [11]).
LF: "KM — Q"R (M)
is an isomorphism.
Moreover, sinceH*(M) is ansl(2, R)-submodule of*(M), we have
Proposition 3.4 (Duality on harmonic forms) (Yan [11]).
LY H" K (M) — H™ (M)
is an isomorphism.

For a left G -invariant symplectic formv on a compact nilmanifolds /T", we de-
note by #*(g) the space of all lefG -invariant harmonic forms GiyT.
Now we have the following:
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Proposition 3.5. Let (M?",w) be a compact symplectic nilmanifold such that
w € N%(g*), then

L 1 (g) — 1)

is an isomorphism.

Proof. Let{Xy,..., X2,} be a basis ofy and {ws, ..., wz,} be its dual basis.
Thenw can be written as

w = Za,jw,/\w ajj = —aj € R,
Further, it is easy to see that
G=—Zcin,-/\Xj,

where ¢;; ) is the inverse matrix for transpose matrix @f ( ).diidws that**(g) is
an sl(2, R)-submodule. ]

4. Harmonic cohomology groups onM

We need some lemmas to prove Theorem 1.

Lemma 4.1 (Yan [11]). Let (M, w) be a symplectic manifold. Then we have
P (M) © HLSA(M),
where
PLTHM) = {v € Hpp (M) | L™ = O
Lemma 4.2. Let M?" be a compact manifold and, w’ symplectic forms o

such thatw — ' = dv for somey € Q'(M). Then we have

PIH(M) = P H(M).
Proof. Letv =g]e P"~%(M), wherez € Z"~*(M). Sincew = w’ +d~, we have
LAty = WA
(W' +dy) Az

+1
= LM+ Z (kr )w'/\(d’y)k_'+l/\z.

r#k+1

Therefore,

LS = [L5 ) = L5 = L =0,
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which impliesv € P"%(M), so thatP"—*(M) = P"~*(M). O

Lemma 4.3. Let (M, w) be a compact symplectic manifold. Théor £ > 0, we
have

H R (M) = PmR(M) + L(H (M),

Proof. Leta € H" *(M). Since L¥?: H"—*=2(M) — H"™***2(M) is an isomor-
phism, there existé =7, where 8 € H”*=2 such that

Lk+la - Lk+2b.
Thus
L"Ya —bAw)=0,
which implies
a—bAwe P" kM.
Moreover, sinceb Aw € L(H" *4(M)), we get
a=(a—bAw)+bAwe P" M)+ L(H"**M)). O

Proposition 4.4. Let M?" be a compact manifold and, w’ symplectic forms on
M such thatw — ' = dv for somey € QY(M). Then we havefor eachg,

HY ), (M) = H, ), (M).

Proof. We prove our proposition by induction of the dimensaf de Rham co-
homology group. By the proof of Mathieu’s theorem, we dég, M ( M= M) (or
i =0,1 2 (cf. Corollary 8 of [6] and Corollary.3 1 of [11]). Theos®&,

oo (M) = Hpg(M) = H,,

w-hr

(M) fori=0,1 2

"-hr

Assume that ifg < m — k, then H?, (M) = HY,, (M). Let [u] € H™,*"*(M), where
u € H"*~2(M). By the assumption of induction, there exist€][€ H" ‘~3(M),

whereu’ € H"*~%(M) such that § 1= '] € Hjz*3(M). Thus

Lo(H",F2(M)) 3 [w Au] = [w] Alu]
= [w] A[u']
= [wAul=[( +dy) Au']
= [w' Au'] € Lo/(H™ E3(M)).

w
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Therefore, by Lemma 4.3

H™, K(M) = P=H(M) + L, (H", (M)
= P (M) + Lo (H" 7 4(M))
= HJ (M),

Let v = [z] € H"X(M), wherez € H™*(M). Since L* :H"™*(M) — H"*(M) is an

w-hr
isomorphism, there exist® € H™*(M) such thatv =% ]1=L*Fw]= L¥[w].
Thus by above argument, there exists ¢ Hﬁ,__,f,(M), whereu € Hﬁ,_k(M) such
that [w] = [u]. Sincew =w’ +d~, we have

LA[w] = LA[u] = [w* A u]
= [(W' +dv) Aul

= [ij,u + Z (f) WA@Y A u] =[LX,u] = LX [u],
r7k

which implies

Hg—hr(M):HZ/-hr(M) (q :0""72m)' ]

For a left G -invariant symplectic forrv on G/T, let HX. (5) = H*(g)/(B*(g) N
H*(g)) be a subspace of Lie algebra cohomology grdifpog). (

Proposition 4.5. Let (M,w) be a symplectic nilmanifold such that is a left
G-invariant closed2-form. Then we have

HL(M)=Hl(@)  (q=0.....2m).

