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0. Introduction

Let be a smooth projective irreducible algebraic curve overthe field of com-
plex numbersC or a compact Riemann surface of genus . Let ( ) be the Jacobian
variety of the curve , which is a -dimensional abelian variety parameterizing all the
line bundles of given degree on . We denote by ( ) a subvariety of the Jaco-
bian variety ( ) consisting of line bundles of degree with +1 or more independent
global sections.

If > + −2, one can compute the dimension of ( ) by using the Riemann-
Roch formula, and this dimension is independent of . If≤ + − 2, the di-
mension of ( ) is known to be greater than or equal to the Brill-Noether number
ρ( ) := − ( + 1)( − + ) for any curve , and is equal toρ( ) for
general curve by theorems of Kleiman-Laksov [13] and Griffiths-Harris [7]. On the
other hand, the maximal possible dimension of ( ) for this range of , and is
−2 and the maximum is attained if and only if is hyperelliptic by a well known

theorem of H. Martens [16].
From a result of M. Coppens, G. Martens and C. Keem [4, Corollary3.3.2], it is

known that for curves of odd gonality — i.e. curves for which the minimal number
of sheets of a covering overP1 is odd — the theorem of H. Martens can be refined
significantly.
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Proposition A (Coppens, Keem and G. Martens).Let be a smooth algebraic
curve of odd gonality. Then

dim ( )≤ − 3

for ≤ − 1.

Furthermore, by a recent progress made by G. Martens [14] as well as a result of
T. Kato and C. Keem [11], it is known that if the dimension of ( )for curves
of odd gonality is near to the maximum possible value, then isof very special type
of curves.

Proposition B (G. Martens [14, Theorem 2]).Let be a smooth projective ir-
reducible curve of genus over the complex number field. Assume that the gonality of

is odd. If dim ( ) = − 3 for some ≤ − 2 and > 0 then is either trig-
onal, smooth plane sextic, birational to a plane curve of degree7 (in this case only

= 13 and = 14 occur; with a simple 4
12 = 1

5 + 2
7 or a very ample 4

12 = 1
5 + 2

7

respectively) or an extremal space curve of degree10 with a very ample 5
15 = 3

10+ 1
5.

Proposition C (T. Kato, C. Keem [11, Theorem 1]).Let be a smooth irre-
ducible projective curve of genus over the complex number field. Assume the gonal-
ity of is odd anddim ( ) = −3 −1 for some ≤ −4 and > 0. Then is
5-gonal with 10≤ ≤ 18, = 20or 7-gonal of genus21; furthermore is a smooth
plane sextic(resp. octic) in casegon( ) = 5, = 10 (resp. gon( ) = 7 = 21).

The purpose of this paper is to chase a further generalization of the above results
of G. Martens and Kato–Keem. We use standard notation for divisors, linear series,
invertible sheaves and line bundles on algebraic curves following [3]. As usual, is
an -dimensional linear series of degree on , which may be possibly incomplete.
If is a divisor on , we write| | for the associated complete linear series on .
By or we denote a canonical divisor on . If is a line bundle (or an in-
vertible sheaf) we sometimes abbreviate the notation ( ) (resp. dim ( )) by

( ) (resp. ( )) for simplicity when no confusion is likely to occur. Also, for a di-
visor on we write ( ) ( ) instead of ( O ( )), dim ( O ( )). A
base-point-free on defines a morphism :→ P onto a non-degenerate ir-
reducible (possibly singular) curve inP . If is birational onto its image ( ) the
given is called simple or birationally very ample. In case the given is not sim-
ple, let ′ be the normalization of ( ). Then there is a morphism (a non-trivial cov-
ering map) → ′ and we use the same notation for this covering map of some
degree induced by the original morphism :→ P . The gonality of which is
the minimal sheet number of a covering overP1 is denoted by gon( ). We also recall
that given a line bundle ∈ Pic( ), the Clifford index Cliff( ) of is defined by
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Cliff( ) := deg − 2( 0( )− 1), and the Clifford index Cliff( ) of is defined by

Cliff( ) := min {Cliff( ) : ∈ Pic( ) with 0( ) ≥ 2 and 1( ) ≥ 2}

We say that a line bundle contributes to the Clifford index ofif 0( ) ≥ 2 and
1( ) ≥ 2. As is well-known, the Clifford index of a smooth algebraiccurve is a mea-

surement how special a curve is in the sense of moduli. Specifically, if = gon( )
then Cliff( ) ≤ − 2 for any curve and Cliff( ) = − 2 for a general -gonal
curve; cf. [12] for more details. The result of this paper is the following theorem.

