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1. Introduction

Let ( 2 ω) be a symplectic manifold. Brylinski [2] defined the star operator
∗ : ( ) → 2 − ( ) for the symplectic structureω as an analogy of the star op-
erator for an oriented Riemannian manifold, where ( ) denotes the space of all
-forms on , and also defined an operator∗ = (−1) ∗ ∗ : ( ) → −1( ).

Now a formα on is called a symplectic harmonic form if it satisfiesα = ∗α = 0.
We denote byH ( ) the space of all harmonic -forms on . We define symplectic
harmonic -cohomology group ( ) byH ( )/( ( ) ∩ H ( )). Brylinski con-
jectured that any de Rham cohomology class contains a harmonic representation. How-
ever, Mathieu [6] proved the following result:

Mathieu’s Theorem. Let ( 2 ω) be a symplectic manifold of dimension2 .
Then following two assertions are equivalent:
(a) For any , the cup-product[ω] : − ( )→ + ( ) is surjective.
(b) For any , ( ) = ( ).

In particular, we see that if is a compact Kähler manifold, then any de Rham
cohomology class contains a symplectic harmonic cocycle. Yan [11] gave a simpler,
more direct proof of Mathieu’s Theorem. Mathieu [6] also proved that, for = 0 1 2

( ) = ( ).
In this paper we study compact symplectic nilmanifolds. Letg be a Lie alge-

bra and putg(0) = g and let g( +1) = [g g( )] for ≥ 0. We say that a Lie algebra
g is ( + 1)-step nilpotent ifg( ) 6= (0) and g( +1) = (0). A Lie group is called
( + 1)-step nilpotent if its Lie algebrag is ( + 1)-step nilpotent. If is a simply-
connected ( + 1)-step nilpotent Lie group and is a lattice of ,that is, a dis-
crete subgroup of such that/ is compact, then we say that/ is a compact
( + 1)-step nilmanifold. We also identify

∧
g∗ with the space of all left -invariant

forms on . Nomizu [8] proved that, for each , the Lie algebra cohomology group
(g) = (g)/ (g) = (Ker ∩∧ (g∗))/(Im ∩∧ (g∗)) is isomorphic to the de Rham

cohomology group ( ) = ( )/ ( ) = (Ker ∩ ( ))/(Im ∩ ( )) where
= / .
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Benson and Gordon [1] have proved that the Hard Lefschetz Theorem fails for
any symplectic structure on a non-toral compact nilmanifold to show that a non-toral
compact nilmanifold does not admit any Kähler structure. The proof of Benson and
Gordon also implies that the dimension of2 −1( ) is not equal to the dimension

1 ( ) for a non-toral compact nilmanifold.
For a left -invariant symplectic formω on a compact nilmanifold / , we de-

note byH (g) the space of all left -invariant harmonic forms on/ . Moreover we
define a subspace of Lie algebra cohomology group (g) by (g) = H (g)/( (g)∩
H (g)).

Let be a compact manifold andω, ω′ symplectic forms on . We denote
ω-harmonic (ω′-harmonic) -cohomology group by ω- ( ) ( ω′- ( )). If for
some , the dimension of ω- ( ) and ω′- ( ) are not equal, then there exists
no diffeomorphismsϕ : −→ such thatϕ∗ω = ω′. Thus harmonic cohomology
groups play an important role in the classification of symplectic forms.

We are also interested in the following question raised by B.Khesin and D. Mc-
Duff (see Yan [11]).

Question : On which compact manifold , does there exist a family ω of sym-
plectic forms such that the dimension of ( ) varies?

This question was considered by Yan [11] for compact symplectic 4-manifolds
and he constructed compact 4-manifold which have a familyω of symplectic forms
such that the dimension of 3

ω - ( ) varies. Yan also observed that for compact
4-dimensional nilmanifolds the dimension 3

ω - ( ) is independent of symplectic
forms. Now we consider the following question.

Question : On which compact nilmanifold , does there exist a family ω of sym-
plectic forms such that the dimension of ( ) varies?

In Section 4, we prove

Proposition 1. Let 2 be a compact manifold andω ω′ symplectic forms on
such thatω − ω′ = γ for someγ ∈ 1( ) (it is not necessary that is a

nilmanifold). Then we have, for each ,

ω- ( ) = ω′- ( )

Proposition 2. Let ( = / ω) be a compact symplectic nilmanifold. Then we
have

ω- ( ) = ω0- ( ) = ω0- (g)

where ω0 is a left -invariant closed2-form such thatω − ω0 = γ for someγ ∈
1( ).

