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0. Introduction

Let C be a smooth projective irreducible algebraic curve awer field of com-
plex numbersC or a compact Riemann surface of gergus . e€ ( ) be the Jacobian
variety of the curveC , which is g -dimensional abelian vgrigarameterizing all the
line bundles of given degre¢ ofi . We denote Wy C ( ) a subvaritthe Jaco-
bian varietyJ € ) consisting of line bundles of degiée  with +Inwre independent
global sections.

If d > g+r—2, one can compute the dimensionWf, C ( ) by using the Riemann-
Roch formula, and this dimension is independentf dIf< g +r — 2, the di-
mension of W) C ) is known to be greater than or equal to the Blikther number
old,g,r) = g—(r+21(g—d+r) for any curveC , and is equal tp(d, g, r) for
general curveC by theorems of Kleiman-Laksov [13] and GhiffiHarris [7]. On the
other hand, the maximal possible dimension¥df C ( ) for thisgeaofd, g andr is
d —2r and the maximum is attained if and onlydf is hyperelliptic & well known
theorem of H. Martens [16].

From a result of M. Coppens, G. Martens and C. Keem [4, CorolBaBy?], it is
known that for curves of odd gonality — i.e. curves for whidfe tminimal number
of sheets of a covering ové?® is odd — the theorem of H. Martens can be refined
significantly.
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Proposition A (Coppens, Keem and G. Martens).et C be a smooth algebraic
curve of odd gonality. Then

dimw;(C)<d—3r
ford <g-—1.

Furthermore, by a recent progress made by G. Martens [14] Hsawea result of
T. Kato and C. Keem [11], it is known that if the dimension Wf, C (foy curvesC
of odd gonality is near to the maximum possible value, then ofisery special type
of curves.

Proposition B (G. Martens [14, Theorem 2]).Let C be a smooth projective ir-
reducible curve of genug over the complex number field. Asgbat the gonality of
C is odd. IfdimW}(C) =d — 3r for somed < g—2 andr > 0 thenC is either trig-
onal, smooth plane sextidirational to a plane curve of degre@ (in this case only
g =13 and g = 14 occur, with a simpleg?, = g + g% or a very ampleg?, = g + g%
respectively or an extremal space curve of degr&@ with a very amplegy; = g3,+g4.

Proposition C (T. Kato, C. Keem [11, Theorem 1]).Let C be a smooth irre-
ducible projective curve of genys over the complex numbket. flesssume the gonal-
ity of C is odd anddimW}(C) =d —3r —1 for somed < g—4 andr > 0. ThenC is
5-gonal with10< g <18, ¢ = 200r 7-gonal of genu21; furthermoreC is a smooth
plane sextic(resp. octi¢ in casegon(C) =5,¢ =10 fesp.gon(C) =7 g =21)

The purpose of this paper is to chase a further generalizatiche above results
of G. Martens and Kato—Keem. We use standard notation fosdlisj linear series,
invertible sheaves and line bundles on algebraic curvdewiolg [3]. As usual,g); is
an r -dimensional linear series of degréde ©n , which may beilggsimcomplete.
If Dis a divisor onC , we write|D| for the associated complete linear series@®n
By K- or K we denote a canonical divisor aii . If is a line bundle (aria-
vertible sheaf) we sometimes abbreviate the notaiorC, L(  sp(rdimH’ C, L)) by
H(L) (resp.h’ ¢ )) for simplicity when no confusion is likely to @ar. Also, for a di-
visor D onC we writeH' 0 )i’ ) instead ofi’ , Oc(D)), dimH (C, Oc(D)). A
base-point-freeg, orC defines a morphisfn C:— P" onto a non-degenerate ir-
reducible (possibly singular) curve i&". If f is birational onto its imagef ) the
given g/, is called simple or birationally very ample. In case tfiveng); is not sim-
ple, letC’ be the normalization off ). Then there is a morphism (a niwetrcov-
ering map)C — C’ and we use the same notatigh  for this covering map of some
degreek induced by the original morphisfn C:— P". The gonality ofC which is
the minimal sheet number of a covering o&r is denoted by gor{ ). We also recall
that given a line bundld. € Pic(C), the Clifford index CIiffC ) of L is defined by
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Cliff( L) := deg L — 2(h°(L) — 1), and the Clifford index CliffC ) ofC is defined by
CIiff( C) := min { Cliff(L) : L € Pic(C) with h°(L) > 2 andh(L) > 2}.

