CLIFFORD INDEX OF SMOOTH ALGEBRAIC CURVES OF ODD GONALITY WITH BIG $W_d^r(C)^*$

Dedicated to Professor Sang Moon Kim on the occassion of his retirement.

EDOARDO BALLICO† and CHANGHO KEEM‡

(Received July 19, 2000)

0. Introduction

Let C be a smooth projective irreducible algebraic curve over the field of complex numbers $\mathbb C$ or a compact Riemann surface of genus g. Let J(C) be the Jacobian variety of the curve C, which is a g-dimensional abelian variety parameterizing all the line bundles of given degree d on C. We denote by $W_d^r(C)$ a subvariety of the Jacobian variety J(C) consisting of line bundles of degree d with r+1 or more independent global sections.

If d>g+r-2, one can compute the dimension of $W^r_d(C)$ by using the Riemann-Roch formula, and this dimension is independent of C. If $d \leq g+r-2$, the dimension of $W^r_d(C)$ is known to be greater than or equal to the Brill-Noether number $\rho(d,g,r):=g-(r+1)(g-d+r)$ for any curve C, and is equal to $\rho(d,g,r)$ for general curve C by theorems of Kleiman-Laksov [13] and Griffiths-Harris [7]. On the other hand, the maximal possible dimension of $W^r_d(C)$ for this range of d, g and r is d-2r and the maximum is attained if and only if C is hyperelliptic by a well known theorem of H. Martens [16].

From a result of M. Coppens, G. Martens and C. Keem [4, Corollary 3.3.2], it is known that for curves of odd gonality — i.e. curves for which the minimal number of sheets of a covering over \mathbb{P}^1 is odd — the theorem of H. Martens can be refined significantly.

^{*}The authors are grateful to Professors Akira Ohbuchi and Takao Kato for several comments and suggestions on a previous version of this paper.

[†] Partially supported by MURST.

[‡] Partially supported by Seoam Scholarship Foundation for a visit to the Department of Mathematics of University of Notre Dame where this manuscript was prepared for publication. Also supported in part by KOSEF 981-0101-005-1.

Proposition A (Coppens, Keem and G. Martens). Let C be a smooth algebraic curve of odd gonality. Then

$$\dim W_d^r(C) \le d - 3r$$

for $d \leq g - 1$.

Furthermore, by a recent progress made by G. Martens [14] as well as a result of T. Kato and C. Keem [11], it is known that if the dimension of $W_d^r(C)$ for curves C of odd gonality is near to the maximum possible value, then C is of very special type of curves.

Proposition B (G. Martens [14, Theorem 2]). Let C be a smooth projective irreducible curve of genus g over the complex number field. Assume that the gonality of C is odd. If $\dim W_d^r(C) = d - 3r$ for some $d \le g - 2$ and r > 0 then C is either trigonal, smooth plane sextic, birational to a plane curve of degree 7 (in this case only g = 13 and g = 14 occur; with a simple $g_{12}^4 = g_5^1 + g_7^2$ or a very ample $g_{12}^4 = g_5^1 + g_7^2$ respectively) or an extremal space curve of degree 10 with a very ample $g_{15}^5 = g_{10}^3 + g_5^1$.

Proposition C (T. Kato, C. Keem [11, Theorem 1]). Let C be a smooth irreducible projective curve of genus g over the complex number field. Assume the gonality of C is odd and dim $W_d^r(C) = d - 3r - 1$ for some $d \le g - 4$ and r > 0. Then C is 5-gonal with $10 \le g \le 18$, g = 20 or 7-gonal of genus 21; furthermore C is a smooth plane sextic (resp. octic) in case gon(C) = 5, g = 10 (resp. gon(C) = 7, g = 21).