In Section 5, we prove the following:
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Theorem 3. Let 2 = / be a compact( +1)-step nilmanifold. Then for any
symplectic structureω on , we have

dim 1 ( )− dim 2 −1( ) ≥ dimg( )

In particular, if is a 2-step nilmanifold, then

dim 1 ( )− dim 2 −1( ) = dim[g g]

Let be a simply-connected nilpotent Lie group andg be its Lie algebra. Note
that has a lattice if and only ifg admits a basis with respect to which the constants
of structure are rational (see Raghunathan [9] Theorem 2 12 of Chapter II).

In Section 7, we prove the following:

Theorem 4. Let g be the 2-step nilpotent Lie algebra for dimension6 of the
form

g = span{ 1 2 3 4 5 6}

where

[ 1 6] = 5 [ 1 4] = 3 [ 4 6] = 2

and ω1 ω2 ω3 ω4 ω5 ω6 denote its dual basis. Moreover, let

ω = ω1 ∧ ω3 + ω2 ∧ ω4 + ω5 ∧ ω6

and

ω′ = −2ω1 ∧ ω2− ω3 ∧ ω6− ω4 ∧ ω5

Then {ω = (1− )ω + ω′; R ∋ 6= 0} is a family of symplectic forms on compact
nilmanifold / , where 0 ( 0 ; −3 8473) is a unique real solution for1− 3 + 3 2 +
3 = 0 such that

for ω0 = ω dim 2 ( / )− dim 4 ( / ) = 1

for ω ( 6= 0 0) dim 2 ( / )− dim 4 ( / ) = 0

Since 2 ( / ) = 2
ω- ( / ) for any symplectic forms, we have 6-dimensional

nilmanifold which has a familyω of symplectic forms such that the dimension of
4
ω - ( ) varies.

The author would like to express his deep appreciation to Professor Yusuke
Sakane for his thoughtful guidance and encouragement givenduring the completion of
this paper.



366 T. YAMADA

2. Operators on Ω
∗(M) and the relations

In this section, we define some operators on a symplectic manifold and study their
relations.

Let ( 2 ω) be a symplectic manifold. We define a star operator∗ω =
∗ : ( )→ 2 − ( ). Let G be the skew symmetric bivector field dual toω.

By the Darboux’s theorem, we can write in canonical coordinates

ω = 1 ∧ 1 + · · · + ∧

and

G =
∂

∂ 1
∧ ∂

∂ 1
+ · · · + ∂

∂
∧ ∂

∂

We define a star operator

∗ : ( )→ 2 − ( ) for = 0 . . . 2

by

α∧ ∗ β = (∧ (G))(α β) for α β ∈ ( )

where =ω / !.
We also define an operator∗ by ∗ = (−1) ∗ ∗ : ( )→ −1( ).

DEFINITION 2.1. For a symplectic manifold ( ω), a -formα ∈ ( ) is called
ω-harmonic or simply, harmonic, if it satisfies

∗α = α = 0

We denote byHω( ) = H ( ) the space of all harmonic -forms. We define
symplectic harmonic -cohomology groupω- ( ) = ( ) = H ( )/( ( ) ∩
H ( )). We also define ω = : ( )→ +2( ) by (α) = α ∧ ω.

Lemma 2.2.

∗ = [ (G)]

Proof. See [2].

REMARK. Since ∗2 = 0, we can define homology groups as follows.

( ) := H ( )/( ( ) ∩H ( ))
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where ( ) = Im ∗ ∩ ( ). For any ,

∗ : − ( )→ + ( )

is an isomorphism. In fact, forα ∈ H − ( ), we have

∗(∗α) = (−1) + ∗ ∗ ∗α = (−1) + ∗ α = 0

(∗α) = ∗ ∗ ∗ α = (−1) − ∗ ∗α = 0

Thus ∗α ∈ H + ( ) . Similarly, ∗ : − ( ) → + ( ). Thus ∗-operator induces a
homomorphism

∗ : − ( )→ + ( )

We can also define∗ : + → − ( ). Since∗∗ = , we see that
∗ : − ( )→ + ( ) is an isomorphism (cf. [2]).

Now, we define operator ∗ by

∗ = ∗ ∗ : ( )→ −2( )

We can easily see that ∗ is the adjoint operator for , where we define an inner
product ( ) on ∗( ) by (α β) =

∫
∗(α ∧ ∗β) for α β ∈ ( ).

Proposition 2.3 (Yan [11]).

(G) = − ∗

Moreover, we define

=
∑

( − )π

whereπ : ∗( )→ ( ) is the natural projection.
These operators satisfy the following relations:

Proposition 2.4 (Yan [11]). [ ∗ ] = [ ] = −2 [ ∗] = 2 ∗

3. Duality on harmonic forms

First we introduce the following definition. Let be the standard basis of
sl(2 C) = sl(2) i.e.