We say that a line bundl€ contributes to the Clifford indexcoff h°(L) > 2 and

h(L) > 2. As is well-known, the Clifford index of a smooth algebraigrve is a mea-
surement how special a curve is in the sense of moduli. Spaityfi if k = gon(C)

then CIiff(C) < k — 2 for any curveC and CIifiC ) =k — 2 for a generalk -gonal
curve; cf. [12] for more details. The result of this paperhs following theorem.

Theorem 1. Lete > 0 be a fixed integer and lef be a smooth algebraic curve
of genusg > 4e+7. Suppose that the gonalityon(C ) of the curveC is an odd integer.
Assume that

d—3r—e<dimWw;(C)
for somed, r > 1 such thatd < g — e — 3. Then
Cliff(C) < 2(e +1).

In proving our result, we use standard techniques in theryheblinear series on
curves such as the Castelnuovo-Severi inequality, exaesarlseries argument as well
as the Accola-Griffiths-Harris theorem.

1. Proof of Theorem 1

A proof of Theorem 1 requires several preparatory results \we begin with the
following theorem due to Matelski [15]; see also [9, Corafldr.

Lemma 2. Let C be a smooth algebraic curve of gengis> 4 +3,j > 0. If
dimW;(C) =d—2—j for somed such thaj+2<d < g—1—j, thendim W, ,,(C) >
j.

For positive integerd,r , leh =4-1)/(r—1)], e=d-—m(r—1)—1, ey =d—mr—1.
We set

(m—-1)

w(d,r) = n 5 (r — 1) +me.

Lemma 3 (Castelnuovo’s bound). AssumeC admits a base-point-free and simple
linear seriesg), . Thery < n(d, r).

Lemma 4 ([1, §7]). If C admits infinite number of base-point-free simple linear
seriesg) 'stheng <w(d+1,r +1)



286 E. BaLLico AnD C. KEEM
Lemma 5 (Excess linear series [3, VII Exercise C, page 3291pn any curveC,
dimWw)_,(C) > dimW)(C)—r — 1.
The following is a special case of the so-called Castelnt®seeri inequality.

Lemma 6 (Castelnuovo-Severi bound [2, Theorem 3.5]Assume there exist two
curvesC; and C, of genusg; and go, respectivelyso thatC is ak; -sheeted covering
of C; (i =1, 2) If ky and k, are coprime then

g < (k1 — 1)(k2 — 1) +k1g1 + kogo.

Lemma 7 (Extension of H. Martens’ theorem [10]).Let d andr be positive in-
tegers such thatl < g+r —4,r > 1. If

dmw;(C)>d—2r —2>0

then C is either hyperelliptictrigonal, bi-elliptic, tetragonal a smooth plane sextic or
a double covering of a curve of gends

We also need the following result due to M. Coppens and G. Martenich may
be considered as a “Clifford’s theorem” for curves of odd gin

Lemma 8 (M. Coppens, G. Martens [5]).Let D be an effective divisor on a
curve C of genusg and of odd gonality such thdegD < g. Thendim|D| <
(1/3) degD.

Proof of Theorem 1. Foe =0, the result holds by Propositiorf B idoes not
belong to the following special classes of curves describeBroposition B;
() a 5-gonal curve of genug = 14 with a very ampip = g + g2
(i) a 5-gonal curve of genug =13 with a simp#g, = g + g2
(iif) a 5-gonal extremal space curve of degree 10 and genus 6 with a very ample
815 = g5+ &io-
We first argue that these curves do not satisfy BijnC (d)=3r for anyd < g —3
andr > 0. If dmW}(C) =d — 3r for somed < g — 3 withr =1 orr =2, thenC
must be a curve of gonality gofi( § 4 by Lemma 7. Therefore we now assume that
dimWw}(C) =d — 3r for somed < g — 3 with r > 3.