Proof. We prove our proposition by induction. Note that,csid* = [d, i(G)],
Zi(g) = Hi(g) for i =0, 1, 2. Applying Nomizu’s theorem, for =0,1 2,

H;, (M) = Hpp(M) = H' (g) = Hj,(9).
Moreover,

P" (M) = {v e Hpg"(M) | "' =0}
{w e H" *(g) | Ly = 0}
P (q).

By Lemma 4.3 and the assumption of induction, we have

H" 5 (M) = P"X(M) + L(H}. " 2(M))

hr



372 T. YAMADA

P" K (g) + L(H} ()
H X (g).

As in Proposition 4.4, by the above argument difd H™*(g) — H"™**(g) is an iso-
morphism, we have

H! (M)=H!(g) (¢=0,...,2m),

where M?",w) is a symplectic nilmanifold such that is a left G -invariant closed
2-form. [

Let (M, w) be a compact symplectic nilmanifold, then by Nomizu's tle@o there
existswg which is a left G -invariant closed 2-form such that— wg = dv. Moreover,
wo is also non-degenerate (Sincg — wy = dr for somer € Q¥"~Y(M)). Therefore,
by Proposition 4.4 and 4.5,

H:I)—hr (M) = HZO—hr (M) = Ho.qjo—hr (g)

Then we assume that symplectic structuresMn G /¥ are left G -invariant to study
harmonic cohomology groups on a compact nilmaniféfd

From now on we always assume thaf (w) is a compact symplectio-( + 1)-step
nilmanifold. Let g be an ¢ + 1)-step nilpotent Lie algebra. Consider the desngnd
central series{g?} of g, whereg*V = [g, g®] and g©@ = g. Let a® denote a vector
space complement af*D) in g:

g = gD 4 g0

fori =0,1...,r — 1 and definen, = dim®. For simplicity let A°a©®" A - A
"al) = A" Then

Nw= 3 A

iot---+i,=s

Lemma 4.6 (Benson-Gordon [1]).
1,0....,0

HYg) = Z%s) = )\

Lemma 4.7 (Benson-Gordon [1]). Any closed2-form o € /\Zg* belongs to

/\1,0,.‘.,0,1_'_E/\io,.‘.,i,_l,o.

Let Ay,..., \,, be a basis of/\O """ 0.1 By Lemma 4.9, the invariant symplectic
form w can be written as

ir—1,0

w=PL AN+ + B, AN, modulo Z/\IO" ,
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where (1, ..., 0, are elements of/\l’O """ 0 By non-degeneracy afb, (1, ..., 3, are

linearly independent and thus can be extended to a basis

ﬁlv""ﬂnrs"'vﬁl‘lo

for /\1’0 """ °

Lemma 4.8 (Benson-Gordon [1]). (DA™ (g*) = 22" 1(g).
(2) o € B2"1(g) is divisible byBy A --- A f,,.

Hence by this lemmaB® ~(g) C >, ... sizom_1 A" However, since
dim B2 ~1(g) = dimz?"~Y(g) — dimH>"~(g) = dimZz?"~Y(g) — dimH(g) = ny +
by =MD AT we have B2 a) = X, o N

5. Proof of Theorem 1

In this section, we prove Theorem 1 and some propositions.ugée same nota-
tions introduced in Section 4.

Let (G/T,w) be a compact symplectia ( + 1)-step nilmanifold. By Nomszthe-
orem, there exists a lef¢ -invariant closed 2-form such that wy = d~ for some
v € QYG/T). (Moreover, wo is non-degenerate). Therefore, by Proposition 4.4, we
only consider the case that a symplectic form is a &ft -iiadrclosed form.

Proof of Theorem 1. Note that™*: H(g) — H?"(g) is an isomorphism
and Z(g) = H(g). Fori = 1...,n,, considers; € ZY(g) = H(g). Sincew” 1 €

can be written ass” 1 = 6y + 0, + &,, whereds, 6,, 5, are (2 — 2)-forms such that
51 c /\no—Z,nl ..... n,, 5’2 c Z/\no—l,ll ..... iy and 5’2' c Z/\l‘lo,ll ..... lr‘ Hence

L" 7Y, = B Aoy + i Ay + B Ay

We claim thatL”—13; is an exact form. Since each term &fis divisible by A\{A- - -A
An, and hence also by A--- A S,,. Thus we gets; Ad; = 0 (Note thati =1...,n,).
Moreover, by Lemma 4.8, we get

Gng e SN = ).
Hence we now have
L" 6 = i Aw" ™t € B X(g).
It follows that

dim H (M) — dim HZ" (M) > dimg®.
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Furthermore,

dim Hj, (g) — dim H2"~*(g)
dim#*(g) — dim(B*(g) N H'(g))

—dimH*"~*(g) + dim(B>"~*(g) N H*" "~ *(g))
dim(B*"~*(g) N H**(g)) — dim(B*(g) N H'(9))
dim(B>"~*(g) N H*"(g))
dim(B?"Y(g)) =ni+--- +n,.