=

(
1 0
0 −1

)
=

(
0 1
0 0

)
=

(
0 0
1 0

)
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DEFINITION 3.1. Let be the (infinite-dimensional) vector space of a Lie algebra
representation. We say that is ansl(2)-module of finite -spectrum if the following
two conditions are satisfied:
(a) can be decomposed as the direct sum of eigenspace of .
(b) has only finitely many distinct eigenvalues.

By a basic result on ansl(2)-representation we have the following:

Proposition 3.2. Let be ansl(2)-module of finite -spectrum. Then we have:
For any , the maps

: → −

and

: − →

are isomorphisms(where is an eigenspace of with eigenvalue).

Now we can give a representation ofsl(2 R) on ∗( ) by the following corre-
spondence:

←→ ∗ ∗ ←→ ←→

We can easily see that∗( ) is an sl(2)-module of finite -spectrum. Thus we have

Proposition 3.3 (Duality on forms) (Yan [11]).

: − ( )→ + ( )

is an isomorphism.

Moreover, sinceH∗( ) is an sl(2 R)-submodule of ∗( ), we have

Proposition 3.4 (Duality on harmonic forms) (Yan [11]).

: H − ( )→H + ( )

is an isomorphism.

For a left -invariant symplectic formω on a compact nilmanifold / , we de-
note byH (g) the space of all left -invariant harmonic forms on/ .

Now we have the following:
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Proposition 3.5. Let ( 2 ω) be a compact symplectic nilmanifold such that
ω ∈ ∧2(g∗), then

: H − (g)→ H + (g)

is an isomorphism.

Proof. Let { 1 . . . 2 } be a basis ofg and {ω1 . . . ω2 } be its dual basis.
Thenω can be written as

ω =
∑

ω ∧ ω = − ∈ R

Further, it is easy to see that

G = −
∑

∧

where ( ) is the inverse matrix for transpose matrix of ( ). It follows thatH∗(g) is
an sl(2 R)-submodule.

4. Harmonic cohomology groups onM

We need some lemmas to prove Theorem 1.

Lemma 4.1 (Yan [11]). Let ( ω) be a symplectic manifold. Then we have

−
ω ( ) ⊂ −

ω- ( )

where

−
ω ( ) = { ∈ − ( ) | +1

ω = 0}

Lemma 4.2. Let 2 be a compact manifold andω ω′ symplectic forms on
such thatω − ω′ = γ for someγ ∈ 1( ). Then we have

−
ω ( ) = −

ω′ ( )

Proof. Let = [ ]∈ −
ω ( ), where ∈ − ( ). Sinceω = ω′ + γ, we have

+1
ω = ω +1 ∧

= (ω′ + γ) +1 ∧

= +1
ω′ +

∑

6= +1

(
+ 1
)
ω′ ∧ ( γ) − +1 ∧

Therefore,

+1
ω = [ +1

ω ] = [ +1
ω′ ] = +1

ω′ = 0
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which implies ∈ −
ω′ ( ) so that −

ω ( ) = −
ω′ ( ).

Lemma 4.3. Let ( ω) be a compact symplectic manifold. Then, for ≥ 0, we
have

− ( ) = − ( ) + ( − −2( ))

Proof. Let ∈ − ( ). Since +2 : H − −2( ) → H + +2( ) is an isomor-
phism, there exists = [β], whereβ ∈ H − −2 such that

+1 = +2

Thus

+1( − ∧ ω) = 0

which implies

− ∧ ω ∈ − ( )

Moreover, since ∧ ω ∈ ( − −2( )), we get

= ( − ∧ ω) + ∧ ω ∈ − ( ) + ( − −2( ))

Proposition 4.4. Let 2 be a compact manifold andω ω′ symplectic forms on
such thatω − ω′ = γ for someγ ∈ 1( ). Then we have, for each ,

ω- ( ) = ω′- ( )

Proof. We prove our proposition by induction of the dimension of de Rham co-
homology group. By the proof of Mathieu’s theorem, we see ( ) = () for

= 0 1 2 (cf. Corollary 8 of [6] and Corollary 3 1 of [11]). Therefore,

ω- ( ) = ( ) = ω′- ( ) for = 0 1 2

Assume that if < − , then ω- ( ) = ω′- ( ). Let [ ] ∈ − −2
ω- ( ), where

∈ H − −2
ω ( ). By the assumption of induction, there exists [′] ∈ − −2

ω′- ( ),
where ′ ∈ H − −2

ω′ ( ) such that [ ] = [ ′] ∈ − −2( ). Thus

ω( − −2
ω- ( )) ∋ [ω ∧ ] = [ω] ∧ [ ]