CasE (i): If Cis a 5-gonal curve of genug = 14 with a very ampi¢, =
gt + g2 Wi(C) = () for anyr > 3 andd < 9 by Lemma 3 (Castelnuovo genus
bound). Sinceg =14 and < g — 3, we haver < 3 by Lemma 8. Furthermore, it is
easy to see that dierO(C) < 0. Suppose otherwise. Then there exist infinitely many
g:fo € WfO(C) which must be base-point-free and simple. Therefore cae apply
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Lemma 4 to get the contradiction < 12. Finally, suppose that dif3(C) = 2. Since
we already have diW3,(C) < 0, it is clear that a general € W3/(C) is base-point-
free and hence birationally very ample. For a generat g3, € W3/(C), we consider
hO(C, KL ® Oc(—gd)). If h%(C, KL @ Oc(—gd)) > 4, then|KL™1 @ Oc(—gd)| =

g3, for a generall € W2 (C), and hence dinW3,(C) = 2, contrary to dinW3,(C) < 0.

Therefore we must have®(C, K L 12 0¢(—gl)) < 3 for a generall € W3 (C). Then,
by the base-point-free pencil trick, applied to the natunalp

HO(C, L)@ HO(C, L) — HO(C, L ® Oc(gs)),

one concludes thak®(C, £ @ O(—gd)) > 2, for a a generall € W3 (C), which in
turn implies dimWg(C) = 2. Then by Lemma 7, we have g@h( 9 4, which is a
contradiction.

Caseke (ii): If Cis a 5-gonal curve of genug = 13, exactly the same argat
as in the Case (i) is still valid for this case to show that #inhC) € 4 — 3r for any
d<g-—3andr >0.

CASE (iii): Let C be a 5-gonal extremal space curve of degree 10 amadug
g = 16. Note thatC is a complete intersection of a quintic and adga in P3.
Ford < 9 andr > 3, Wj(C) = 0 by Lemma 3. For the casel(r ) = (10 3),
we apply the same argument as in the case (i) above to shovdemanO(C) < 0.
For the cased,r ) = (11 3), suppose that #A(C) = 2. Since we already have
dim WfO(C) < 0, a generak3, must be base-point-free and simple. Then by Lemma 4
we get a contradictioy < 15. Let ¢, r) = (12 3) and assume that di#i,(C) = 3.
For a generall = g3, € W2,(C), we again consider®(C, KLt ® Oc(—gd)). If
hO(C, KL71@Oc(—gl)) > 5, then| KL 1@ Oc(—gd)| = gf; for a generall € W2,(C),
and hence diniW;5(C) > 3, a contradiction to Proposition A. Therefore we must have
hO(C, KLt ® Oc(—gl)) < 4 for a generall € W2,(C). By applying the base-point-
free pencil trick to the natural map

HO(C, L) ® HY(C, £) — H(C, L ® Oc(gd)),

one concludes that®(C, £ @ O(—gd)) > 2, for a a generall € W2,(C), which in
turn implies dimW3(C) > 3. Then by Lemma 7, we have ganh( 9 4, which is a
contradiction. Letd, r ) = (12 4) and assume that d#fy(C) = 0. If g7, is not simple,
then C is either trigonal or a double cover of a curve of gehus 2, a contradiction.
If g7, is simple, theng < 15 by Lemma 3, again a contradiction. For the cate( )=
(13, 3), we can use an argument almost parallel to the case ( 123 to show
that dimW2(C) < 4. Finally let @, r) = (13 4) and assume that dify(C) = 1.
Since we already knowV;,(C) = 0, every g1, € Wi4(C) is base-point-free and hence
simple. Therefore one applies Lemma 4 to get the contradigii < 15. In all, we
conclude that our theorem holds fer =0.

