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1. Introduction

In the present paper we study necessary conditions for thepagedness of the
Cauchy problem for hyperbolic systems of arbitrary ordethwnultiple characteristics.

In the scalar case the seminal paper of Ivrii and Petkov [@ $laown that the
correctness of the Cauchy problem implies that for a givepehyolic differential op-
erator, near a multiple characteristic point, a set of J@ng conditions on the homo-
geneous parts of the lower order terms must be satisfied.

Evidently in the case of hyperbolic differential systems 8ituation is more com-
plex, the vector structure playing a relevant role. As a egnence the above men-
tioned result may not be true any more as we shall see in som@apgs in the sec-
ond section of the paper.

Before stating our main result we would like to recall, as ativation, some re-
sults in the case of hyperbolic systems already existindhénliterature.

Let us introduce the notation and the definition of well-gbsess for a differen-
tial equation (system of differential equations). We wankain open subse®  d@&"*,
with coordinatesx =xp, x1, ..., x,) = (xo, x’), and assume that the origin belongs to
Qlet Q' ={xeQ|xo<t}, ={xc€Q|x0>t}

Derinimion 1.1, The Cauchy problem for a differential systdtnx, p ) is said t
be well-posed inQ" Q, , respectively) if
i) For every f € (C§°(R))" there is au € (£/(R))" such thatP £, D ) =f inQ'
(%2;, respectively). Heregv  denotes the size of the system.
i) For everyu € (5/(52))N with P(x, D)u =0 in Q' (,, respectively) we have =0
in Q" ().

In [7] Nishitani proved that if the system has real analytaefficients defined ir2

and the Cauchy problem is well-posed 2 afyd for every smaépendently
of the lower order terms (i.eP  is strongly hyperbolic) théwe tofactor matrix of the
principal symbol of P vanishes of order— 2 at a characteristic point of multiplicity
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r. In [7] as well as in the other papers quoted hé&e is assumdxt ta first order
differential system.

On the other hand in [8] it has been proved under some conditom/ , where
h = detP; is the (operator whose principal symbol is the) determiradnthe principal
symbol of P, that if there exists a pseudodifferential opmra¥ (x, D), of orderN —1,
whose principal symbol is the cofactor matrix 8f, such that

PM=hly+Hy_1+---+Hy_;+---

where Hy_;(x, £) vanishes at a characteristic point of multiplicity =~ of orde— 2,
then the Cauchy problem faP  is well-posed.

For the non-strongly hyperbolic case, in [2] it is supposkdt tthe rank of the
principal symbol of P at a given characteristic point is maafjri.e. N —1. Then it is
proved that a certain differential polynomial of ordd  mgstisfy the well known
Ivrii-Petkov conditions if the Cauchy problem fdt is cotlgcposed. In [1] a more
precise Levi condition is found for a more particular case.

We point out that the rank of the principal symbol 8f at a cheeastic point
plays a crucial role and that its maximality allows evergthito come down to the
scalar case.

Our purpose here is to study a truly vectorial case and, whessilple, to drop
the assumption about the rank of the principal symbol. Maggofrom what has been
said above, it is clear that there is a strong connection dewirst order systems and
higher order systems possibly of reduced size.

ACKNOWLEDGEMENTS  This paper was written while the first author was staying
at the Department of Mathematics of Osaka University. He @&l db seize this oppor-
tunity to thank both faculty and staff for a pleasant and stating year.

2. Notation and Statement of the Result

Let m, r, N be positive integers; < m andQ an open subset &"*! containing
the origin. We denote by’ x( D ) a differential operator of oraer ithwcoefficients
in C>°(2, My(C)), the space of allv x N matrices depending smoothly on the vari-
able x € Q. We shall also write

(21) P(x’D):Pm(x7D)+mel(-x7D)+"'+P0(x)’

where P,,_;(x, D) is the homogeneous part of order— j. We shall always assume
that

(2.2) P is hyperbolic

i.e. the polynomiali £, &, &) = detP, (x, &, &') has only real roots with respect to
the variablegp.
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We are interested in the well-posedness of the Cauchy profide P in the sense
of Definition 1.1. Without loss of generality we may think ththe hyperplane{xo =
0} is non characteristic foP , i.e. it is non characteristic forThe following defini-
tion will be useful in the sequel:

Derinimion 2.1, Let f (, &) be a smooth function defined a2\ 0 and assume
that at a pointp € 7*Q\ 0, f vanishes of finite order. Then bfj, we denote the first
non vanishing term in the Taylor expansion pf  arouynd

flo+A"192) =A™ [f,(02) + O\ ™)

so that f, is a homogeneous polynomial of degree , wharis a large positive pa-
rameter andiz € T*R"*2,

We are now ready to state our result. et T*Q\ 0 be a characteristic point of
P,, of multiplicity r. For sake of simplicity we shall assume that (0, ¢,). Then we
have

Theorem 2.1. Let P be as in(2.1) and p = (0, ¢,) be a characteristic point of
P,, such thatd’P,,(0,e,) =0for j =0,1 ..., r — 1. Denote bys; the degree of the
homogeneous polynomid,,_; o) j =1, ...,[r/2]. Assume that
i) There exists at least onge {1, ...,[r/2]} for whichs; <r —2j. Define then

. j o
23 0 = min ’ P k) = P —7 B .
23) 0 Je{l..[r/2} ¥ — (x.€) Z m—7,(0,e)(*5 €)
§;j<r—2j m—ro=m—j—s;6o

sj<r when j>0

ii) The polynomialéy — deth(x,fo, &) has non real roots at least one of which
has multiplicity at mos8.
Then the Cauchy problem fa?  is not well-posed.