= [ω] ∧ [ ′]

= [ω ∧ ′] = [(ω′ + γ) ∧ ′]

= [ω′ ∧ ′] ∈ ω′( − −2
ω′- ( ))
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Therefore, by Lemma 4.3

−
ω- ( ) = −

ω ( ) + ω( − −2
ω- ( ))

= −
ω′ ( ) + ω′ ( − −2

ω′- ( ))

= −
ω′- ( )

Let = [ ] ∈ +
ω- ( ), where ∈ H +

ω ( ). Since :H − ( ) → H + ( ) is an
isomorphism, there exists ∈ H −

ω ( ) such that = [ ] = [ ω ] = ω[ ]
Thus by above argument, there exists [ ]∈ −

ω′- ( ), where ∈ H −
ω′ ( ) such

that [ ] = [ ]. Sinceω = ω′ + γ, we have

ω[ ] = ω[ ] = [ω ∧ ]

= [(ω′ + γ) ∧ ]

=




ω′ +
∑

6=

( )
ω′ ∧ ( γ) − ∧


 = [ ω′ ] = ω′ [ ]

which implies

ω- ( ) = ω′- ( ) ( = 0 . . . 2 )

For a left -invariant symplectic formω on / , let (g) = H (g)/( (g) ∩
H (g)) be a subspace of Lie algebra cohomology group (g).

Proposition 4.5. Let ( ω) be a symplectic nilmanifold such thatω is a left
-invariant closed2-form. Then we have

( ) = (g) ( = 0 . . . 2 )

Proof. We prove our proposition by induction. Note that, since ∗ = [ (G)],
(g) = H (g) for = 0 1 2. Applying Nomizu’s theorem, for = 0 1 2,

( ) = ( ) = (g) = (g)

Moreover,

− ( ) = { ∈ − ( ) | +1 = 0}
= { ∈ − (g) | +1 = 0}
= − (g)

By Lemma 4.3 and the assumption of induction, we have

− ( ) = − ( ) + ( − −2( ))
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= − (g) + ( − −2(g))

= − (g)

As in Proposition 4.4, by the above argument and :H − (g)→ H + (g) is an iso-
morphism, we have

( ) = (g) ( = 0 . . . 2 )

where ( 2 ω) is a symplectic nilmanifold such thatω is a left -invariant closed
2-form.

Let ( ω) be a compact symplectic nilmanifold, then by Nomizu’s theorem there
existsω0 which is a left -invariant closed 2-form such thatω − ω0 = γ. Moreover,
ω0 is also non-degenerate (Sinceω − ω0 = τ for someτ ∈ 2 −1( )). Therefore,
by Proposition 4.4 and 4.5,

ω- ( ) = ω0- ( ) = ω0- (g)

Then we assume that symplectic structures on =/ are left -invariant to study
harmonic cohomology groups on a compact nilmanifold .

From now on we always assume that (ω) is a compact symplectic ( + 1)-step
nilmanifold. Let g be an ( + 1)-step nilpotent Lie algebra. Consider the descending
central series{g( )} of g, whereg( +1) = [g g( )] and g(0) = g. Let a( ) denote a vector
space complement ofg( +1) in g( ):

g( ) = g( +1) + a( )

for = 0 1 . . . − 1 and define = dima( ). For simplicity let
∧

0a(0)∗ ∧ · · · ∧∧
a( )∗ =

∧
0 ... . Then

∧
g∗ =

∑

0+···+ =

∧ 0 ...

Lemma 4.6 (Benson-Gordon [1]).

1(g) = 1(g) =
∧1 0 ... 0

Lemma 4.7 (Benson-Gordon [1]). Any closed2-form σ ∈ ∧2
g∗ belongs to∧1 0 ... 0 1 +

∑∧
0 ... −1 0.

Let λ1 . . . λ be a basis of
∧0 ... 0 1. By Lemma 4.9, the invariant symplectic

form ω can be written as

ω = β1 ∧ λ1 + · · · + β ∧ λ modulo
∑∧ 0 ... −1 0
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whereβ1 . . . β are elements of
∧1 0 ... 0. By non-degeneracy ofω, β1 . . . β are

linearly independent and thus can be extended to a basis

β1 . . . β . . . β 0

for
∧1 0 ... 0.

Lemma 4.8 (Benson-Gordon [1]). (1)
∧2 −1(g∗) = 2 −1(g).

(2) σ ∈ 2 −1(g) is divisible byβ1 ∧ · · · ∧ β 0.