For e = 1, the theorem is valid by Proposition C. Hence from naw we may
assume that > 2 and gon(C ) > 7; note that ifg > 4e + 7, the curvesC in
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Proposition B and Proposition C have gah (<) 5. By induction, we assume that
dimW}(C)=d — 3r — e for somed < g —e —3 andr > 1.

Let Z be an irreducible component &; C( ) of dimensiér3r—e and letg!, ¢)
be the linear series associated to an elementZ. By the fact that no component of
W/ (C) is properly contained in a component Bf;*1(C), we may assume tha{; z () is
complete for a general € Z; cf. [3, Lemma 3.5—page 182]. By shrinking if necessary,
one may further assume thg} z () is base-point-free for a géper Z. We first treat
the caser =1, which is relatively easy.

Ciamv 1. If r =1, then CIiff(C) < 2(e + 1).

Forr =1, we set dinW}(C)=d —2—j=d—3—e >0; j =e+ 1. Therefore
we havej +2< e¢+3<d < g—1— j, where the last inequality comes from our
assumptiord < g — e — 3. Hence Lemma 2 applies to get the inequality

dim W21(3+1)+2(C) =dimW,,,,(C) > e+1.
By Lemma 5, one has di},,,(C) > e — 1> 0 and it follows that

Cliff(C) < (2 +3)—2=2 +1<2e+2
as wanted; note thagj,.; € Wi,5(C) contributes to the Clifford index o by the
genus assumptiop > 4e +7. Therefore, for the rest of the proof, we may assume that
r > 2 and that
Q) dmwi(C)<n—-4—e¢
foranyn < g—e—3.

Ciam 2. If r > 2, theng) ¢ ) is simple for a generale Z.

Assumeg), £ ) is compounded for a generak Z. Theng) ¢) induces am -sheeted
covering mapr : C — C’ onto a smooth curv&€’ of genusg’ with n | d andn > 2.
Then g/, ¢) is the pull back of a base-point-free complete seg;g; on C’ with re-
spect tor; i.e. g} () :w*(g[i/n).

Let g’ =0. Then ¢/n) —r =g’ =0 andZ C r - W}(C). Hence one has

d—3r—e gdimW,ll(C) <n-—4-—e,
where the second inequality follows from (1). Therefore-@)(r —1) < —1 and hence

it follows thatn = 2; but this is a contradiction sin€g@ is noyphrelliptic.
Next, we assumg’ > 0. By de Franchis’ theorem, we may assume that the map
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W ,,(C) ™, Z is finite dominant map. Hence,
0<d-3 —e=dmz < dimw},(C)).

Assumeg:,/n is special. Then dinwt;/n(c’) < (d/n) — 2r by H. Martens’ theorem
[16]. Hence, we have & d — 3r — e =dimZ < (d/n) — 2r. Therefore it follows that
(n—1d < n(r+e) andd > 3r +e. Hence we have

n

Cliff(C) <d —2r <
n—1

(r+e)—2r

and a simple computation leads to Cldf(<)2e +2 as wanted.
Assume g;/n is non-special. Again by de Franchis’ theorem, the mAag’) (=

W/, (C) ™, Z is a finite dominant map and

2) dimw;,,(C") = dimJacC’) = ¢’ = d_ r=dimZ =d —3r —e.
n

We shall treat the cases =2 and> 3 separately.

n = 2: Since gon( ) = is odd, the morphis@@ — P! induced by agi does not
factor throughr. Hence, Lemma 6 (Castelnuovo-Severi bound) giyes k — 1 + 2g’.
Sincek < 2-gon(C’) < 2-(g’'+3)/2, we getg < 3g’+2. Note that the equality (2) for
n =2 impliesd =4 +2 and’ =r +e. Therefore from the assumptiegh< g —e — 3,
we haved +¢ +3< g < 3g'+2 = 4r+2 +e +3< 3g'+2 = g’ <e— 1. Hence
g < 3(e—1)+2, a contradiction t@ > 4e + 7.

n > 3: We remark thatrr*(W‘}/anl(C’)) C Wi_,—1)(C). Hence by the equality (2),
we have

dim* (W, _,.1(C") =dimW}, _,.(C") =dimJ(C")=d — 3 —¢

3)
S dim de',,1(r,1)(C).