Let us now look at an example in which Theorem 2.1 can be appker the
sake of simplicity we consider a case of matrix dimension @&, this can be easily
generalized. Consider the following first order differahtsystem

(2.4) Li(x, D)u+ B(x)u = f,
where L1 denotes the first order matrix operator

Do — ai(x0) D, D, 0
Ll(x, D) = 0 DO — az(xo)Dn D,,
0 0 Do — a3z(xo) D,
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DO - a4(xO)Dn Dn 0
(25) (&) 0 Do - a5(xo)Dn Dn
0 0 Do — ag(x0) Dy,

where we assume; (0) = 0,4 i < 6. Here B is a smooth & 6 matrix valued
function defined in a neighborhood of, say, the origin in theariable. Let us look
at the characteristic point (8, ) and denote by(x, &) = (/;;(x, £)) the symbol of the
principal part. LetM £, &) = (m;;(x, £)) be the cofactor matrix oL1(x, ). Define

0 0 0
My(x,€) = |0 —(Dyyma)é, —(Dym13)&,
0 0 —(Dxom23)&,  + loao(Dyyma3)§, 2
0 0 0
® |0 —(Dyymas)éyt —(Dyymag)é;t
0 0 —(Dxomsge)&, * + Iss(Dxomag)§, 2
and
00 0 00 0
00 0 00 0
Ms(x, &) = D

0 0 (DZm13)6, 2 0 0 (DZ mae)é, 2
Note thatM,(x, £) vanishes of order 2 at (@, ). We now study

P(x, D) = (L1(x, D) + B(x))(M(x, D) + Ma(x, D) + Ms(x, D))
= h(x, D)Ig + Hs(x, D) + H4(x, D) + H3(x, D)

where H; {, £) is of homogeneous of ordegr if1 It is easy to see that
Hs(x,¢&) = B(x)]l7l(x, £), Hyx,8)=0
modulo terms vanishing of order 4 and 2 at£) ) respectivelgrh
B 00« 00p
M(x,§)=|000|® |000
000 000

with

6 3
a =]t —ax)&), B=]] —alxo)).

i=4 i=1



NECESSARY CONDITIONS FOR HYPERBOLIC SYSTEMS 153
Then with 6y = 1/3 we have
P(x,€) = h(x. &)Is+ BO)M(x, €)
whereh(x, €) = h(,,)(x, £) and
B 004] [005
M(x,8) =Mpeyx,6)=|000{®|000
000 000
with
6 R 3
& =[] —aiOxo). 3 =]](& — ai(O)xo).
i=4 i=1
Thus it follows that

h + ab31(0) (3b34(0)

. A PN 74
detP = det(ils + B(O)M) = h abe1(0) R+ Bbea(0) |

Sinced3 = h this gives

~ 5| G+b31(0)  b3a0)| _ rsa
detp = 75| P00 = /5.
ber(0) G +bes(0)| " E

Taking xo = 0, it is clear that
(2.6) g = €8+ (tr K)&S + detk
where

b31(0) b34(0)}
be1(0) bea(0)]

If K is not nilpotent theng = 0 has a non real root of multiplicity at most 2. Then by
Theorem 2.1 the nilpotency af  is necessary in order that thecBy problem forP
is well posed. SinceM M4+ M3 is upper triangular and hence the Cauchy problem
for M + M, + M3 is well posed (microlocally near (@, )) the nilpotency &f is@l
necessary for the well posedness of the Cauchy problem éptiginal L, + B.

On the other hand, if the first and the fourth columnshfc ( ) shnnear the
origin and 4/(0) are different from each other then the Cauchy problem Horand
hence forL, + B is well posed which follows from Theorem 1.2 in [8].
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3. Inductive Lemmas

The method of proof is just to construct an asymptotic sotutio the equation
Pu = 0 depending on a large parameterand violating an a priori estimate (Proposi-
tion 3.1 below) which follows from

3.1 lullcok) < C|| Pul

Cr(K)s

where C > 0 is a suitable constant ankl € @ is a compact set containing the origin
andu € (Cg"(K))N. The estimate (3.1) is deduced if the Cauchy problem Hor is
well-posed (see e.g. [6] and [3]).

Let now 6y be defined by (2.3). Due to assumption i) in the statement eofidm
2.1, we obtain that

1
(3-2) 90 < 5
Define
(33) oo =1— 26y.

Let us compute

m

(34)  P\(x,D) =Y Pu_j (A "x, e, +\?D)

o

-~

NP, (A %x, e, + A"%7°D)

M- 10

I
o

Z /\mfjfsj-GokaO

>0
In7j7Sj007k00>7M

1 o o a _
X Z MP'E'*)J'W) (o en)xﬂ (/\ OD) +0 (/\ M) ’

|a+B]=sj+k

J

where M is an arbitrarily large positive integer and ByA—{') we denoted a differ-

ential operator whose coefficients are boundedXoy’ on any bounded preassigned
open setU inR"*!, Here we note that the a priori estimate (3.1) implies an arpri
estimate forP, (see Proposition 2.2 in [7]).

Proposition 3.1. Assume tha® € Q and the Cauchy problem foP(x, D) is
well posed in both2’ and2, for every small . Then for every compatW C R"**
and for every positivdl’ > 0 we can findC > 0, A > 0 and p € N such that

e[ cogwry < CA® | Pyl

cr(w,
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ulleoqwy < CACDP| Pyullcrw,
for everyu € Cg°(W), A > A, lt] < T.

We point out explicitly that the sum in the above formula }3i4 a finite

sum sincefy > 0. Moreover the terms obtained when = 0 correspond to
Pm_j’ (o’gn)(x, /\_JOD).
Let

(3.5) G(O)(x, &) = Z Z \—J+r—s7)0o—k6o
j=0

>0
m7j7Sj007k00>7M

1
() Bea
X Z Il Pu—j (30, en)x"¢

|a+pB|=s;+k
then it is clear that
Py(x, D) = X" %GO, A= D; \) + O\~ M).

It is useful to rewriteGO(x, £; \) in the following way

(3.6) GO@, &) =Y A ENGO(x, o),
j=0

where

(3.7) 0=6(G?) < 51(GP) < --- < 6,(GO) < -~

and it is understood that the sum in (3.6) is finite. Furtheamfoom (3.5) we obtain

(3.8) GO )= D Pusj en(x.9)
Jj=0, s;<r
jf(rfs,-)é’o:O

and that all thes;(G®) are multiples of the same rational numbgr As a conse-
quenced1(G®) > 6, and we may find a positive integér (0) such that 6, and
5j(é(°)), for j > 0, can be expressed as fractions whose denominatér is (0) and
whose numerator is a non-negative integer.