Hence by this lemma, 2 −1(g) ⊂ ∑
0+ 1+···+ =2 −1

∧
0 1 ... . However, since

dim 2 −1(g) = dim 2 −1(g) − dim 2 −1(g) = dim 2 −1(g) − dim 1(g) = 1 +
· · · + = dim

∑∧
0 1 ... , we have 2 −1(g) =

∑
0+ 1+···+ =2 −1

∧
0 1 ... .

5. Proof of Theorem 1

In this section, we prove Theorem 1 and some propositions. Weuse same nota-
tions introduced in Section 4.

Let ( / ω) be a compact symplectic ( + 1)-step nilmanifold. By Nomizu’s the-
orem, there exists a left -invariant closed 2-form such thatω − ω0 = γ for some
γ ∈ 1( / ). (Moreover,ω0 is non-degenerate). Therefore, by Proposition 4.4, we
only consider the case that a symplectic form is a left -invariant closed form.

Proof of Theorem 1. Note that −1 : H1(g) → H2 −1(g) is an isomorphism
and 1(g) = H1(g). For = 1 . . . , considerβ ∈ 1(g) = 1(g). Sinceω −1 ∈∑

0+···+ =2 −2

∧
0 ... is a (2 − 2)-form, we see 0 = 0 0− 1 0 − 2. Thenω −1

can be written asω −1 = δ1 + δ
′

2 + δ
′′

2 where δ1 δ
′

2 δ
′′

2 are (2 − 2)-forms such that
δ1 ∈

∧
0−2 1 ... , δ

′

2 ∈
∑∧

0−1 1 ... and δ
′′

2 ∈
∑∧

0 1 ... . Hence

−1β = β ∧ δ1 + β ∧ δ′

2 + β ∧ δ′′

2

We claim that −1β is an exact form. Since each term ofδ1 is divisible byλ1∧· · ·∧
λ and hence also byβ1∧ · · ·∧β . Thus we getβ ∧ δ1 = 0 (Note that = 1. . . ).
Moreover, by Lemma 4.8, we get

β ∧ δ′

2 ∈
∑∧ 0 1 ...

= 2 −1(g)

Hence we now have

−1β = β ∧ ω −1 ∈ 2 −1(g)

It follows that

dim 1 ( )− dim 2 −1( ) ≥ dimg( )
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Furthermore,

dim 1 (g)− dim 2 −1(g)

= dimH1(g)− dim( 1(g) ∩H1(g))

− dimH2 −1(g) + dim( 2 −1(g) ∩H2 −1(g))

= dim( 2 −1(g) ∩H2 −1(g))− dim( 1(g) ∩H1(g))

= dim( 2 −1(g) ∩H2 −1(g))

≤ dim( 2 −1(g)) = 1 + · · · +

Thus, in particular is a 2-step nilmanifold, we have

dim 1 ( )− dim 2 −1( ) = 1

Proposition 5.1. Let ( 2 = / ω) be a compact symplectic( + 1)-step nil-
manifold. Assume thatdimg− dim[g g] − 2< dimg( ). Then we have

dim 1 ( )− dim 2 −1( ) = 0 = dimg− dim[g g]

Proof. Let

{β1 . . . β . . . β 0}

be a basis of
∧1 0 ... 0. As in proof of Theorem 1, we writeω −1 asω −1 = δ1+δ

′

2+δ
′′

2 ,
δ1 ∈

∧
0−2 1 ... δ

′

2 ∈
∑∧

0−1 1 ... and δ
′′

2 ∈
∑∧

0 1 ... . By our assumption, we
see thatδ1 = 0. Then, for any = 1. . . 0, β ∧ ω −1 ∈ 2 −1(g).

Proposition 5.2. Let ( 2 = / ω) be a compact symplectic3-step nilmani-
fold such that 1 = 1. Then

dim 1 ( )− dim 2 −1( ) = 1 + 2

Proof. We may assume that the symplectic formω can be written as

ω = β1 ∧ λ1 + · · · + β 2 ∧ λ 2 + β 2+ 1 ∧ τ modulo
∧2 0 0

whereτ ∈ a(1)∗ Then we seeδ1 ∈
∧

0−2 1 2 is divisible by β 2+ 1

REMARK. It is not true that, if ( 2 = / ω) be an ( + 1)-step compact sym-
plectic nilmanifold such that 1 = 2 = · · · = 1, then dim 1 ( ) − dim 2 −1( ) =

1 + 2 + · · · + For example, consider the Lie algebrag = n2 −1
1 × a wherea is a

Lie algebra for dimension 1 and

n2 −1
1 = span{ 1 . . . 2 −1}
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where [ 1 ] = −1 ( = 3 . . . 2 − 1). Let {ω1 . . . ω2 −1} (resp.ω2 ) be the
dual basis ofn2 −1