The purpose of this paper is to chase a further generalization of the above results of G. Martens and Kato-Keem. We use standard notation for divisors, linear series, invertible sheaves and line bundles on algebraic curves following [3]. As usual, g_d^r is an r-dimensional linear series of degree d on C, which may be possibly incomplete. If D is a divisor on C, we write |D| for the associated complete linear series on C. By K_C or K we denote a canonical divisor on C. If L is a line bundle (or an invertible sheaf) we sometimes abbreviate the notation $H^i(C,L)$ (resp. dim $H^i(C,L)$) by $H^{i}(L)$ (resp. $h^{i}(L)$) for simplicity when no confusion is likely to occur. Also, for a divisor D on C we write $H^i(D)$, $h^i(D)$ instead of $H^i(C, \mathcal{O}_C(D))$, dim $H^i(C, \mathcal{O}_C(D))$. A base-point-free g_d^r on C defines a morphism $f:C\to\mathbb{P}^r$ onto a non-degenerate irreducible (possibly singular) curve in \mathbb{P}^r . If f is birational onto its image f(C) the given g_d^r is called simple or birationally very ample. In case the given g_d^r is not simple, let C' be the normalization of f(C). Then there is a morphism (a non-trivial covering map) $C \to C'$ and we use the same notation f for this covering map of some degree k induced by the original morphism $f: C \to \mathbb{P}^r$. The gonality of C which is the minimal sheet number of a covering over \mathbb{P}^1 is denoted by gon(C). We also recall that given a line bundle $L \in Pic(C)$, the Clifford index Cliff(L) of L is defined by

 $Cliff(L) := deg L - 2(h^0(L) - 1)$, and the Clifford index <math>Cliff(C) of C is defined by

$$Cliff(C) := min \{ Cliff(L) : L \in Pic(C) \text{ with } h^0(L) \ge 2 \text{ and } h^1(L) \ge 2 \}.$$

We say that a line bundle L contributes to the Clifford index of C if $h^0(L) \ge 2$ and $h^1(L) \ge 2$. As is well-known, the Clifford index of a smooth algebraic curve is a measurement how special a curve is in the sense of moduli. Specifically, if k = gon(C) then Cliff $(C) \le k - 2$ for any curve C and Cliff(C) = k - 2 for a general k-gonal curve; cf. [12] for more details. The result of this paper is the following theorem.

Theorem 1. Let $e \ge 0$ be a fixed integer and let C be a smooth algebraic curve of genus $g \ge 4e+7$. Suppose that the gonality gon(C) of the curve C is an odd integer. Assume that

$$d-3r-e \leq \dim W_d^r(C)$$

for some $d, r \ge 1$ such that $d \le g - e - 3$. Then

$$Cliff(C) \leq 2(e+1)$$
.

In proving our result, we use standard techniques in the theory of linear series on curves such as the Castelnuovo-Severi inequality, excess linear series argument as well as the Accola-Griffiths-Harris theorem.

1. Proof of Theorem 1

A proof of Theorem 1 requires several preparatory results and we begin with the following theorem due to Matelski [15]; see also [9, Corollary 1].

Lemma 2. Let C be a smooth algebraic curve of genus $g \ge 4j+3$, $j \ge 0$. If $\dim W_d^1(C) = d-2-j$ for some d such that $j+2 \le d \le g-1-j$, then $\dim W_{2j+2}^1(C) \ge j$.

For positive integers d, r, let m = [(d-1)/(r-1)], $\varepsilon = d - m(r-1) - 1$, $\varepsilon_1 = d - m_1 r - 1$. We set

$$\pi(d,r)=\frac{m(m-1)}{2}(r-1)+m\varepsilon.$$

Lemma 3 (Castelnuovo's bound). Assume C admits a base-point-free and simple linear series g_d^r . Then $g \leq \pi(d, r)$.

Lemma 4 ([1, §7]). If C admits infinite number of base-point-free simple linear series g_d^r 's, then $g \le \pi(d+1,r+1)$.

Lemma 5 (Excess linear series [3, VII Exercise C, page 329]). On any curve C,

$$\dim W_{d-1}^r(C) \ge \dim W_d^r(C) - r - 1$$
.

The following is a special case of the so-called Castelnuovo-Severi inequality.