IN

Thus, in particularM is a 2-step nilmanifold, we have
dim H (M) — dim H?" Y (M) = n;. O

Proposition 5.1. Let (M?" = G/T',w) be a compact symplectig + 1)-step nil-
manifold. Assume thadimg — dim[g, g] — 2 < dimg®). Then we have

dim H,, (M) — dim H2" (M) = no = dimg — dim[g, g].

Proof. Let

{ﬂls e /6/1,-, R 5n0}

be a basis of\"*°. As in proof of Theorem 1, we write” ~* asw”~* = §1+d,+3, ,
5 e NOTEm e SN and 6, e ST ™. By our assumption, we
see thaty; = 0. Then, for anyi =1...,no, 3 Aw™ 1 e B¥"1(g). O

10...,

Proposition 5.2. Let (M?"* = G/T",w) be a compact symplecti-step nilmani-
fold such thatn; = 1. Then

dim H} (M) — dim H>" =Y (M) = ny + n,.

Proof. We may assume that the symplectic farntan be written as

2,0,0
w:Bl/\)\l+"'+ﬁnz/\)\n2+ﬁn2+n1/\7' modulo /\ s

wherer € a®”. Then we seej; € A" >"" is divisible by 3,,,. O

Remark. It is not true that, if 42" = G/I",w) be an ¢ + 1)-step compact sym-
plectic nilmanifold such thak; = n, = --- = 1, then dimH (M) — dim H>" (M) =
ny +np+---+n, . For example, consider the Lie algehya= ni”“l x a wherea is a
Lie algebra for dimension 1 and

ni’"‘l = Spar{Xl, e, sz_]_}
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where X1, X;] = X;_1( =3,...,2m — 1). Let {ws, ..., wam—1} (resp.wy,) be the
dual basis of?" ! (resp.a) and

m—2

W= w1 Awgy t+ Z(—l)’wm N Wam—1—i,
i=0

then
dim H} (g) — dm H?Y(g) = 1.

Moreover, we can easily see that for any symplectic form @n m ®{ (M) —
dim H2" (M) = 1.

Proposition 5.3. Let (M?",w) be a compact symplectig- + 1)-step nilmanifold
such thatng — 2 = n,. Letw™ 1 = §; + 5, + §,, wheredy, o,, &, are (2m — 2)-forms
such thatd; € A" 2" g, e ST\t s e ST Then we have

1) 51 # 0= dim H} (M) — dm H>" Y (M) = n,
2) 61 = 0= dimH (M) — dim H>"~Y(M) = ny,.

hr

Proof. We may assume that the symplectic farntan be written as

ir—1,0

w=PFr AN+ +5, AN, modulo Z/\lo’” )

Moreover, let{B1, ..., Bu,, Bu,+1. Ou+2} bE & basis of (9)*. By our assumption, we
see

WL =aB A A By AAM A ANy AT +Ey+ 0y,

0,i1,...,0n,

wherea #0 andr € A . Hence,

Bpr1 A" # 0
ﬂn,+2 A wmil _T/ 0.

Assume that3, +1 A w™ ! and 3,42 A w1 belong to same cohomology class of
H?"Y(g). Therefore

Bn,+l A wm—l - Bn,+2 A wm—l = d’y
O 7 Bu s A0 = Bus2 A0 = —Bas1 NGy + Bas2 NGy — st N Oy + Bav2 N O +dy.
The right hand side is divisible by A --- A B,,+2. Conversely, the left hand side is

not divisible by 31 A -+ A B,,+2. It is & contradiction.
(2) It is obvious. ]
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6. Examples

Now we shall give some examples of compact symplectic nilfoehG/T. Since
each Lie algebrgy has a basis with respect to which the constants of structiee a
rational, the simply-connected Lie grodp  corresponding @dmits a lattice.