1 (resp.a) and

ω = ω1 ∧ ω2 +
−2∑

=0

(−1) ω2+ ∧ ω2 −1−

then

dim 1 (g)− dim 2 −1(g) = 1

Moreover, we can easily see that for any symplectic form on , dim 1 ( ) −
dim 2 −1( ) = 1

Proposition 5.3. Let ( 2 ω) be a compact symplectic( + 1)-step nilmanifold
such that 0 − 2 = . Let ω −1 = δ1 + δ

′

2 + δ
′′

2 where δ1 δ
′

2 δ
′′

2 are (2 − 2)-forms
such thatδ1 ∈

∧
0−2 1 ... , δ

′

2 ∈
∑∧

0−1 1 ... , δ
′′

2 ∈
∑∧

0 1 ... . Then we have

δ1 6= 0⇒ dim 1 ( )− dim 2 −1( ) =(1)

δ1 = 0⇒ dim 1 ( )− dim 2 −1( ) = 0(2)

Proof. We may assume that the symplectic formω can be written as

ω = β1 ∧ λ1 + · · · + β ∧ λ modulo
∑∧ 0 ... −1 0

Moreover, let{β1 . . . β β +1 β +2} be a basis of (a(0))∗. By our assumption, we
see

ω −1 = β1 ∧ · · · ∧ β ∧ λ1 ∧ · · · ∧ λ ∧ τ + δ
′

2 + δ
′′

2

where 6= 0 andτ ∈ ∧0 1 ... Hence,

β +1 ∧ ω −1 6= 0

β +2 ∧ ω −1 6= 0

Assume thatβ +1 ∧ ω −1 and β +2 ∧ ω −1 belong to same cohomology class of
2 −1(g). Therefore

β +1 ∧ ω −1− β +2 ∧ ω −1 = γ

0 6= β +1 ∧ δ1 − β +2 ∧ δ1 = −β +1 ∧ δ
′

2 + β +2 ∧ δ
′

2− β +1 ∧ δ
′′

2 + β +2 ∧ δ
′′

2 + γ

The right hand side is divisible byβ1 ∧ · · · ∧ β +2. Conversely, the left hand side is
not divisible byβ1 ∧ · · · ∧ β +2. It is a contradiction.

(2) It is obvious.
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6. Examples

Now we shall give some examples of compact symplectic nilmanifold / . Since
each Lie algebrag has a basis with respect to which the constants of structure are
rational, the simply-connected Lie group corresponding tog admits a lattice.

EXAMPLE 6.1 (A generalization of Heisenberg group) ([3]). Let us consider the
following Lie algebra.

h(1 ) = span{ 1 . . . 1 . . . }

where

[ ] =

and {µ1 . . . µ ν λ1 . . . λ } be its dual basis. Then we have

µ = ν = 0 λ = −µ ∧ ν

Thusµ ∧ λ is a closed 2-form.
Similarly, we also define

h(1 ) = span{ ′
1 . . . ′ ′ ′

1 . . .
′ }

and span{µ′
1 . . . µ′ ν′ λ′1 . . . λ′ }. Then there exists a non-degenerate closed 2-form

ω =
∑
µ ∧ λ +

∑
µ′ ∧ λ′ + ν∧ν′ on g = h(1 )× h(1 ) Let be the simply-

connected Lie group corresponding tog = h(1 ) × h(1 ) and be a compact
nilmanifold of . Sinceg is 2-step, we have

dim 1 ( )− dim 2 +2 +1( ) = +

REMARK. In particular, consider a symplectic form

ω =
∑

µ ∧ λ +
∑

µ′ ∧ λ′ + ν∧ν′

Then we get

dim 2 (g )− dim 2 +2 (g ) = + 2

Proof. By a straightforward calculation, we have

2 (g ) = span{[µ ∧ µ ] [µ ∧ λ ] [λ ∧ ν] [µ ∧ λ + µ ∧ λ ]

[µ′ ∧ µ′ ] [µ′ ∧ λ′ ] [λ′ ∧ ν′] [µ′ ∧ λ′ + µ′ ∧ λ′ ]

[µ ∧ µ′ ] [µ ∧ ν′] [ν ∧ µ′ ] [ν ∧ ν′]}



HARMONIC COHOMOLOGY GROUPS 377

Thus we consider the images of this basis by∧ω + −1. Now we define decomposable
(2( + )− 2)-forms as follows:

δ1 = α ∧ ν ∧ β ∧ ν′ δ2 = α ∧ ν ∧ β ∧ ν′ δ3 = α ∧ ν ∧ β ∧ ν′

δ4 = α ∧ β δ5 = α ∧ β

for 1≤ < ≤ 1≤ < ≤ , where

α = µ1 ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ
α = µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ
α = 6µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ̂ ∧ · · · ∧ λ
β = µ′

