
Kamada, N.
Osaka J. Math.
39 (2002), 325–333

ON THE JONES POLYNOMIALS OF CHECKERBOARD
COLORABLE VIRTUAL LINKS

NAOKO KAMADA

(Received August 23, 2000)

1. Introduction

In 1996, L.H. Kauffman introduced the notion of a virtual knot, which was moti-
vated by the study of knots in a thickened surface and abstract Gauss codes, cf. [8, 9].
M. Goussarov, M. Polyak, and O. Viro [1] proved that the naturalmap from the cate-
gory of classical knots to the category of virtual knots is injective; namely, if two clas-
sical knot diagrams are equivalent as virtual knots, then they are equivalent as classical
knots. Thus, virtual knot theory is a generalization of knottheory. In [1], virtual knots
are used to study of finite type invariants.

Kauffman defined the Jones polynomial of a virtual knot, which is also called the
normalized bracket polynomial or the -polynomial (cf. [9]). In this paper, according
to [9], we call it the -polynomial instead of the Jones polynomial, since the definition
is different from Jones’ in [2, 3]. Finite type invariants derived from the -polynomials
are studied in [9]. For example, the follwing results appearin [9]: (1) If ( ) de-
notes the -polynomial of a virtual link , the coefficient ( ) of in the power
series expansion of ( ) is a Vassiliev invariant of order . (2)When the notion
for a “singular” virtual link is generalized in the obvious way, the Vassiliev invari-
ant ( ) depends only on the chord diagram associated with (cf.Corollary 14 of
[9]).

The -polynomial of a virtual link is quite different from the-polynomial of a
classical link. For a Laurent polynomial in the variable , wedenote by EXP( )
the set of integers appearing as exponents of . For example, if = 3 −2 + 6 −
7 5, then EXP( ) ={−2 1 5}. For the -polynomial of a classical link with
components, it is well known that EXP( )⊂ 4Z if is odd and EXP( )⊂ 4Z + 2 if

is even ([2], [7]). However, this is not true for a virtual knot/link in general. In this
paper we introduce the notion ofcheckerboard coloringof a virtual link diagram as
a generalization of checkerboard coloring of a classical link diagram.

Theorem 1. Let be the -polynomial of a virtual link with components.
Suppose that has a virtual link diagram which admits a checkerboard coloring. Then
EXP( )⊂ 4Z if is odd, and EXP( )⊂ 4Z + 2 if is even.
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Fig. 1.

For example the virtual knot diagram illustrated in Fig. 1 (a) admits a checker-
board coloring, and the -polynomial is4 + 12 − 16. So EXP( )⊂ 4Z. On the
other hand, the virtual knot diagram illustrated in Fig. 1 (b) does not admit a checker-
board coloring, and the -polynomial is− 10 + 6 + 4. Theorem 1 implies that this
diagram is not equivalent to any diagram that admits a checkerboard coloring.

If a virtual link diagram is alternating (the definition is given later), then the dia-
gram admits a checkerboard coloring. Thus we have the following.

Corollary 2. Let be the -polynomial of a virtual link with components.
Suppose that has an alternating virtual link diagram. ThenEXP( ) ⊂ 4Z if is
odd, and EXP( )⊂ 4Z + 2 if is even.

By this corollary, we see that the virtual knot represented by Fig. 1 (b) is not
equivalent to any alternating diagram.

2. Virtual link diagram and abstract link diagram

A virtual link diagram is a closed oriented 1-manifold generically immersed inR2

such that each double point is labeled to be (1) areal crossing which is indicated as
usual in classical knot theory or (2) avirtual crossing which is indicated by a small
circle around the double point. The moves of virtual link diagrams illustrated in Fig. 2
are calledgeneralized Reidemeister moves. Two virtual link diagrams are said to be
equivalentif they are related by a finite sequence of generalized Reidemeister moves.
We call the equivalence class of a virtual link diagrama virtual link.

A pair = ( ) of a compact oriented surface and a link diagram on
is called anabstract link diagram(ALD) if | | is a deformation retract of , where
| | is a graph obtained from by replacing each crossing point with a vertex. If
is oriented, is said to beoriented. Unless otherwise stated, we assume that an ALD
is oriented. For an ALD, = ( ), if there is an orientation preserving embedding

: → into a closed oriented surface , ( ) is a link diagram on . We call it
a link diagram realizationof on . In Fig. 3, we show two abstract link diagrams
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Reidemeister move I Reidemeister move II Reidemeister move III

Fig. 2.