Sinced —3r—e>d—n(r—1)—3—eforn>3 andd —n(r —1) < g —e— 3, the
above inequality (3) is contradictory to our assumption @nd this finishes the proof
of Claim 2.

Sinceg’; ¢ ) is simple for a generale Z if r > 2, we may apply Accola-Griffiths-
Harris theorem [8, page 73] to our current situation and weehthe following in-
equality;

d —3r —e < dimW;(C) < dimTp W;(C) < h°(2D)—3r for D € gi(z),
and it follows that

d—e<h’@2D) =24 +1— g +h'(2D).
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On the other hand, by the numerical bousicK ¢ — ¢ — 3 which we have assumed,
we see thath(2D) > g —d — 1 — e > 2 and hence the linear seri¢&D| contributes
to the Clifford index ofC . Therefore we finally have

(4)  CIiff(C) < Cliff2 D) = 2d — 2h°(2D) +2<2d — 2(d — e — 1) = 2( + 1)
and this finishes the proof of the theorem. ]

One may refine the statement in Theorem 1 for sraail 6 as follows by look-
ing at our proof more carefully, which Takao Kato has kindhformed the authors
through Akira Ohbuchi.

Corollary 9. Let e be a fixed integer wit) < ¢ < 6 and let C be a smooth
algebraic curve of genug > 4e + 7. Suppose that the gonalityon(C) of the curveC
is an odd integer. Assume that

d—3r—e<dimWw;(C)
for somed, r > 1 such thatd < g — e — 3. Then
Cliff(C) < 2(e +1).

Furthermore the equality holds if and only & is a smooth gacurve of degree
2e + 6.

Proof. We use the same notations which we used in the proofhebfem 1.
We first remark that everywhere in the course of the proof oéofam 1, we indeed
had CIiff(C) < 2e + 1 except for the case > 2 and g}, ¢ ) is simple for a general
z € Z. Therefore, we assume CIliff( ) =2 +2 ang z ( )B| is simple for a general
z € Z andr > 2. Hence by the inequality (4), Cliff@ ) =CIifff ) =& +2. We no
distinguish two cases.

(i) 2d < g—1: By [5, Theorem C] which provides an upper bound of the degk
a complete linear serieB such that CIiffC ) = CIiff(D), we have 2 < 4e + 8. On the
other hand

2¢ +2 =CIiff(C) < Cliff(D)= d — 2r <2e +4—2r,

and it follows thatr < 1, contrary to our assumption> 2.

(i) 2d > g — 1: Note that|K — 2D| = g5, % since Cliff(k — 2D) = Cliff(2D).
We again apply [5, Theorem C] to the linear serjés — 2D|; d’ = deg|K — 2D| =
2g —2—2d < 4e +8 and hence

r'=dim|K —2D| <e+3.
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We now briefly recall the so-called Clifford dimension of aath algebraic curve&
denoted by CliffdimC ), which is defined to be the minimum pbks dimensionr D)

of a complete linear serie® such that CliffC ) = CIiff(D) and D contributes to the
Clifford index of C; cf. [6, page 174]. By’ < e+ 3 and by our numerical hypothesis
e < 6, we have

Cliffdim(C) <r' <e+3<9,

which in turn implies CliffdimC ) = 1 or 2 by the last statemeint [6, page 203],
which asserts in particular that for 8 r < 9 a curve of Clifford dimensionr is of
even gonality. The case Cliffdira( ) = 1 cannot occur; if them@) = 22 +4 andC is
of even gonality. Therefore Cliffdin@{ ) = 2 and by a simpletféitat a complete linear
seriesD with dim(D) = Cliffdim(C) > 2 is very ample [6, Lemma 1.1, page 177], we
deduce thatC is a smooth plane curve of degree 2 +6. ]
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