1 ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ′

β = µ′
1 ∧ · · · ∧ µ̂′ ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ̂′ ∧ · · · ∧ λ′

β = µ′
1 ∧ · · · ∧ µ̂′ ∧ · · · ∧ µ̂′ ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ̂′ ∧ · · · ∧ λ̂′ ∧ · · · ∧ λ′

Furthermore we write

ω + −1 = δ1 + δ2 + δ3 + δ4 + δ5

where

δ =
∑

<

δ ∈ R ( = 1 2 3)

δ =
∑

δ ∈ R ( = 4 5)

With the notation, first consider the image forµ ∧ µ by ∧ω + −1, then

µ ∧ µ ∧ω + −1

−−−−−→ µ ∧ µ ∧ δ1

However, it is the image by for the scalar multiple of

µ1∧ · · · ∧ µ̂ ∧ · · · ∧µ ∧λ1∧ · · · ∧ λ̂ ∧ · · · ∧λ ∧ ν̂ ∧µ′
1∧ · · · ∧µ ∧λ′1∧ · · · ∧λ′ ∧ ν′

which implies thatµ ∧µ ∧ω + −1 is exact. Similarly, we can see (µ′ ∧µ′ )∧ω + −1

and (µ ∧ µ′ ) ∧ ω + −1 are exact. Then

dim 2 (g )− dim 2 +2 (g ) ≥ + 2

Next, note that

∧ 0−3 1 −→
∧ 0−1 1−1
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∧ 0−2 1−1
−→

∧ 0 1−2

∧ 0−1 1−2
−→ 0

∧ 0 1−3
−→ 0

Therefore, since

λ ∧ ν ∧ω + −1

−−−−−→ λ ∧ ν ∧ δ4 ∈
∧

0−2 1

λ ∧ ν ∧ ω + −1 is not exact. Similarly,λ′ ∧ ν′ ∧ ω + −1 is not exact and by non-
degeneracy ofω, µ ∧ λ ∧ ω + −1 andµ′ ∧ λ′ ∧ ω + −1 are not exact.

Finally, consider the image forµ ∧ λ + µ ∧ λ by ∧ω + −1,

µ ∧ λ + µ ∧ λ ∧ω + −1

−−−−−→ µ ∧ λ ∧ δ1 + µ ∧ λ ∧ δ1

Indeed,

(µ ∧ λ + ∧µ ∧ λ ) ∧ δ1

= (−1)( −2)+( − )+( − −1)(µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ ∧ ν
+µ1 ∧ · · · ∧ µ̂ ∧ · · · ∧ µ ∧ λ1 ∧ · · · ∧ λ̂ ∧ · · · ∧ λ ∧ ν) ∧ ′

where ′ = µ′
1 ∧ · · · ∧ µ′ ∧ λ′1 ∧ · · · ∧ λ′ ∧ ν′.

However, the image by forµ1∧· · · µ̂ ∧· · ·∧ µ̂ ∧· · ·∧µ ∧λ1∧· · ·∧λ ∧ ν̂∧ ′

is ±{(µ1∧ · · · ∧ µ̂ ∧ · · · ∧µ ∧ λ1∧ · · · ∧ λ̂ ∧ · · · ∧ λ ∧ ν ∧ ′) −(µ1∧ · · · µ̂ ∧ · · · ∧
µ ∧ λ1 ∧ · · · λ̂ ∧ λ ∧ ν ∧ ′)} Thus we now see that (µ ∧ λ + µ ∧ λ ) ∧ ω + is
not exact. Similarly, (µ′ ∧ λ′ + µ′ ∧ λ′ ) ∧ ω + is not also exact.

EXAMPLE 6.2 ([5]). Let g be the Lie algebra defined by

g = span{ 1 . . . 2 }

where [ 1 ] = −1 ( = 3 . . . 2 ) andω1 . . . ω2 be its dual basis. Thus we get

ω1 = ω2 = 0

ω −1 = −ω1 ∧ ω ( = 3 . . . 2 )

Thenω1 ∧ ω2
∑ −2

=0 (−1) ω3+ ∧ ω2 − are closed 2-forms andg has a non-degenerate
closed 2-form,

ω = ω1 ∧ ω2 +
−2∑

=0

(−1) ω3+ ∧ ω2 −
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Since 0− 2 = 0< , we get by Proposition 5.1

dim 1 ( )− dim 2 −1( ) = 2

for a compact symplectic nilmanifold =/ .