Derinimion 3.1, We say that a differential operatdét x, @ )\); depending on a
large positive paramentek is in the classRy if there exists a positive rational
numberx and differential operator®; x(D ) whose coefficients areCit? (U), j =
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0,1...,L, for someL € N, such that

L
P(x,D;)\) => A" Pi(x, D).
j=0

Our next step is to prove the following general purpose lemma

Lemma 3.1. Let G(x, D) be a differential operator with smooth coefficients de-
fined inU and leto, 0 be rational numbers witlr > 6 > 0. Denote byyp(x) a func-
tion in C*°(U). Then
) e NPWG(x, A7 D)ei N P0) = Glx, \CD (o (x) + AT D)) + A" (x, \"UD; \),
wherer € Ry.

i) If G(x,& = 0(¢]7) as |¢] — 0, uniformly with respect toc , for some positive
integer ¢ , then

(3.9) ¢ NPWG(x, \=7 D)X ¢
=G, AN o, (x) + ATID)) + AT D900 (x A" D; N),

where againr € Ry.

Remark 3.1. It is important to remark that in the notation above thardity
G(x, A= (p.(x) + A~? D)) does not contain the terms in which the derivatives land
on ¢.(x), as will be clear from the proof; those terms are pushed thé “error” term
r and thusG £, A== 9(¢,(x) + A=? D)) is to be thought of as a commutative expres-
sion.

Proof. Denote bypo(x, y) = p(y) — ¢(x) — (y — x, ©x(x)). Then, ifu (x) denotes
a smooth function,

e*i’\e“’(x)G(x, )\*UD)e")‘g“”(x)u(x)
1 —0 —0o «a i e X,y
> GO AT ()ATTD,) [N ()]

a>0 ly=s

= 30 26 AT (AT D )
a>0

1
+3° 26O, Ay, (1))
a>0 a!

A(x, D; \)

X Z <;> {(/\70D)-)ﬁeiA%Z(x’y)(AfUD)')aiﬁu(y)]
2<|B|< ]

[y=x

The first sum is “by definition” what has been callédx, £~ =9 (¢,(x)+A~? D)) (see
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the remark above). Let us take a closer look at the second Bum.to the vanishing
of pa(x, )., and of Vypo(x, y), ., the quantity D¢’ 2250, is a polynomial in
the variable\? of degree less than or equal tg3[/2]. Factoring out\?(#l/2) we ob-
tain a polynomial of the same degree in the variabf¢. Thus the second sum above
can be rewritten as

1
Z G(a)(x A —(o— 9)<p (X)A~ (0—0)|c]

a0
Z )\—9|a|+9(|[3|/2)paﬁ’¢(x;)\—G)Da—ﬂu(x)
2<1B|<] ]
= Z G(a)(x A0 ()N Dlel
a0
[lal/2]
Y NN Papoe AT D) ux).
v=1 |8|=2v

Since G is a fixed differential operator we may assume that @] < M, for some
M. Then the above quantity can be rewritten as

M [k/2] 1
A79 Z Af(afe)k Z aG(a)(x’ Af(afﬂ)cpx(x))
k=0 v=1 |a|=k
S AP, 5 AN D) Pu(x).
|Bl=2v

Hence the second term can be rewritten as

M [k/2]
@ ATIDIN), DN =D bi(x, D),

k=0 v=1

where

1
b, Di) = A0S =GO, AT g ()
la|=k
C Y AP, (s A DO P
|8l=2

hencer € Ry. The first assertion of the lemma is proved.

Let us now turn to the second part. It is obvious that nothighanged in the
first term, so that all we have to do is just look at the second.sNow two cases
may occur:
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a) k> gq. Then trivially

A—(U—e)k < )\—(0—0)(1‘
b) k < g¢. In that case our assumption implies that
GO (x, ) =o€ 1N = 0(lg[*™)

and henceG @ (x, A==y (x)) = O(A~e—Da—h),
Plugging this information into the expression far, we have

bry(x, D; ) = X" Dp (x, D; \),

where, againl?k,y € Ry. This concludes the proof of the lemma. O

In order to prove Theorem 2.1 we prove first a more generaldiiki lemma in
the following subsections.
From the assumption we may start off assuming that (see ajsatidn (2.3))

(3.10) So— det@f)o)(x, &, &) has a non real root of multiplicityo, i.e.
(3.11)  detG{(x, &) = (€0 — Tolx, )P Ao(x, &), Aolx, Tolx, £), &) #0

in some open sel/ x V in R x RE . In the sequelU and’ stands for an open set
in R and inR” respectively which may differ from line to line but the sugsent
one will be contained in the preceding one.

Denote byyx©(x) a complex-valued smooth (i.e. real analytic) functiontinsuch
that

(3.12) Dry 0O (x) = T0(x, e pO(x)).

Then

(3.13) & N UWGO(x, A0 p; N)e AW
= GOx, pO(x) + A=7°D; \) + A~ RO(x, A\=7°D; )),
where R© is a symbol in the clas®, .
In order to construct an asymptotic solution for tNex N matrix-valued operator

GO®x, \=7°D; \) we first prove a general inductive lemma enabling us to coost
the phase functions required.

Lemma 3.2 (First inductive step). Leto,, 0, € Q*, r, < N, ¢P)(x) be a smooth
function defined iU and consider thg x r, matrix-valued differential operator

(3.14) GP(x, o) (x) + X777 D; \) + A" RW (x, A7 D; \)
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where R?) € Ry and

. ~ _ 5GP =
i) GO (x, & 0) =D A CIGV (x, ¢,
j>0
the sum being finite and;S.”)denoting differential operators with real analytic coeffi-
cients. Furthermore

0= 50((”;(12)) < 51((”;(17)) < e

(3.15) .
and §;(G®) e Q*, j>1

i) detG{(x, €) = (€0 — 7p(x, NP Ap(x, ), Aplx, Tp(x, &), &) #0
in some open sel/ x V in Ry x RY,.

i) , The functionp?)(x), defined inU , satisfies the eikonal equation

(3.16) Do ? P (x) = 7, (x, B P (x)).
V) p
(3.17) rankGP (x, 0P (x)) = rp — rps1

in U for a suitable positive integer,+1 < r),.
v), There exists a positive integé(p) such that

0p,0,,0;(GP), j > 1, belong to%

(i.e. are positive rational numbers with the same denomma(p)).
Then we can find a1 x r,+1 matrix-valued differential operator

(3.18) FP)(x, \"77D; \)
such that
_§A(FWP
(3.19) FO(x, & 0) = > A~ FP(x ),
j>0

the sum being finite and

0 =0g(FP) < 51 (F?)) < - -

(3.20) and 0;(F"») € Q*, j>1.