Theorem 1. Let ≥ 0 be a fixed integer and let be a smooth algebraic curve
of genus ≥ 4 +7. Suppose that the gonalitygon( ) of the curve is an odd integer.
Assume that

− 3 − ≤ dim ( )

for some ≥ 1 such that ≤ − − 3. Then

Cliff( ) ≤ 2( + 1)

In proving our result, we use standard techniques in the theory of linear series on
curves such as the Castelnuovo-Severi inequality, excess linear series argument as well
as the Accola-Griffiths-Harris theorem.

1. Proof of Theorem 1

A proof of Theorem 1 requires several preparatory results and we begin with the
following theorem due to Matelski [15]; see also [9, Corollary 1].

Lemma 2. Let be a smooth algebraic curve of genus≥ 4 + 3 ≥ 0. If
dim 1( ) = −2− for some such that +2≤ ≤ −1− , then dim 1

2 +2( ) ≥
.

For positive integers , let = [(−1)/( −1)], ε = − ( −1)−1, ε1 = − 1 −1.
We set

π( ) =
( − 1)

2
( − 1) + ε

Lemma 3 (Castelnuovo’s bound).Assume admits a base-point-free and simple
linear series . Then ≤ π( ).

Lemma 4 ([1, §7]). If admits infinite number of base-point-free simple linear
series ’s, then ≤ π( + 1 + 1).
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Lemma 5 (Excess linear series [3, VII Exercise C, page 329]).On any curve ,

dim −1( ) ≥ dim ( )− − 1

The following is a special case of the so-called Castelnuovo-Severi inequality.

Lemma 6 (Castelnuovo-Severi bound [2, Theorem 3.5]).Assume there exist two
curves 1 and 2 of genus 1 and 2, respectively, so that is a -sheeted covering
of ( = 1 2). If 1 and 2 are coprime, then

≤ ( 1− 1)( 2− 1) + 1 1 + 2 2

Lemma 7 (Extension of H. Martens’ theorem [10]).Let and be positive in-
tegers such that ≤ + − 4, ≥ 1. If

dim ( )≥ − 2 − 2≥ 0

then is either hyperelliptic, trigonal, bi-elliptic, tetragonal, a smooth plane sextic or
a double covering of a curve of genus2.

We also need the following result due to M. Coppens and G. Martens which may
be considered as a “Clifford’s theorem” for curves of odd gonality.

Lemma 8 (M. Coppens, G. Martens [5]).Let be an effective divisor on a
curve of genus and of odd gonality such thatdeg < . Then dim | | ≤
(1/3) deg .

Proof of Theorem 1. For = 0, the result holds by Proposition B if does not
belong to the following special classes of curves describedin Proposition B;
(i) a 5-gonal curve of genus = 14 with a very ample412 = 1

5 + 2
7

(ii) a 5-gonal curve of genus = 13 with a simple412 = 1
5 + 2

7

(iii) a 5-gonal extremal space curve of degree 10 and genus = 16 with a very ample
5
15 = 1

5 + 3
10.

We first argue that these curves do not satisfy dim ( ) =− 3 for any ≤ − 3
and > 0. If dim ( ) = − 3 for some ≤ − 3 with = 1 or = 2, then
must be a curve of gonality gon( )≤ 4 by Lemma 7. Therefore we now assume that
dim ( ) = − 3 for some ≤ − 3 with ≥ 3.