Lemma 6 (Castelnuovo-Severi bound [2, Theorem 3.5]). Assume there exist two curves C_1 and C_2 of genus g_1 and g_2 , respectively, so that C is a k_i -sheeted covering of C_i (i = 1, 2). If k_1 and k_2 are coprime, then

$$g < (k_1 - 1)(k_2 - 1) + k_1g_1 + k_2g_2$$
.

Lemma 7 (Extension of H. Martens' theorem [10]). Let d and r be positive integers such that $d \le g + r - 4$, $r \ge 1$. If

$$\dim W_d^r(C) \ge d - 2r - 2 \ge 0$$

then C is either hyperelliptic, trigonal, bi-elliptic, tetragonal, a smooth plane sextic or a double covering of a curve of genus 2.

We also need the following result due to M. Coppens and G. Martens which may be considered as a "Clifford's theorem" for curves of odd gonality.

Lemma 8 (M. Coppens, G. Martens [5]). Let D be an effective divisor on a curve C of genus g and of odd gonality such that $\deg D < g$. Then $\dim |D| \le (1/3) \deg D$.

Proof of Theorem 1. For e = 0, the result holds by Proposition B if C does not belong to the following special classes of curves described in Proposition B;

- (i) a 5-gonal curve of genus g = 14 with a very ample $g_{12}^4 = g_5^1 + g_7^2$
- (ii) a 5-gonal curve of genus g = 13 with a simple $g_{12}^4 = g_5^1 + g_7^2$
- (iii) a 5-gonal extremal space curve of degree 10 and genus g = 16 with a very ample $g_{15}^5 = g_5^1 + g_{10}^3$.

We first argue that these curves do not satisfy dim $W_d^r(C) = d - 3r$ for any $d \le g - 3$ and r > 0. If dim $W_d^r(C) = d - 3r$ for some $d \le g - 3$ with r = 1 or r = 2, then C must be a curve of gonality $gon(C) \le 4$ by Lemma 7. Therefore we now assume that dim $W_d^r(C) = d - 3r$ for some $d \le g - 3$ with $r \ge 3$.

CASE (i): If C is a 5-gonal curve of genus g=14 with a very ample $g_{12}^4=g_5^1+g_7^2$, $W_d^r(C)=\emptyset$ for any $r\geq 3$ and $d\leq 9$ by Lemma 3 (Castelnuovo genus bound). Since g=14 and $d\leq g-3$, we have $r\leq 3$ by Lemma 8. Furthermore, it is easy to see that $\dim W_{10}^3(C)\leq 0$. Suppose otherwise. Then there exist infinitely many $g_{10}^3\in W_{10}^3(C)$ which must be base-point-free and simple. Therefore one can apply

Lemma 4 to get the contradiction $g \leq 12$. Finally, suppose that $\dim W^3_{11}(C) = 2$. Since we already have $\dim W^3_{10}(C) \leq 0$, it is clear that a general $\mathcal{L} \in W^3_{11}(C)$ is base-point-free and hence birationally very ample. For a general $\mathcal{L} = g^3_{11} \in W^3_{11}(C)$, we consider $h^0(C, K\mathcal{L}^{-1} \otimes \mathcal{O}_C(-g^1_5))$. If $h^0(C, K\mathcal{L}^{-1} \otimes \mathcal{O}_C(-g^1_5)) \geq 4$, then $|K\mathcal{L}^{-1} \otimes \mathcal{O}_C(-g^1_5)| = g^3_{10}$ for a general $\mathcal{L} \in W^3_{11}(C)$, and hence $\dim W^3_{10}(C) = 2$, contrary to $\dim W^3_{10}(C) \leq 0$. Therefore we must have $h^0(C, K\mathcal{L}^{-1} \otimes \mathcal{O}_C(-g^1_5)) \leq 3$ for a general $\mathcal{L} \in W^3_{11}(C)$. Then, by the base-point-free pencil trick, applied to the natural map

$$H^0(C, \mathcal{L}) \oplus H^0(C, \mathcal{L}) \longrightarrow H^0(C, \mathcal{L} \otimes \mathcal{O}_C(g_5^1)),$$

one concludes that $h^0(C, \mathcal{L} \otimes \mathcal{O}(-g_5^1)) \geq 2$, for a general $\mathcal{L} \in W_{11}^3(C)$, which in turn implies dim $W_6^1(C) = 2$. Then by Lemma 7, we have $gon(C) \leq 4$, which is a contradiction.