ExampLE 6.1 (A generalization of Heisenberg group) ([3]). Let us sider the
following Lie algebra.

h(l, p)=spadXi, ..., X, Y, Z1,...,Z,}
where
[X:, Y] = Z
and {p1, ..., pp, v, A1, ..., Ay} be its dual basis. Then we have
du; =dv =0, dNi = —p; Nv.

Thus p; A N; is a closed 2-form.
Similarly, we also define

b(1.q)=spadXi,....X,.Y' . Z1....Z}

and spafiyl, . . ., ;/q, (780 VI /\;}. Then there exists a non-degenerate closed 2-form
WED i AN I i AN +vAY ong,, =b(1, p) xb(1,q), Let G,, be the simply-
connected Lie group corresponding ¢9, = b(1, p) x h(1,¢) and M be a compact
nilmanifold of G, , . Sinceg, , is 2-step, we have

dim H} (M) — dim HZP*#* (M) = p +4.
Remark. In particular, consider a symplectic form
w:Zui A/\i+Zu§AA,{+uAV’.
Then we get
dim HZ.(6.4) — dim H”*% (g, ) = pgCa.
Proof. By a straightforward calculation, we have

H2(9p.q) = spa[: A ], [ AN TN A VL [ AN+ AN,
Lt A il Lo AL TN A VTS Ly AN+ i AN
Lii A ) L AV'] Tv Al v AV
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Thus we consider the images of this basis/y”*—1. Now we define decomposable
(2(p +q) — 2)-forms as follows:

ij
61

3y

a,-j/\l//\ﬂAl/', S=aAvA By ANV, 5§f:oz,-Al/Aﬂs/\1/,
ai/\ﬁi 6g:aAﬁS7

for1<i<j<p,1<s<t<p, where

=N Ay AL A Xy,

QS A AN A Ay AN AN A AN,

Qij = BuL A A A A A App AMLA - AN A AX A AN
B= gy AN Apg ANLA - A,

Bs :,Ug_/\"'/\,&;/\"'/\N;/\)\&/\"‘/\/\;/\"'AAZP

Byt :,Ull/\"'/\ﬁ;/\"'/\ﬁ;/\"'/\M;A/\/l/\"'/\j\;A"'/\S\;A"'/\A;-

P

Furthermore we write
WPHTL = 51 + 55+ 53+ 04 + 0,
where

=Y clo), ol eR (h=123)

i<j

5= cid, ¢ €R (k=4,5)

With the notation, first consider the image foy, A u, by AwP*?~1, then

/\wp+q—1

P N fty ——— [y A [y A O1.

However, it is the image by  for the scalar multiple of
mA-~~AﬁmA-~~Au,,AA1A~~AXnA~~~A>\,,A9Au’1A~~AuqA/\’lAmA/\’un’

which implies thatyu,, A u, AwP™~1 is exact. Similarly, we can seeu( A ) AwP*d—1
and (u, A pl) AwP*1 are exact. Then

: : 2p
d|mHth(9p,q) - d|mHhrI +Zq(gp,q) > p+qC2 -

Next, note that

no—3.n1 d no—1,n1—1
A - A :
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no—2,n1—l d no,n1—2
A = N
no—l,ﬂl—z d

A - 0

no,n1—3
. .

Therefore, since

"
AwP*a— no—2 n1

I ANV ——— Ay AVAOLEN

An A v AwPt=1is not exact. Similarly\), A v' A wP*?~1 is not exact and by non-
degeneracy ofv, pi, A Ay AwP1 and u/ AN AwPT1 are not exact.
Finally, consider the image foti,, A A, + i, A Ay by AwP™—1,

/\(./Jp +tq—

Lo AN A F g A Ny —>,um/\/\ A0+ g A A A 01,

Indeed,

(,U'm/\)\n"'A,Ufn/\)\m)A(Sl
= (—1)P= 2= Dy A A fy A Ay AN A AN A AN, AV
A A A fin A Ay AN A AAm A AN AVY AR,

where Q' =g A--- Ay AMNA - AN AV

However, the image by fofa A« fiy A Afig Ao~ Apip AXNLA-- - AX ADAQ
is i{(ul/\---/\/],,/\-~-/\up/\)\1/\~-~/\3\m/\-~-/\)\p/\u/\S2') —(ua A gy A A
iy AMA -+ A AN, AvAQ)}. Thus we now see thauf, A Ay + iy A Aw) AwP* is
not exact. Similarly, &, A X, + ul A N) AwP™ is not also exact. O

ExavpLE 6.2 ([5]). Letg be the Lie algebra defined by

g=spad Xy, ..., Xon},

where X1, X;]=X;_1 (i =3, ...,2m) andwy, ..., wy, be its dual basis. Thus we get
dwl = du}zm = 0,
dwi_1 = —wi Aw; (=3,...,2m).