N
(3.21) 0,0, 0, (FP), j > 1, belong to——
pr K (p)
for a suitable positive integek’(p).

(3.22) FP(x,0) =0,
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(3.23) detF{" (x, \=7r€) = detGP) (x, P (x) + A=7r€) + O (A~ M,

E(x, A790¢)

where M is an arbitrarily large positive integer antj, > 0, suitable andE(x, £) is an
elliptic symbol. Moreover the construction of an asymptaolution for the operator
(3.14)is reduced to the construction of an asymptotic solutiontfa operator(3.18)

3.1. Rank reduction Set
(3.1.1) GP(x, &0 = GP(x, oP(x) + & A) + A7 RV (x, &; \).
Then G?) can be written as a finite sum of differential operators:

, W 5GP _
(3.1.2) G(I)(x, &N = Z/\ 6;(G )Gﬁp)(x, I35

j>0

we remark that in the above (finite) sum

(3.1.3) 5o(GP) = 5o(G'P) = 0,
(3.1.4) GP(x,8) =GP (x, o) +¢).

Due to Assumption v) and Definition 3.1 it is then obvious ti#g{ o, and the
§;(GP), j > 1, satisfy a condition of the same type as, v) , with possiblyifterd
entk (p). For our present purpose we shall continue to dendentw number by the
same symbol.

By (3.17) we have

(3.1.5) rankGP (x, 0) = rp — rpe1.

Thus we can find two non singular smooth matricks, x (),x (), edfim U, such
that

—
(3.1.6) M,(x)GY (x, ON, (x) = |,
0 0
where I, ,,., denotes ther(, — 1) X (r, — rp+1) identity matrix. Now we set
(3.1.7) GP(x, \"77D; \) = M,(x)G"(x, \=7" D; \)N,(x)
= Y A UENG ( A—or D),
Jj>0

We point out that theS;(G?), j > 1, satisfy the same assumption,v) as $heG®),
j > 1, do, even though they are not the same, due to the followengria whose
proof is straightforward.
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Lemma 3.1.1. Let

A(, A7°D;N) = > AW A (x, A7 D)
j=0

and

B(x,A"°D;)) = > A "®)IB(x, A7 D)
>0
be operators of the fornf3.1.2) Then
(Ao B)(x, A7D;\) = > A~OC;(x, A7 D),
j>0
where §;(C) = 6;(A) + 6;(B) + ko for suitablei ,/ andk .
Since M, andN, are non singular matrices then the constructioanofsymp-

totic solution for G(P)(x, A=?»D; \) is equivalent to the construction of an asymptotic
solution for G®)(x, A\=?»D; \) and moreover we have that

(3.1.8) G (x, ) = M,(x)GP(x, N, (x)
so that
A I"p_"p+1 0
(3.1.9) GP(x,0) =
0 |o

Here G)(x, &; \) has the same properties &) (x, £; \) where (3.1.5) has to be re-
placed by (3.1.9).

From now on we switch back to thé(”) notation, dropping the hat sign. Let us
write G in block form:

G (x, A\=7rD; \) GB)(x, \=77D; \)
(3.1.10) GP(x,\"7"D;\) = ,
GH(x, A= D; N) GE(x, \=7rD; )

where the blocks have the same size as those in the blockigrani (3.1.9). We have
_5:(GWP
D oATENGE (v, )

j>0

-3 A G B0 g)

Jj=>0
1 - BW(x, &)

(3.1.11) GH(x. &N
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where Bj(.”)(x, &) are ¢, —rp+1) x (r, — rp+1) Matrices and

(3.1.12) BY(x,0)=0
Define
M k
(3.1.13) RO, A= D;N) = > (BV(x, A= D; V)
k=0

where M is a positive integer that, in the sequel, will be chossitably large. We
may then write

(3.1.14) RO, A= D; ) = Y A~ IRIRD (x, \=7r D),
j>0

where the sum is a finite sum whose number of terms dependd ond, usimg again
Lemma 3.1.1, thaSj(R(P)), Jj > 1, are an increasing sequence of rational numbers
whose denominator is the same, ikep ( ). From (3.1.13) weirolbiteat
D (x A= D \NYR® (x. \=7 D \) = P (x. x=or p: \)) M
(3.1.15) G (x, \"7"D; R (x, A" D; ) =1 — (B (x, \"77D; \)) " .

We want to show tha(B(f’)(x, A9 D; )\))M+l becomes negligible providesf  is cho-
sen large enough.

Lemma 3.1.2. Let B(? be defined as irf3.1.11) Then
0o <[ B (x, A= D; )] M”) = 0\~ M+D5).

where 6% = min{o,, 01(G)} > 0 and o(-) denotes the symbol of a given differential
operator.

Proof. Since

M+1
(3.1.16) (BP(x, A\ Dy )" = S AEM B A= D)
j>0
= Y AT @ P = p).. B (x, A7 D)
o1 >0

we can easily compute (a derivative of) its symbol:
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agg ((B(P)(x, A9 D; )\))M+1)

) Z Z Z Ca A\~ M5, (GP)

Jiseeenjm+1>0 S}inuaMZO [yal+ -+ ymal=]v]
2o 1Bk =l
J=L.M

i agaﬁ'nBj(_lp)(x’ A"rE) - a?M‘L'WDfWJ'"'WM*WBJ(.Z)(x, ATE)
. agMﬂD),CBlMﬂ*'"'+BMM+1B(P) (x, A7908).

JM+1

Now remark that ifj, # 0 thend;,(G)) > 6,(G?P) by definition. Moreover, because
of (3.1.12), if j, = 0 we collect a contribution of sizé A(°r) from that factor, no

matter how many derivatives are landing on it. Thus, in a geneummand in the

above formula, let. =#{j; | j; > O} then

M+1
> 5GP = Y 6(GW) = Lay(GY)).
=1 Ji170

On the other hand, again no matter how many derivatives lanthem, the terms cor-
responding toj, =0 yield a contribution of sizg¢ A (M*1~17). Since

L&y(GP)+ (M +1— L)o, > (M +1)5,
we have proved the assertion. Ul
Remark 3.1.1. From the above proof we can also deduce that
_ M+l _
070 ((BP(x, A% 0)"™) = 0 (A-012)
where 0< 0 < min{a,, 51(G")}.