CASE (ii): If C is a 5-gonal curve of genus g=13, exactly the same argument as in the Case (i) is still valid for this case to show that $\dim W^r_d(C) \leq d-3r$ for any $d \leq g-3$ and r>0.

CASE (iii): Let C be a 5-gonal extremal space curve of degree 10 and genus g=16. Note that C is a complete intersection of a quintic and a quadric in \mathbb{P}^3 . For $d\leq 9$ and $r\geq 3$, $W^r_d(C)=\emptyset$ by Lemma 3. For the case (d,r)=(10,3), we apply the same argument as in the case (i) above to show that $\dim W^3_{10}(C)\leq 0$. For the case (d,r)=(11,3), suppose that $\dim W^3_{11}(C)=2$. Since we already have $\dim W^3_{10}(C)\leq 0$, a general g^3_{11} must be base-point-free and simple. Then by Lemma 4 we get a contradiction $g\leq 15$. Let (d,r)=(12,3) and assume that $\dim W^3_{12}(C)=3$. For a general $\mathcal{L}=g^3_{12}\in W^3_{12}(C)$, we again consider $h^0(C,K\mathcal{L}^{-1}\otimes\mathcal{O}_C(-g^1_5))$. If $h^0(C,K\mathcal{L}^{-1}\otimes\mathcal{O}_C(-g^1_5))\geq 5$, then $|K\mathcal{L}^{-1}\otimes\mathcal{O}_C(-g^1_5)|=g^4_{13}$ for a general $\mathcal{L}\in W^3_{12}(C)$, and hence $\dim W^4_{13}(C)\geq 3$, a contradiction to Proposition A. Therefore we must have $h^0(C,K\mathcal{L}^{-1}\otimes\mathcal{O}_C(-g^1_5))\leq 4$ for a general $\mathcal{L}\in W^3_{12}(C)$. By applying the base-point-free pencil trick to the natural map

$$H^0(C,\mathcal{L}) \oplus H^0(C,\mathcal{L}) \longrightarrow H^0(C,\mathcal{L} \otimes \mathcal{O}_C(g_5^1)),$$

one concludes that $h^0(C, \mathcal{L} \otimes \mathcal{O}(-g_5^1)) \geq 2$, for a a general $\mathcal{L} \in W_{12}^3(C)$, which in turn implies $\dim W_7^1(C) \geq 3$. Then by Lemma 7, we have $\operatorname{gon}(C) \leq 4$, which is a contradiction. Let (d,r)=(12,4) and assume that $\dim W_{12}^4(C)=0$. If g_{12}^4 is not simple, then C is either trigonal or a double cover of a curve of genus $h \leq 2$, a contradiction. If g_{12}^4 is simple, then $g \leq 15$ by Lemma 3, again a contradiction. For the case (d,r)=(13,3), we can use an argument almost parallel to the case (d,r)=(12,3) to show that $\dim W_{13}^3(C) \leq 4$. Finally let (d,r)=(13,4) and assume that $\dim W_{13}^4(C)=1$. Since we already know $W_{12}^4(C)=\emptyset$, every $g_{13}^4\in W_{13}^4(C)$ is base-point-free and hence simple. Therefore one applies Lemma 4 to get the contradiction $g \leq 15$. In all, we conclude that our theorem holds for e=0.

For e=1, the theorem is valid by Proposition C. Hence from now on, we may assume that $e\geq 2$ and $gon(C)\geq 7$; note that if $g\geq 4e+7$, the curves C in

Proposition B and Proposition C have $gon(C) \le 5$. By induction, we assume that $\dim W_d^r(C) = d - 3r - e$ for some $d \le g - e - 3$ and $r \ge 1$.