CASE (i): If is a 5-gonal curve of genus = 14 with a very ample412 =
1
5 + 2

7, ( ) = ∅ for any ≥ 3 and ≤ 9 by Lemma 3 (Castelnuovo genus
bound). Since = 14 and ≤ − 3, we have ≤ 3 by Lemma 8. Furthermore, it is
easy to see that dim 3

10( ) ≤ 0. Suppose otherwise. Then there exist infinitely many
3
10 ∈ 3

10( ) which must be base-point-free and simple. Therefore one can apply
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Lemma 4 to get the contradiction≤ 12. Finally, suppose that dim 3
11( ) = 2. Since

we already have dim 3
10( ) ≤ 0, it is clear that a generalL ∈ 3

11( ) is base-point-
free and hence birationally very ample. For a generalL = 3

11 ∈ 3
11( ), we consider

0( L−1⊗O (− 1
5)). If 0( L−1⊗O (− 1

5)) ≥ 4, then | L−1⊗O (− 1
5)| =

3
10 for a generalL ∈ 3

11( ), and hence dim 3
10( ) = 2, contrary to dim 3

10( ) ≤ 0.
Therefore we must have0( L−1⊗O (− 1

5)) ≤ 3 for a generalL ∈ 3
11( ). Then,

by the base-point-free pencil trick, applied to the naturalmap

0( L)⊕ 0( L) −→ 0( L ⊗O ( 1
5))

one concludes that 0( L ⊗ O(− 1
5)) ≥ 2, for a a generalL ∈ 3

11( ), which in
turn implies dim 1

6 ( ) = 2. Then by Lemma 7, we have gon( )≤ 4, which is a
contradiction.

CASE (ii): If is a 5-gonal curve of genus = 13, exactly the same argument
as in the Case (i) is still valid for this case to show that dim () � − 3 for any
≤ − 3 and > 0.

CASE (iii): Let be a 5-gonal extremal space curve of degree 10 and genus
= 16. Note that is a complete intersection of a quintic and a quadric in P3.

For ≤ 9 and ≥ 3, ( ) = ∅ by Lemma 3. For the case ( ) = (10 3),
we apply the same argument as in the case (i) above to show thatdim 3

10( ) ≤ 0.
For the case ( ) = (11 3), suppose that dim3

11( ) = 2. Since we already have
dim 3

10( ) ≤ 0, a general 3
11 must be base-point-free and simple. Then by Lemma 4

we get a contradiction ≤ 15. Let ( ) = (12 3) and assume that dim3
12( ) = 3.

For a generalL = 3
12 ∈ 3

12( ), we again consider 0( L−1 ⊗ O (− 1
5)). If

0( L−1⊗O (− 1
5)) ≥ 5, then| L−1⊗O (− 1

5)| = 4
13 for a generalL ∈ 3

12( ),
and hence dim 4

13( ) ≥ 3, a contradiction to Proposition A. Therefore we must have
0( L−1 ⊗ O (− 1

5)) ≤ 4 for a generalL ∈ 3
12( ). By applying the base-point-

free pencil trick to the natural map

0( L)⊕ 0( L) −→ 0( L ⊗O ( 1
5))

one concludes that 0( L ⊗ O(− 1
5)) ≥ 2, for a a generalL ∈ 3

12( ), which in
turn implies dim 1

7 ( ) ≥ 3. Then by Lemma 7, we have gon( )≤ 4, which is a
contradiction. Let ( ) = (12 4) and assume that dim412( ) = 0. If 4

12 is not simple,
then is either trigonal or a double cover of a curve of genus≤ 2, a contradiction.
If 4

12 is simple, then ≤ 15 by Lemma 3, again a contradiction. For the case ( ) =
(13 3), we can use an argument almost parallel to the case ( ) = (12 3) to show
that dim 3

13( ) � 4. Finally let ( ) = (13 4) and assume that dim4
13( ) = 1.

Since we already know 4
12( ) = ∅, every 4

13 ∈ 4
13( ) is base-point-free and hence

simple. Therefore one applies Lemma 4 to get the contradiction ≤ 15. In all, we
conclude that our theorem holds for = 0.

For = 1, the theorem is valid by Proposition C. Hence from now on, we may
assume that ≥ 2 and gon( )≥ 7; note that if ≥ 4 + 7, the curves in
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Proposition B and Proposition C have gon ( )≤ 5. By induction, we assume that
dim ( ) = − 3 − for some ≤ − − 3 and ≥ 1.