Now define

I =RV (x, \=»D; )G (x, \=77 D; \)
(3.1.17) AP(x, A\ "D;)\) =
0 I

in block form notation, the blocks corresponding to thoseEiquation (3.1.10). We
have

(3.1.18) G (x, \=77 D; \)AP) (x, \=77 D; \)

GRx A7 DN) (1= GHRW) (x, A=o» D NG (v, A~ D; )

GHE DN (GH - GHRVGY) (r A= D;N)
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and define

(3119  FO DY) = (GF - GHRVGY) (x, A= Di ).
Furthermore we have that

(1 - G(ﬁ)R(P)) (., A7 D; NGB (x, A7 D; \)

)M+

= (BO(x, A7 D; ) G (x, A7 D; ).

Here S 1) (x, \=2»D; \) stands forS®(x, \=7»D; TP (x, \=?»D; \). The proof
of the following proposition is then a straightforward ceqaence of Lemma 3.1.2.

Proposition 3.1.1. The (1, 2)}-block of the matrix in(3.1.18) as a differential op-
erator, is O(A\~™M*D%) |n particular if M is chosen suitably large, sinca® is non
singular, the construction of an asymptotic solution foe #j xr, matrix of differential
operators G\")(x, \—?» D; \) reduces to the construction of an asymptotic solution for
the r,+1 x rp+1 matrix of differential operatorsF”)(x, A=» D; \), defined in(3.1.19)

We write

(3.1.20) FO(x, A= D; ) = Y A IFDEP(x, A= D),
j=0

We still have to prove (3.20)—(3.23).

First remark that (3.22) is immediate because of the cocsdi of F(»), From
(3.1.19) we may analyze the sequer(ég(F(P)))jM, 5o(F®)) being 0. Using the proof
of Lemma 3.1.2 we can see that the exponé@fﬁ”(”)) are obtained summing a num-
ber of 5j(G(1’)) to integer multiples ofc,. This proves (3.20), (3.21), because the
sequence(éj(G(P)))j>1 satisfies assumption y) . Due to Lemma 3.1.2 we can see
that the (operator-valued) matrix in (3.1.18) is lower igalar modulo terms that are
O\~ ™M*%) and therefore

(3.1.21) FP(x,€) = G (x, ) — G x, ORP (x, G o(x,€)
(3.1.22) detF{" (x, \=77¢)
_ 1
detGY) ox, A=7r€)

detG{(x, A-77¢) + 0 (A1)

This proves (3.23), since dét} (x,0) # 0.

3.2. End of the inductive step The purpose of this section is to complete, un-
der an additional technical assumption, the inductive stbpse first part is Lemma
3.2.
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Let us consider the operatd?(?) as given by (3.1.20), defined i , and denote
by sj(”) the vanishing order with respect to the varialjleas || — O of F}p), Jj =

0,1...

(3.2.1) FO (e, A0) = A0 [ﬁj@”(x, o+ 0(/\’9)} ,

where@ is any positive real number. He@}”) IS anr,+1 x rp+1 Matrix valued homo-
geneous polynomial in the variableof degrees!”). Define

(3.2.2) 0p+1= min {M 0 }

j>1 S(P) o s(]’) > P
Sﬁp)<séﬂ) J

so that, in particularg,+1 < 6,, and let
(323) Op+1 = Op — 0p+]_.

For our present purpose we shall assume that > 0. If 0,41 < 0 we make a dif-
ferent argument in the following.

Let now o*1(x) be a real analytic function defined in some open et ; in the
following we shall precise this function. Applying Lemmal3wve compute

_i\Tp+l ,(p*D), _ i\ p+l ,(P*])
e iIN Ty (X)F(I?)(x’ A UI,D;)\)EH\ P (x)

_§:(FWP D —0,. — O
= S ATIED EP e, A0 (x) + A7 D))

iz0

30 A s o ROy~ ),
J
j>0

where I?ﬁpﬂ) € Ry. Defining GP*D(x, £; \) and R®*D(x, &; \) by

(p)

FO (e, A0, 0) = A0 GU(x, €:0)

=0, (p) s (F(prL)y ~, 1
(3.2.4) = A0 N AETNGE Yy, ¢),
j=0
SOATED O RV g 0) = A0 RUD e, 65 ),
j=0

the right-hand side of the above equality can be written as

(32.5) A~ [GO (P D(x) + A= D) + A7 RPD(x, A~ D; )]

- )\70]7‘*13[()1)) Z )\751-(('“;(17+1))Gs.p+1)(x’ SDscpﬁl_)(x) + )\70‘,,+1D)

j>0
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+ )\70,,+1R(p+l)(x’ /\70,;+1D; /\)

We want to show that, provided an additional assumption islenaghe operator
Gr*D satisfies the conditions j),—V),.; of Lemma 3.2, thus enabling us to start over
again the induction process.

i) p+1 is obvious. By definitiond,.; is a positive rational number and so d$.1,
therefore also v),, is satisfied. From (3.2.4) we obtain

p*

- )
(3.26) GPw o= 3w,
01’*'13(()’)) :9],+1s§l))+5j (F(p))
S;h) <Sép) if >0

each ﬁ‘}”) being homogeneous of degre}f) with respect to the variablé.
We make the following assumption:

(3.2.7) qp, = rp+1s(()p).