Let Z be an irreducible component of $W_d^r(C)$ of dimension d-3r-e and let $g_d^r(z)$ be the linear series associated to an element $z \in Z$. By the fact that no component of $W_d^r(C)$ is properly contained in a component of $W_d^{r+1}(C)$, we may assume that $g_d^r(z)$ is complete for a general $z \in Z$; cf. [3, Lemma 3.5-page 182]. By shrinking if necessary, one may further assume that $g_d^r(z)$ is base-point-free for a general $z \in Z$. We first treat the case r = 1, which is relatively easy.

CLAIM 1. If r = 1, then $Cliff(C) \le 2(e+1)$.

For r=1, we set dim $W_d^1(C)=d-2-j=d-3-e\geq 0$; j=e+1. Therefore we have $j+2\leq e+3\leq d\leq g-1-j$, where the last inequality comes from our assumption $d\leq g-e-3$. Hence Lemma 2 applies to get the inequality

$$\dim W^1_{2(e+1)+2}(C) = \dim W^1_{2e+4}(C) \ge e+1.$$

By Lemma 5, one has dim $W_{2e+3}^1(C) \ge e-1 \ge 0$ and it follows that

$$Cliff(C) \le (2e+3) - 2 = 2e+1 \le 2e+2,$$

as wanted; note that $g^1_{2e+3} \in W^1_{2e+3}(C)$ contributes to the Clifford index of C by the genus assumption $g \geq 4e+7$. Therefore, for the rest of the proof, we may assume that $r \geq 2$ and that

$$\dim W_n^1(C) \le n - 4 - e$$

for any $n \le g - e - 3$.

CLAIM 2. If $r \ge 2$, then $g_d^r(z)$ is simple for a general $z \in Z$.

Assume $g_d^r(z)$ is compounded for a general $z \in Z$. Then $g_d^r(z)$ induces an n-sheeted covering map $\pi: C \to C'$ onto a smooth curve C' of genus g' with $n \mid d$ and $n \geq 2$. Then $g_d^r(z)$ is the pull back of a base-point-free complete series $g_{d/n}^r$ on C' with respect to π ; i.e. $g_d^r(z) = \pi^*(g_{d/n}^r)$.

Let g' = 0. Then (d/n) - r = g' = 0 and $Z \subset r \cdot W_n^1(C)$. Hence one has

$$d - 3r - e \le \dim W_n^1(C) \le n - 4 - e,$$

where the second inequality follows from (1). Therefore $(n-3)(r-1) \le -1$ and hence it follows that n=2; but this is a contradiction since C is non-hyperelliptic.

Next, we assume g' > 0. By de Franchis' theorem, we may assume that the map

 $W^r_{d/n}(C') \xrightarrow{\pi^*} Z$ is finite dominant map. Hence,

$$0 \le d - 3r - e = \dim Z \le \dim W^r_{d/n}(C')$$
.

Assume $g_{d/n}^r$ is special. Then $\dim W_{d/n}^r(C') \leq (d/n) - 2r$ by H. Martens' theorem [16]. Hence, we have $0 \leq d - 3r - e = \dim Z \leq (d/n) - 2r$. Therefore it follows that $(n-1)d \leq n(r+e)$ and $d \geq 3r+e$. Hence we have

$$\operatorname{Cliff}(C) \le d - 2r \le \frac{n}{n-1}(r+e) - 2r$$

and a simple computation leads to $\text{Cliff}(C) \leq 2e + 2$ as wanted.

Assume $g^r_{d/n}$ is non-special. Again by de Franchis' theorem, the map $J(C')=W^r_{d/n}(C') \xrightarrow{\pi^*} Z$ is a finite dominant map and

(2)
$$\dim W_{d/n}^r(C') = \dim \text{Jac}(C') = g' = \frac{d}{n} - r = \dim Z = d - 3r - e.$$

We shall treat the cases n = 2 and $n \ge 3$ separately.

n=2: Since gon(C)=k is odd, the morphism $C\longrightarrow \mathbb{P}^1$ induced by a g_k^1 does not factor through π . Hence, Lemma 6 (Castelnuovo-Severi bound) gives $g\le k-1+2g'$. Since $k\le 2\cdot gon(C')\le 2\cdot (g'+3)/2$, we get $g\le 3g'+2$. Note that the equality (2) for n=2 implies d=4r+2e and g'=r+e. Therefore from the assumption $d\le g-e-3$, we have $d+e+3\le g\le 3g'+2\Rightarrow 4r+2e+e+3\le 3g'+2\Rightarrow g'\le e-1$. Hence $g\le 3(e-1)+2$, a contradiction to $g\ge 4e+7$.