Let be an irreducible component of ( ) of dimension−3 − and let ( )
be the linear series associated to an element∈ . By the fact that no component of

( ) is properly contained in a component of +1( ), we may assume that ( ) is
complete for a general∈ ; cf. [3, Lemma 3.5–page 182]. By shrinking if necessary,
one may further assume that ( ) is base-point-free for a general ∈ . We first treat
the case = 1, which is relatively easy.

CLAIM 1. If = 1, then Cliff( )≤ 2( + 1)

For = 1, we set dim 1( ) = − 2− = − 3− ≥ 0; = + 1. Therefore
we have + 2≤ + 3 ≤ ≤ − 1− , where the last inequality comes from our
assumption ≤ − − 3. Hence Lemma 2 applies to get the inequality

dim 1
2( +1)+2( ) = dim 1

2 +4( ) ≥ + 1

By Lemma 5, one has dim 1
2 +3( ) ≥ − 1≥ 0 and it follows that

Cliff( ) ≤ (2 + 3)− 2 = 2 + 1≤ 2 + 2

as wanted; note that1
2 +3 ∈ 1

2 +3( ) contributes to the Clifford index of by the
genus assumption ≥ 4 +7. Therefore, for the rest of the proof, we may assume that
≥ 2 and that

(1) dim 1( ) ≤ − 4−

for any ≤ − − 3.

CLAIM 2. If ≥ 2, then ( ) is simple for a general∈ .

Assume ( ) is compounded for a general∈ . Then ( ) induces an -sheeted
covering mapπ : → ′ onto a smooth curve ′ of genus ′ with | and ≥ 2.
Then ( ) is the pull back of a base-point-free complete series/ on ′ with re-
spect toπ; i.e. ( ) =π∗( / ).

Let ′ = 0. Then ( / )− = ′ = 0 and ⊂ · 1( ). Hence one has

− 3 − ≤ dim 1( ) ≤ − 4−

where the second inequality follows from (1). Therefore (−3)( −1)≤ −1 and hence
it follows that = 2; but this is a contradiction since is non-hyperelliptic.

Next, we assume ′ > 0. By de Franchis’ theorem, we may assume that the map
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/ ( ′)
π∗

−→ is finite dominant map. Hence,

0≤ − 3 − = dim ≤ dim / ( ′)

Assume / is special. Then dim / ( ′) ≤ ( / ) − 2 by H. Martens’ theorem
[16]. Hence, we have 0≤ − 3 − = dim ≤ ( / )− 2 . Therefore it follows that
( − 1) ≤ ( + ) and ≥ 3 + . Hence we have

Cliff( ) ≤ − 2 ≤ − 1
( + )− 2

and a simple computation leads to Cliff( )≤ 2 + 2 as wanted.
Assume / is non-special. Again by de Franchis’ theorem, the map (′) =

/ ( ′)
π∗

−→ is a finite dominant map and

(2) dim / ( ′) = dim Jac( ′) = ′ = − = dim = − 3 −

We shall treat the cases = 2 and≥ 3 separately.
= 2: Since gon( ) = is odd, the morphism −→ P1 induced by a 1 does not

factor throughπ. Hence, Lemma 6 (Castelnuovo-Severi bound) gives≤ − 1 + 2 ′.
Since ≤ 2 ·gon( ′) ≤ 2 · ( ′ + 3)/2, we get ≤ 3 ′ + 2. Note that the equality (2) for

= 2 implies = 4 + 2 and ′ = + . Therefore from the assumption≤ − −3,
we have + + 3≤ ≤ 3 ′ + 2 ⇒ 4 + 2 + + 3≤ 3 ′ + 2 ⇒ ′ ≤ − 1. Hence
≤ 3( − 1) + 2, a contradiction to ≥ 4 + 7.
≥ 3: We remark thatπ∗( 1

/ − +1(
′)) ⊂ 1

− ( −1)( ). Hence by the equality (2),
we have

(3)
dimπ∗( 1

/ − +1(
′)) = dim 1

/ − +1(
′) = dim ( ′) = − 3 −
≤ dim 1

− ( −1)( )

Since − 3 − ≥ − ( − 1)− 3− for ≥ 3 and − ( − 1)≤ − − 3, the
above inequality (3) is contradictory to our assumption (1). And this finishes the proof
of Claim 2.