From (3.1.22) and Remark 3.1.1 we have

1
detGY) ox, A~0¢)

(3.2.8) detF(()p)(x, )\705) = detGE{’)(x, )\795) + O()\f(M+1)0)

for a suitable® > 0. But
FO A7) =237 [FP, 9+ 007
so that

(3:2.9) detGP (x, A7¢) = detG¥) o(x, A\ PN [detﬁép)(x,g) + O(A*G)}
+ o\ (M)

= A7 [E,(x) + 0] [detF(x, ) + 0
+ O (AL,

On the other hand

(3.2.10) detG{ (x, A\~%¢)

cp(x) detGP) (x, 0P (x) + A=)

. 1/ @ o
A0, (x) 0 = (detGl) T (r P + oA ),

lerl=ap
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where ¢, denotes a non zero smooth function defined/in . Thus {@&9) and
(3.2.10) we obtain

(3211)  detFP(x,9)=cp(x) %(detégp))(a) (x, oD (x))E.

la|=g,

The above relation allows us to conclude that:

a) The right-hand side of (3.2.11) is a non characteristityrmonial with respect
to the variabley with real analytic coefficients. Then one can find a real amaly
Tp+1(x, &) defined inU x V such that

detégpﬂ)(x, €) = (§o — Tpralx, £)) A pra(x, §),

(3.2.12)
A17+Z|.(x’ 7-p+1(-x7 fl)’ fl) _T/ 0

whereg,+1 < gp.
b) We can find a real analytic function”*Y)(x), defined inU such that

(3.2.13) Dy ? P (x) = Thaa(x, O P I(x)).
c) There exists a non negative integgi, such that
(3.2.14) rankG Y V(x, 0P (x)) = rpe1 — rpea

in U.
These statements easily imply conditions,jj}-iv),,.;. Thus far we proved the follow-
ing

Lemma 3.2.1 (Second half of the induction step)Let F(P)(x,&;\) be as in
Lemma 3.2and assume that hypothegi3.2.7) holds. Then we can find a positive ra-
tional numberf,.; < 6, with 0.1 =0, — 0,41 > 0, a real analytic functionp(P*I(x)
defined inU andr,+1 x rp+1 matrix valued differential operatori;(P"l)(x,D;/\),
RP*D(x, D; \) with R?*D ¢ Ry, such that the construction of an asymptotic solution
for the operator(3.18) is reduced to the construction of an asymptotic solution for

(3.2.15) G I(x, P D(x) + AT71D; A) + AOr RWHD(x AT7m1D; ).
Furthermore conditions) ,,—V),.; hold.

As a consequence of Lemma 3.2 and Lemma 3.2.1 we can statelkbhwirig

Lemma 3.2.2. Assume(3.2.7) holds. Then the construction of an asymptotic so-
lution for (3.14) verifying i) ,—V),, is reduced to the construction of an asymptotic so-
lution for (3.2.15) verifying i) ,+1—V) ,+1-
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4, Proof of Theorem 2.1

4.1. The casegp < 2 This section is devoted to the proof of Theorem 2.1. We
start our argument in the cagg < 2 and in the next subsection we show how to
modify it to prove Theorem 2.1 in the cagg = 3.

By (3.11), (3.12) and (3.13) we may start our induction pssceith G©, oo, 6o
and apply Lemma 3.2.2.

We point out explicitly here that (3.2.7) is not assumed tddhdiowever by
(3.2.12) for eachp eitheg, =2 of =1 ang, > r,,+1s(()’7) in general. This im-
plies that ifg, =1 necessarily,+1 = s§’> =1, i.e. we are in a scalar case and (3.2.7)
is verified.

If the former case holds, i.e. f, = 2, then eithgy; = 2 and (3.2.7) holds or

rp+1 = 1. But in this case we are again in a scalar case and it caruooir ¢hen that

q, > rp+1s(()”).

Summing up ifg, < 2 then necessarily (3.2.7) holds true. Next we show that the
induction process for computing the phase function endar diftitely many steps.

Proposition 4.1.1. Under the assumptions ofheorem 2.1the iteration proce-
dure of Lemma 3.2.2occurs only a finite number of times before reaching a point
where

P+l
(4.1.1) op1=00— Y 0; <0
i=1

for a suitable integerp.
In order to prove Proposition 4.1.1 we need a preliminaryntem
Lemma 4.1.1. Assume that there existsac N such that

qﬁ:q;"'l:...:q?

rp =Trps1=-" =T
Under the hypotheses dtheorem 2.1there exists & = k(p) such that
(4.1.2) 0p,0,,0;,(GP), j >1, belong tog
for every p > p.
Proof. By (3.2.12) we havg < 2. Let us start considering the cage = 2. If

g =1 the argument is of the same kind and easier.
By what has been said abovedf =2 then eithg’r) =lorr =1
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i) s = 1. The fact thatg,«1 = ¢, implies that there are no roots of the equa-
tion detf;(()’”l)(x,g) = 0 with respect tog, with uniform multiplicity less thang, .
f;(”+l)(x,§) is given by (3.2.6). Two cases may occur: either the sum i2.§3 has
F{") as the only summand or there are also other summands. In therffcase we
have thatf,+1s < 9,,+1s§.p) +§,;(F®), for every j > 1, which implies, ifsff’) < s,
that

5;(F)
2 1< A S
p* s(()p) _ S;_p)

or, because of (3.2.2),
(4.1.3) Ops1 = 0.

Assume now that there are terms other th%ﬁ), corresponding tgi > 0, in the sum
in (3.2.6). Sincesé”) =1 the condition defining the sum implies that

(4.1.4) S1(FP)Y =611

i) r = 1. We are then in a scalar case. Again considering the sur(8.2.6) we
conclude (4.1.3) ifﬁé”) is the only summand. Let us assume that there are also other
summands different frond?”.

Now sg’) =g and the assumption of the lemma implies that there js>al such that

(4.1.5) 5;(FP)) =0,
because of the following lemma.

Lemma 4.1.2. Let f;(x,{) be homogeneous polynomials with respect to the
variable {of degreeq; 0=¢o < q1 < --- < g,. Assume that
i) there exists a poink such that fy(x) # 0,
i) fs is non-characteristic with respect t.
Then the roots op(x, &) = >}, fi(x, ) with respect tag, have multiplicity at moss
near (x, &) = (x, 0).