 $n \geq 3$: We remark that $\pi^*(W^1_{d/n-r+1}(C')) \subset W^1_{d-n(r-1)}(C)$. Hence by the equality (2), we have

(3)
$$\dim \pi^*(W^1_{d/n-r+1}(C')) = \dim W^1_{d/n-r+1}(C') = \dim J(C') = d - 3r - e$$
$$\leq \dim W^1_{d-n(r-1)}(C).$$

Since $d-3r-e \ge d-n(r-1)-3-e$ for $n \ge 3$ and $d-n(r-1) \le g-e-3$, the above inequality (3) is contradictory to our assumption (1). And this finishes the proof of Claim 2.

Since $g_d^r(z)$ is simple for a general $z \in Z$ if $r \ge 2$, we may apply Accola-Griffiths-Harris theorem [8, page 73] to our current situation and we have the following inequality;

$$d - 3r - e \le \dim W_d^r(C) \le \dim T_{|D|} W_d^r(C) \le h^0(2D) - 3r$$
 for $D \in g_d^r(z)$,

and it follows that

$$d - e \le h^0(2D) = 2d + 1 - g + h^1(2D).$$

On the other hand, by the numerical bound $d \le g - e - 3$ which we have assumed, we see that $h^1(2D) \ge g - d - 1 - e \ge 2$ and hence the linear series |2D| contributes to the Clifford index of C. Therefore we finally have

(4)
$$\operatorname{Cliff}(C) < \operatorname{Cliff}(2D) = 2d - 2h^{0}(2D) + 2 < 2d - 2(d - e - 1) = 2(e + 1)$$

and this finishes the proof of the theorem.

One may refine the statement in Theorem 1 for small $e \le 6$ as follows by looking at our proof more carefully, which Takao Kato has kindly informed the authors through Akira Ohbuchi.

Corollary 9. Let e be a fixed integer with $0 \le e \le 6$ and let C be a smooth algebraic curve of genus $g \ge 4e + 7$. Suppose that the gonality gon(C) of the curve C is an odd integer. Assume that

$$d-3r-e \leq \dim W_d^r(C)$$

for some $d, r \ge 1$ such that $d \le g - e - 3$. Then

$$Cliff(C) \leq 2(e+1)$$
.

Furthermore the equality holds if and only if C is a smooth plane curve of degree 2e + 6.

Proof. We use the same notations which we used in the proof of Theorem 1. We first remark that everywhere in the course of the proof of Theorem 1, we indeed had $\operatorname{Cliff}(C) \leq 2e+1$ except for the case $r \geq 2$ and $g_d^r(z)$ is simple for a general $z \in Z$. Therefore, we assume Cliff(C) = 2e + 2 and $g_d^r(z) = |D|$ is simple for a general $z \in Z$ and $r \geq 2$. Hence by the inequality (4), Cliff(2D) = Cliff(C) = 2e + 2. We now distinguish two cases.

(i) $2d \le g - 1$: By [5, Theorem C] which provides an upper bound of the degree of a complete linear series \mathcal{D} such that $\text{Cliff}(C) = \text{Cliff}(\mathcal{D})$, we have 2d < 4e + 8. On the other hand

$$2e + 2 = \text{Cliff}(C) \le \text{Cliff}(D) = d - 2r \le 2e + 4 - 2r$$

and it follows that $r \leq 1$, contrary to our assumption $r \geq 2$.