(a) (b)

link diagram realaization 

Fig. 3.

and their link diagram realizations. Two ALDs, = ( ) and′ = ( ′ ′), are re-
lated by anabstract Reidemeister move(of type I, II or III) if there exist link diagram
ralizations : → and ′ : ′ → into the same closed oriented surface such
that the link diagrams ( ) and ′( ′) on are related by a Reidemeister move (of
type I, II or III) on . Two ALDs are said to beequivalent if they are related by
a finite sequence of abstract Reidemeister moves. We call theequivalence class of an
ALD an abstract link.

In [6] a map

ϕ : {virtual link diagrams} −→ {ALDs}
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Fig. 4.

was defined. The idea of this map is illustrated in Fig. 4. Refer to [6] for the defi-
nition. We callϕ( ) an ALD associated witha virtual link diagram . The ALDs in
Fig. 3 (a) and (b) are ALDs associated with the virtual link diagrams in Fig. 1 (a) and
(b) respectively.

Theorem 3 ([6]). The mapϕ induces a bijection

: {virtual links} −→ {abstract links}

Let = ( ) be an ALD. A checkerboard coloringof is a coloring of all
the components of − | | by two colors, say black and white, such that any two
components of − | | that share an edge have different colors.

We say that a virtual link diagramadmits a checkerboard coloringor is checker-
board colorableif the associated ALD admits a checkerboard coloring.

3. The f -polynomials of abstract link diagrams

There is a unique map

〈 〉 : {unoriented ALDs} −→ = Z[ −1]

satisfying the following rules.
(i) 〈 〉 = 1 where is a one-component trivial ALD,
(ii) 〈 ∐ 〉 = (− 2− −2)〈 〉 if is not empty, where ∐ is the disjoint union
of and , and

(iii)

〈 〉
=

〈 〉
+ −1

〈 〉
.

The map〈 〉 is invariant under abstract Reidemeister moves II and III. We call it the
Kauffman bracket polynomialof ALD, cf. [4].

Let = ( ) be an unoriented ALD. Replacing the neighborhood of acrossing
point as in Fig. 5, we have another unoriented ALD. We call it an unoriented ALD
obtained from by doing anA-splice or a B-splice at the crossing point. An unori-
ented trivial ALD obtained from by doing an A-splice or a B-splice at each crossing
point is called astateof . From the definition of〈 〉, we see

〈 〉 =
∑

♮( )(− 2− −2)♯( )−1
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A-splice

B-splice

Fig. 5.

where runs over all of states of ,♮( ) is the number of A-splices minus that of
B-splices used for obtaining and♯( ) is the number of components of .

For an ALD, = ( ), the writheω( ) is defined by the number of positive
crossings minus the number of negative crossings of . Then wedefine thenormal-
ized bracket polynomialor the -polynomialof by

( ) = (− 3)−ω( )〈 〉

This value is preserved under abstract Reidemeister moves of type I. Thus this
is an invariant of an abstract link. This invariant was defined in [4], where it was
called the Jones polynomial of . It should be noted that the bijection preserves
the -polynomial.

4. Proof of Theorem 1

Let be a crossing point of an ALD, = ( ). Let 0 = ( 0 0) and

∞ = ( ∞ ∞) be ALDs obtained from by splicing at orientation coherently
and orientation incoherently, respectively. Note that∞ does not inherit an orienta-
tion from . The crossing point is either (i) a self-intersection of an immersed loop
of or (ii) an intersection of two immersed loops. Letα and α′ be the immersed
open arcs obtained from the loop (in case (i)) or from the two loops (in case (ii)) by
removing (the small neighborhood of) . Choose one of them, say α, and we give an
orientation to ∞ which is induced from that of exceptα (and hence the orienta-
tion is reversed onα). Let be the set of crossing points of , except , such that
the sign of the crossing point is preserved when we consider the new diagram ∞; in
other words, at each crossing point belonging to , both of thetwo intersecting arcs
are contained in −α or both of them are inα. Let ′ be the set of crossing points
of , except , such that the sign of the crossing point changes in and ∞; in
other words, at each crossing point belonging to′, one of the two intersecting arcs
is contained in −α and the other is inα. Let (or , resp.) be the number of posi-
tive crossings of (resp. ′) minus the number of negative crossings of (resp.′).
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Lemma 4. In the above situation, let , 0 and ∞ be the -polynomials of ,

0 and ∞, respectively. Then we have

=

{− −2
0− (− 3)−2 −4 ∞ if is a positive crossing,

− +2
0− (− 3)−2 +4 ∞ if is a negative crossing.

Proof. If is a positive crossing, thenω( ) = + + 1, ω( 0) = + and
ω( ∞) = − . Since〈 〉 = 〈 0〉 + −1〈 ∞〉, we have the result. The case where
is a negative crossing is proved by a similar argument.