7. Proof of Theorem 3

Proof of Theorem 3. Letα(ω ) = dim 2 (g)− dim 4 (g).
Since

[ 1 6] = 5 [ 1 4] = 3 [ 4 6] = 2

we get ω2 = −ω4 ∧ ω6, ω3 = −ω1 ∧ ω4, ω5 = −ω1 ∧ ω6. As in Section 6, the
simply-connected Lie group corresponding tog admits a lattice. By a straightfor-
ward calculation, we have

2(g) = span{[ω1 ∧ ω3] [ω1 ∧ ω5] [ω2 ∧ ω4] [ω2 ∧ ω6] [ω3 ∧ ω4] [ω5 ∧ ω6]

[ω1 ∧ ω2 + ω3 ∧ ω6] [ω3 ∧ ω6− ω4 ∧ ω5]}

and

4(g) = span{ω1346 ω1456 ω1246 ω1236+ ω1245− ω3456}

whereω means the elementω ∧ ω ∧ ω ∧ ω .
Moreover, let ( ) = ( ) = (ω ( )), then we can easily verify

det( ( )) = (1− 3 + 3 2 + 3)2

Therefore, let 0 ( 0 ; −3 8473) be the unique real solution of 1− 3 + 3 2 + 3 = 0
ω is non-degenerate for 6= 0

Next, we calculate the image ofω for 2(g). Note that 2(g) = H2(g) and

ω (H2(g)) = H4(g)

ω1 ∧ ω3
∧ω−→ (1− )(ω1324+ ω1356)− ω1345

ω1 ∧ ω5
∧ω−→ (1− )ω1524− ω1536

ω2 ∧ ω4
∧ω−→ (1− )(ω2413+ ω2456)− ω2436

ω2 ∧ ω6
∧ω−→ (1− )ω2613− ω2645

ω3 ∧ ω4
∧ω−→ (1− )ω3456− 2 ω3412

ω5 ∧ ω6
∧ω−→ (1− )(ω5613+ ω5624)− 2 ω5612

ω1 ∧ ω2 + ω3 ∧ ω6
∧ω−→ (1− )(ω1256+ ω3624)− (3ω1236+ ω1245 + ω3645)

ω3 ∧ ω6− ω4 ∧ ω5
∧ω−→ (1− )(ω3624− ω4513)− (2ω3612− 2ω4512)



380 T. YAMADA

Since ω ( 2(g)) ⊂ ∧2 2 and ω1346 ω1456 ω1246 ∈
∧3 1 we need only consider

the dimension of span{ ω ( 2(g)) ω1236 + ω1245 −ω3456} whereω1236 + ω1245− ω3456

is a exact form.
Thus, we consider the matrix form of{ ω (ω13) ω (ω15) ω (ω24) ω (ω26)

ω (ω34) ω (ω56) ω (ω12 − ω36) ω (ω36 − ω45) ω1236 + ω1245− ω3456} with re-
spect to the basis{ω1234 ω1236 ω1245 ω1256 ω1345 ω1356 ω2346 ω2456 ω3456} of∧2 2, let ( ) denote its matrix. Then we get the following matrix:

( ) =




− 1 0 0 0 − 1− 0 0 0
0 0 1− 0 0 0 0 0
− 1 0 0 0 0 0 1− 0
0 −1 + 0 0 0 0 0 − 0
−2 0 0 0 0 0 0 0 1−

0 0 0 −2 0 1− 0 1− 0
0 −3 − 1− 0 0 − 1 0 −
0 −2 2 0 − 1 0 − 1 0 0
0 1 1 0 0 0 0 0 −1




Thus we have

det ( ) = 122(1− 3 + 3 2 + 3)2

Hence, for 6= 0 0 , det ( ) 6= 0. Then for 6= 0 0,

α(ω ) = 0

On the other hand, since det ( ) = 0 for = 0,

α(ω0) = 1

In fact,
ω1 ∧ ω3

∧ω−→ ω1324 + ω1356

ω1 ∧ ω5
∧ω−→ ω1524

ω2 ∧ ω4
∧ω−→ ω2413 + ω2456

ω2 ∧ ω6
∧ω−→ ω2613

ω3 ∧ ω4
∧ω−→ ω3456

ω5 ∧ ω6
∧ω−→ ω5613 + ω5624

ω1 ∧ ω2 + ω3 ∧ ω6
∧ω−→ ω1256 + ω3624

ω3 ∧ ω6− ω4 ∧ ω5
∧ω−→ ω3624+ ω4513

Thus, the image of ω for ω1∧ω5−ω2∧ω6−ω3∧ω4 is a exact form. Therefore, we
now see

α(ω0) = dim 2 (g)− dim 4 (g) = 1
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