(ii) $2d \ge g - 1$: Note that $|K - 2D| = g_{2g-2-2d}^{g-d-2-e}$ since Cliff(K - 2D) = Cliff(2D). We again apply [5, Theorem C] to the linear series |K - 2D|; $d' = \deg |K - 2D| =$ $2g-2-2d \le 4e+8$ and hence

$$r' = \dim |K - 2D| < e + 3$$
.

We now briefly recall the so-called Clifford dimension of a smooth algebraic curve C, denoted by Cliffdim(C), which is defined to be the minimum possible dimension $r(\mathcal{D})$ of a complete linear series \mathcal{D} such that Cliff(C) = Cliff(\mathcal{D}) and \mathcal{D} contributes to the Clifford index of C; cf. [6, page 174]. By $r' \leq e+3$ and by our numerical hypothesis $e \leq 6$, we have

$$Cliffdim(C) \le r' \le e + 3 \le 9$$
,

which in turn implies $\operatorname{Cliffdim}(C)=1$ or 2 by the last statement in [6, page 203], which asserts in particular that for $3 \leq r \leq 9$ a curve of $\operatorname{Clifford}$ dimension r is of even gonality. The case $\operatorname{Cliffdim}(C)=1$ cannot occur; if then $\operatorname{gon}(C)=2e+4$ and C is of even gonality. Therefore $\operatorname{Cliffdim}(C)=2$ and by a simple fact that a complete linear series $\mathcal D$ with $\operatorname{dim}(\mathcal D)=\operatorname{Cliffdim}(C)\geq 2$ is very ample [6, Lemma 1.1, page 177], we deduce that C is a smooth plane curve of degree 2e+6.

References

- [1] R.D.M. Accola: On Castelnuovo's inequality for algebraic curves I, Trans. Amer. Math. Soc. 251 (1979), 357–373.
- [2] R.D.M. Accola: Topics in the theory of Riemann surfaces, Lecture Notes in Math. 1595, Springer Verlag, 1994
- [3] E. Arbarello, M. Cornalba, P.A. Griffiths and J. Harris: Geometry of Algebraic Curves I, Springer Verlag, 1985.
- [4] M. Coppens, C. Keem and G. Martens: Primitive linear series on curves, Manuscripta Math. 77 (1992), 237–264.
- [5] M. Coppens and G. Martens: Secant spaces and Clifford's theorem, Composition Math. 78 (1991), 193–212.
- [6] E. Eisenbud, H. Lange, G. Martens and F.O. Schreyer: The Clifford dimensions of a projective curve, Composition Math. 72 (1989), 173–204.
- [7] P. Griffiths and J. Harris: *The dimension of the variety of special linear systems on a general curve*, Duke Math. J. **47** (1980), 233–272.
- [8] J. Harris: Curves in projective space, Séminaire de mathématiques supérieures 85 Univ. Montréal, 1982.
- [9] R. Horiuchi: Gap orders of meromorphic functions on Riemann surfaces, J. reine angew. Math. 336 (1982), 213–220.
- [10] C. Keem: On the variety of special linear systems on an algebraic curve, Math. Annalen 288 (1990), 309–322.
- [11] T. Kato and C. Keem: G. Martens dimension theorem for curves of odd gonality, Geometriae Dedicata 78 (1999), 301–313.
- [12] C. Keem and S. Kim: On the Clifford index of a general (e+2)-gonal curve, Manuscripta Math. 63 (1989), 83–88.
- [13] S. Kleiman and D. Laksov: On the existence of special divisors, Am. J. Math. 94 (1972), 431–436.
- [14] G. Martens: On curves of odd gonality, Arch. Math. 67 (1996), 80-88.
- [15] J.P. Matelski: On geometry of algebraic curves, Ph.D. Thesis, Princeton (1978).
- [16] H. Martens: On the varieties of special divisors on a curve, J. Reine Angew. Math. 233 (1967), 111–120.

Edoardo Ballico Department of Mathematics University of Trento 38050 Povo (TN) Italy e-mail: ballico@science.unitn.it

Changho Keem
Department of Mathematics
Seoul National University
Seoul 151-742 South Korea
e-mail: ckeem@math.snu.ac.kr