Since ( ) is simple for a general∈ if ≥ 2, we may apply Accola-Griffiths-
Harris theorem [8, page 73] to our current situation and we have the following in-
equality;

− 3 − ≤ dim ( )≤ dim | | ( ) ≤ 0(2 )− 3 for ∈ ( )

and it follows that

− ≤ 0(2 ) = 2 + 1− + 1(2 )
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On the other hand, by the numerical bound≤ − − 3 which we have assumed,
we see that 1(2 ) ≥ − − 1− ≥ 2 and hence the linear series|2 | contributes
to the Clifford index of . Therefore we finally have

(4) Cliff( ) ≤ Cliff(2 ) = 2 − 2 0(2 ) + 2≤ 2 − 2( − − 1) = 2( + 1)

and this finishes the proof of the theorem.

One may refine the statement in Theorem 1 for small≤ 6 as follows by look-
ing at our proof more carefully, which Takao Kato has kindly informed the authors
through Akira Ohbuchi.

Corollary 9. Let be a fixed integer with0 ≤ ≤ 6 and let be a smooth
algebraic curve of genus ≥ 4 + 7. Suppose that the gonalitygon( ) of the curve
is an odd integer. Assume that

− 3 − ≤ dim ( )

for some ≥ 1 such that ≤ − − 3. Then

Cliff( ) ≤ 2( + 1)

Furthermore the equality holds if and only if is a smooth plane curve of degree
2 + 6.

Proof. We use the same notations which we used in the proof of Theorem 1.
We first remark that everywhere in the course of the proof of Theorem 1, we indeed
had Cliff( ) ≤ 2 + 1 except for the case ≥ 2 and ( ) is simple for a general
∈ . Therefore, we assume Cliff( ) = 2 + 2 and ( ) =| | is simple for a general
∈ and ≥ 2. Hence by the inequality (4), Cliff(2 ) = Cliff( ) = 2 + 2. We now

distinguish two cases.
(i) 2 ≤ − 1: By [5, Theorem C] which provides an upper bound of the degree of
a complete linear seriesD such that Cliff( ) = Cliff(D), we have 2 ≤ 4 + 8. On the
other hand

2 + 2 = Cliff( ) ≤ Cliff( ) = − 2 ≤ 2 + 4− 2

and it follows that ≤ 1, contrary to our assumption≥ 2.
(ii) 2 ≥ − 1: Note that| − 2 | = − −2−

2 −2−2 since Cliff( − 2 ) = Cliff(2 ).
We again apply [5, Theorem C] to the linear series| − 2 |; ′ = deg| − 2 | =
2 − 2− 2 ≤ 4 + 8 and hence

′ = dim | − 2 | ≤ + 3
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We now briefly recall the so-called Clifford dimension of a smooth algebraic curve ,
denoted by Cliffdim( ), which is defined to be the minimum possible dimension (D)
of a complete linear seriesD such that Cliff( ) = Cliff(D) andD contributes to the
Clifford index of ; cf. [6, page 174]. By ′ ≤ + 3 and by our numerical hypothesis
≤ 6, we have

Cliffdim( ) ≤ ′ ≤ + 3≤ 9

which in turn implies Cliffdim( ) = 1 or 2 by the last statementin [6, page 203],
which asserts in particular that for 3≤ ≤ 9 a curve of Clifford dimension is of
even gonality. The case Cliff dim( ) = 1 cannot occur; if then gon( ) = 2 +4 and is
of even gonality. Therefore Cliffdim( ) = 2 and by a simple fact that a complete linear
seriesD with dim(D) = Cliffdim( ) ≥ 2 is very ample [6, Lemma 1.1, page 177], we
deduce that is a smooth plane curve of degree 2 + 6.
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