Thenwy A wo, 2?1:62(*1)1.(.034.[ Awy,_; are closed 2-forms ang has a non-degenerate
closed 2-form,

m—2
w=wi Awp t Z(*l)'waﬂ' N W —i-
i=0
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Sinceng — 2 =0< n,, we get by Proposition 5.1

dimHL (M) — dimH>" " Y(M) = 2,

hr

for a compact symplectic nilmanifold&s &/T.

7. Proof of Theorem 3

Proof of Theorem 3. Let(w,) = dim HZ (g) — dim H;! (g).
Since

[X1, X6]l = X5, [X1, X4l = X3, [X4, Xe] = X0,

we getdw; = —w4 A we, dwz = —w1 A wg, dws = —w1 A wg. AS in Section 6, the
simply-connected Lie grous  corresponding goadmits a lattice. By a straightfor-
ward calculation, we have

H*(g) = spar{[wy Aws], [w1Aws], [waAwa], [waAwel, [w3Awa], [wsA we),

[wi Awz+ w3 Awe], [w3 A ws —was Aws]}
and

34(9) = spar{wiase, w1456, Wi246 W1236+ W1245 — W3456}),
wherew;;, means the element; A w; A wp A wy.
Moreover, letB f ) = b;; ) =&:(X;, X;)), then we can easily verify
det(B¢)) = (1— 3¢ + 32 +1°)2.

Therefore, letxy (xo = —3.8473) be the unique real solution of-13¢ + 32+ 3 =0,
w, is non-degenerate far # xo
Next, we calculate the image of,, for Z%(g). Note thatZ?(g) = H%(g) and

L., (H*(g)) = H*(g).
wi Aws Z% (1~ 1)(wispa+ wisse) — twiaas
w1 A ws 2% (1 — £)wisos — twisss
wy A wa 22 (1 — 1)(waa13+ woase) — twaaze
wa A we 225 (1 — f)wosrz — twoeas
wa Awa ™% (1 — 1)wsase — 2twsarz
ws Awe ~5 (1 — 1)(wss1s+ wse2d) — 2wss12

Wi A wp w3 Awe 2% (1 — 1)(wizse+ wasze) — 1(3wiozs+ wizas + Waeas)

wa A we — wa A ws 25 (1 — 1)(wss2a — was1d) — (2312 — 2was12)
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Since L, (H?*(g)) C /\2’2 and w1346, w1456 W1246 € /\3’1, we need only consider
the dimension of spdil,, (H?(g)), w1236+ w1245 —w3ase}, Where wioge+ w1245 — wWaase
is a exact form.

Thus, we consider the matrix form dfL,, (w13), Lo, (w1s), L, (w24), Lo, (w2e),
L, (w3a), Lo, (wse), Lo, (wi2 — w3e), L, (w3 — was), wizze+ wizas — wassef With re-
spect to the basi§wiozs, wizze wizas, wizse, Wizas, Wi3se, Wozas, Waase w3ase) Of
AZ? let A(r) denote its matrix. Then we get the following matrix:

t—1 0 0 0 -t 1-—1 0 0 0

0 0 1—1¢ 0 0 t 0 0 0

t—1 0 0 0 0 0 t 1-¢ 0

0 —1+¢ 0 0 0 0 0 —t 0

A)=| —2 0 0 0 0 0 0 0 -t
0 0 0 —2t 0 1—1¢ 0 1—1¢ 0

0 —3t -t 1—t 0 0 t—1 0 —t

0 —2t 2t 0 -1 0 -1 0 0

0 1 1 0 0 0 0 0 -1

Thus we have
detA () = 12%(1 — 31 + 3% +1%)? .
Hence, forr 0, xo , detA ¢ )# 0. Then fort # 0, xo,
afwy) = 0.
On the other hand, since détr ()=0 for =0,
a(wg) = L.

In fact,
Aw
w1 A\ w3z — w1324+ W13s6
Aw
w1 A\ Ws — W1524
Aw
w2 N\ wg — w2413+ Wo4s6
Aw
w2 N\ We — W2613
Aw
w3 A\ w4 — W34se
Aw
ws N\ we — wse13 1 Wse24
Aw
w1 A wy + w3z A\ ws — w1256+ W3s24
Aw
w3 N\ we — wa N\ ws — w3ze24t was13
Thus, the image oL, for w1 Aws —wy Awe —ws Awa is a exact form. Therefore, we
now see

a(wo) = dim H?. (g) — dim H; (g) = 1. O
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