REMARK. In Remark of Section 5 of [9, page 677], an equation which is simi-
lar to Lemma 4 is given. However, it seems to be forgotten there to take account of
the term (− 3)−2 . In consequence, the recursion formula of Theorem 13 of [9] is as
follows:

( ∗) =
−1∑

=0

2 −

( − )!
{(1− (−1) − ) ( 0) + {(2− 3 ) − − (−2− 3 ) − } ( ∞)}

By this formula, Corollary 14 of [9] is still true.

Corollary 5 (cf. Theorem 13 of [9]). Let be the -polynomial of an ALD with
components. Then (1) = (−2) −1. In particular, -polynomials of ALDs are not

zero.

Proof. It follows from Lemma 4 by induction on the number of (real) crossing
points.

Since preserves the -polynomials, Theorem 1 is equivalent to the following
theorem.

Theorem 6. Let be the -polynomial of an ALD, = ( ), with com-
ponents. Suppose that admits a checkerboard coloring. ThenEXP( ) ⊂ 4Z if is
odd, and EXP( )⊂ 4Z + 2 if is even.

Proof. For a state of , we define ( ) by

( ) = ♮( )(− 2− −2)♯( )−1

so that the bracket polynomial of is the sum of ( ) over all states of . Let ind( )
be the value inZ4 = {0 1 2 3} such that EXP( ( ))⊂ 4Z + ind( ).

Every state of has a unique checkerboard coloring induced from the checker-
board coloring of , see Fig. 6. (Fig. 7 shows an example of an ALD with a checker-
board coloring and a state with the induced checkerboard coloring.) Using this fact,
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or

Fig. 6.

fl

Fig. 7.

Fig. 8.

we prove that ind( ) = ind(′) for any states and ′ of . It is sufficient to prove
this equality in the special case that and′ differ in a single 2-disk as in Fig. 8,
where is a neighborhood of a crossing point of . There are three possibilities for
the connection of outside as in Fig. 9. However, the case (C) does not occur be-
cause such a state does not have a checkerboard coloring induced from the checker-
board coloring of . In both cases (A) and (B), we have (′) = ♮( )±2(− 2 −

−2)♯( )−1±1 and hence ind( ) = ind(′).
Now we have that EXP( )⊂ 4Z + where = ind( ) for any state of . We

denote this number by ind( ). The remaining task is to prove that this index is 0 if
is odd, and 2 if is even. It is proved by induction on the numberof (real) crossing

points of . If has no real crossing points, then it is obvious by the definition of
the -polynomial. Suppose that has a crossing point. For thiscrossing point, let 0

and ∞ be ALDs as in Lemma 4. Note that0 and ∞ admit checkerboard colorings.
Hence EXP(0) ⊂ 4Z + ind( 0) and EXP( ∞) ⊂ 4Z + ind( ∞). Since 6= 0 and 0 6= 0
by Corollary 5, it follows from the equation in Lemma 4 that ind( ) ≡ ind( 0) + 2
(mod 4). The ALD 0 has fewer crossing points than and admits a checkerboard
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(A) (B)
(C)

Fig. 9.

Fig. 10.

coloring. By the inductive hypothesis, ind(0) is 0 if ′ is odd, and 2 if ′ is even,
where ′ is the number of components of0. Since ′ = ±1, we have that ind( ) is
0 if is odd, and 2 if is even.

5. Alternating virtual link diagrams and ALDs

An ALD or a virtual link diagram is said to bealternating if an over-crossings
and under-crossings alternate as one travels along each component of the diagram.
Note that the virtual link diagram in Fig. 10 is not alternating.

Lemma 7. For an ALD, = ( ), the following conditions are equivalent.
(i) By applying crossing changes, changes into an alternating ALD.
(ii) admits a checkerboard coloring.

Proof. If admits a checkerboard coloring, change each real crossing according
to the coloring as in the leftmost figure of Fig. 6. Conversely, if is an alternating
ALD, then give a checkerboard coloring near each crossing point as in the figure used
above, which is extended to a checkerboard coloring of .

Proof of Corollary 2. It follows from Theorem 1 and Lemma 7.

REMARK. M.B. Thistlethwaite [11] and K. Murasugi [10] showed that the
-polynomial (Jones polynomial) of a non-split alternatinglink is alternating, namely,

it is in a form of α
∑ 4 such that ≥ 0 for ≡ (mod 2) and ≤ 0

for 6≡ (mod 2). This result is not true for virtual knots. The -polynomial of a
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Fig. 11.

virtual knot in Fig. 11 is 12 + 3 16− 4 20 + 3 24− 4 28 + 4 32− 3 36 + 40.
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