We skip the proof of Lemma 4.1.2 and go back to the proof of Lemdnl.1.
Summing up in both cases we conclude that either (4.1.3) .ar4¢hold. In particular
this implies thatk p +1) % g ), since th&;(G*Y) are obtained summing and mul-
tiplying rational numbers whose denominatorkip ( ). This sitite proof of Lemma
4.1.1. [l

Proof of Proposition 4.1.1. By contradiction. If one could through infinitely
many iteration steps then necessarily the assumption ofmam.1.1 must hold. But
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in that case it is impossible for the seri®$.; 6; to be convergent. Thus after a finite
number of iteration steps we get a negatiye for a suitable positive integer . [

In order to complete the proof of Theorem 2.1, by Proposidohl, we may as-
sume that for a certain positive integer

(4.1.6) o, >0
but
(4.1.7) o1 =0, — 0141 < 0.
Therefore
. §;(F®©
(4.1.8) 9t+l = min {M, 0[} Z Oy¢.
j>0, Sqg" — S
S§/)<Sg) 0 J

Our purpose is to construct an asymptotic null solution for bperator
(4.1.9) GO(x, eO(x) + A7 D; \) + A7 RO (x, \™7' D; \),

where R” ¢ Ry, in a neighborhood of the origin.

At this stage of the construction we can still apply Lemma B.2rder to pos-
sibly reduce the rank of the matrix in Equation (4.1.9). Hemwee wind up with the
construction of an asymptotic solution for the operator

(4.1.10) FOQ, A~ DN = S A EDFO( A~ D)
j>0

of sizerpg X rq. If
(4.1.11) FO@ A=A [ﬁ}”(x, )+ O(A—l)}
when j > 0 and A — +oo, the operator in (4.1.10) can be written as

(4112)  FO@ A7 D) = Y A [FOG D)+ o)
j=0

where O (=) stands for a (matrix-valued) differential operator of eret s’ whose
coefficients are0 X~ ) uniformly in U. The fact that,.; > o, implies that for every
ji>1

(4.1.13) §;(FO) + atsj(t) > oys0)
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so that

(4.1.14)  FO(x, \"'D; \)

0 . B & gy~
_ o Z F}')(x, D)+ )\~ Z)\ o;(F )Fj(t)(x’ D)|,

o’,sg)Za,sf.')+5j (F®) j=0

where ¢, is a positive rational number whose denominator can be chtsebe the
same as the denominator of, §;(F®), j > 1. Moreover 0 =5(F®) < §;(F®) < -
and the terms withj > 0 in the first sum have ordef?, j > 0, with s < 5.

Arguing as in the proof of Lemma 3.2.1 we can show that thecgal part of
the differential operator in the first sunk!, is non characteristic.

Disposing of the power of\ in front of the operator in square brackets we are
left, in the end, with the task of constructing an asymptaidution for an operator
of the form

(4.1.15) Py (x, D)+ P(x, D)+ \7/F N A7k pi(x, D),
j>0

wherek € N, I € N, ordP < sg) and Py is a non characteristic homogenous differ-
0

ential operator of ordes(()’). One can then seek an asymptotic solution for (4.1.15) in
the form

Z)\_j/kuj(x)

j=0

and this is a well-known procedure. This ends the proof ofofam 2.1.

4.2. The caseqp = 3 This subsection is devoted to the proof of Theorem 2.1
in the casego = 3. Actually we argue for a generic iteration step for whigh 3 and
show how to modify the above argument to prove the theorem.

If rp+1s(()p) = g, = 3 then the argument in the previous section can be applied
without modification; so we stick to the cas*gﬂsg’) < g, = 3. Again if rpsg = 1
we are in a scalar case, so that necessarily (3.2.7) holdsheng@revious proof can
be applied. The only case left out is whep.. = 2 and then necessari ?) =1 and
this is the case considered in the present section.

First we need some more precise notation; formula (3.2.h) bm written in the
form

p — —os?) [~ (p —0 =(p —
4.21)  FP, A= 2" [FO@, )+ A FD R, 0+ 0 29)},

f being a positive real numbelz:";g)(x,g) vanishes of ordersﬁ.”) as (| — 0 and
i’;’f)(x, €) vanishes of ordeﬁﬁp) +1 as|¢| — 0.
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By Lemma 3.2, since dei{”’ vanishes at = 0 of the third order and{” = 1 we
conclude that dek{?(x, €) = 0, F{¥)(x, ¢) being in general a non zero matrix depend-
ing linearly on¢. Let us use a simpler notation fd?ég)(x, &):

~(p la(x, €) lo(x, €)
4.2.2 FD(x, ¢) = {“ ,
( ) o0 (*: &) la1(x, §) l2a(x, £)

where thel;; £, &) are linear forms in the variablg with real analytic coefficients de-
pending on the variable defined i . We may always assume hieatinear form
l11(x, &) is not identically zero.

Then we have the following lemma, whose proof we omit:

Lemma 4.2.1. Using the above notation and assuming thatx, &) #Z 0 we can
find two real analytic non singular matrices\f(x), N(x), defined inU , such that
ﬁég)(x, &) can be written in one of the following forms
i) If La(x, §) and I1(x, &) are linearly independent then

ME)FD (. ON(x) = {lll(gv 3] llz()(;, 5)} ;

i) If I11(x, &) and Ix1(x, &) are linearly independent then

ME)FD (x, ON () = Bzgg 8} ;
i)

ME)EP (x, ON(x) = [ln(g, £) 8}
otherwise.

Using this lemma we want to modify the argument in Subsec8¢hin order to
complete the inductive step. Obviously (3.2.7) no longeld$io

The first and second cases in the above lemma are essenkiallgaime, since
the forms differ only by a transposition. We focus first on #ezond case, i.e. when
ha(x, &) andly(x, &) are linearly independent linear forms with respect to theable
¢. Denote by

(4.2.3) FP(x, \=77D; \) = M(x)F”)(x, \=77 D; \)N(x)T»,

where M ) andN £ ) are the matrices in Lemma 4.2.1 a&npdis the matrix

A 92 0
(424) F)\ = |: 0 /\9/2:| .
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SinceM () andN X ) are non singular matrices, the constructfoanocasymptotic so-
lution for FP)(x, A\=?»D; \) is reduced to the construction of an asymptotic solution
for F(P)(x, \=?»D; \). On the other hand

~ 1 :
FO@ Ao 2) = 30 37 ZA- ol i @) FPO (i, A= Ny ()T,
a>0;>0
so that, if0 is a positive real number] < o,, we have

- 1 »
(4.28) FP(, 080 = 303 a9 ol () FP e, A€ Ny ()T
a>0;>0

=) S AN,

j=0

Let us take a look at thé; 's above whgn> 1. We have:

1 » ;
Sj(x, )\705;)\) - Z _I/\—(sj(p( ))75‘;1)97(0,}79)‘04 [Kja(x, €) + 0()\79)] Ty
| <s(P @
—J
1 »
(426) + Z —|A_6j(p( ))_‘alg_(ol)_g)la‘ [Kja(x’ 5) + O(A—g)] 1—1)\
|a\2s§.”)+l o
o)t 0 ¢;(x.€) .
=\~ (FP)—s )9+9/2{{ J +0\"") 5,
04,r.9) TN

wherec; andd; have ordex sj(.”) with respect tof.
Let us now considesy(x, A\~%¢; \); proceding as above we have

1
Sole, A6 0) = 3 0 ST M) FP (e, ANy ()T

aso

_ e |[lx,8 0 o [maa(x, &) mio(x, €) w
= S o [ & ] 007

(4.2.7) A7 {Koa(x) + O )} 'y + O 27)r

_ 302 [ |lalx, &) mlz(x,g)] 9}
A {Lzm, €) mas(x, ) +0(\7)

F)\~Or+0/2 { [O cé”’(x)

0 dP(x)

+ 0(/\_9)} + O(A_20’7+9/2).

Here we have used the fact that first order derivatives widpeet to{ of a linear
form in ¢ yield only a function ofx .
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Lemma 4.2.2. Define j* = min{j | sj(”) = 0}. We understand thaf* = +oo if
sﬁp) > 1 for every j > 0. Choose

L (F(P)
(4.2.8) 0,1 = min {61(F(”)), Lg), 0—2”}

and
0,01 = Min {51(F<p>), ”_ZP }
if j* =+oc. Then
I:"(p)(X, )\_0’”15; A) = A~ (3/20pn Z /\—51'(5?(1”1))6;?*1)(% 13
j=>0
= )\_(3/2)917”&(1""1)()6, g, A)

In particular we have

= (p+1) _ |la(x, &) mlz(x,f)*'c(x,f)}
Go (x.9) [zm,s) maox, &)+ d(x, )]

wheredegk ¢, d<1and

lia(x, §) maa(x, )| _ 1 N X
det l21(x, €) mzz(x,g)} = e) Z ol (detGop) (x, ox(x))E7,

la|=gp
wheree(x) is a non zero smooth function.

Proof. Let us assumg* < +co. Then if s%) > 1 we have that

(F(P () Op+a on o Ot 30pn1
5J(F1 )+Sj Op+1 — 5 > 0 (FY )+T > —

where equality impliesj(.”) = 1. On the other hand ifj(/’) =0 then

0,1 o Ops1 30,
O3 (FW) #5000 — =% > 6, (F0) — B2 > =52,

where equality implies that the corresponding terms in tkgagsion (4.2.6) are func-
tions of x only. At last we obviously have, —60,+1/2 > (30,+1)/2. We may therefore
write

(429) Fv(p)(x’ )\—9,,+1£; /\) - /\—(3/2)9,,+1 Z )\—5]-(6(P+1))(~;5.p+1)(x’ g)
j=0
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and forget about the factor in front. The other relations deeluced from Lemma
3.2.2. This proves the lemma in the cage < +oo. If j* = +oo the argument is the
same without any reference to the ca§’@ =0. ]

In the definition off,+;1 in (4.2.8) a division by two may occur. This could ham-
per our technique of showing that only a finite humber of phaseneeded. In the
next lemma we show that if we have a triple root of &, then this can occur only
once in size 2 2 and then everything becomes scalar.

Lemma 4.2.3. Assume thadetf;gp”)(x, &) has a root of uniform multiplicity3.
Then there is a real analytic phase functigi?*Y(x) such that

detGY (x, o I(x) = 0,
rankGP(x, o (x)) = 1

in some open set iR"*1,
Proof. Using Lemma 3.2.2 we see that

deté(()”+l)(x, &) = cpralx) (S0 — 7(x, 5/))3

for some non vanishing smooth functiep., and, a first order polynomial with re-
spect to¢’. We can then construct a functigrt”*?) such thatp®™ = 7(x, x**%) and,

for some smallr " (r, x’) = (x', 7). Then the matrixG¥*D(x, o"*D(x)) has its
first column with entried,;(x, 0" ™(x)), s = 1, 2. We claim that,(x, 0¥ (x)) can-
not both vanish. In fact if they both vanish at the same timeniatally, we could de-
duce that forxg = ¢ the linear formd,; are not linearly independent becaugeis arbi-
trary, and this is a contradiction to the assumption of cgsefiLemma 4.2.1. Hence
the rank off}g’”)(x, gpi””)(x)) is one and the following iteration reduces it to a scalar

problem in which (3.2.7) holds. ]

This completes the discussion in the case ii) of Lemma 4121.us now consider
case iii) of the same lemma. Let now

X040
(4.2.10) 'y = { 0 )\9/4:|
and define
(4.2.11) FP(x, \=7"D; \) = T\M (x)FP(x, A\=77D; )N (x)T».

Arguing as in the proof of Lemma 4.2.2 we can easily show thHieviing
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Lemma 4.2.4. Definej* as inLemma 4.2.2and choosé,.; according toEqua-
tion (4.2.8) Then

f?(”)(x, )\—9,>+1€; \) = A~ B/2)0pn Z )\—6,'((;(1:+1))f;§p+1)(x, §)
j=0
_ )\_(3/2)9,,+1(~;(17+1)(x, &)

In particular we have

(4.2.12) GOV, ¢ = [ln(x, £) 0 } ’

0 m22(-x7 €)+d(x’€)

Wheredeggd <1 and

dot/m(. 8 0 }:emz é(detaé”))(a)(x,sox(x))f“,

0 mzz(x, f) —
lal=g,
wheree(x) is a non zero smooth function.

We point out explicitly that ifd &, &) in the above expression f(ﬁi(()pﬂ)(x,g) is
not zero ormoy(x, &) is not proportional, as a quadratic form §n to [11(x, £)?, then
detég’”)(x,g) has roots at most double and we fall back to the case distusse
Subsection 4.1. Thus the worst case occurs when in (4.2.&2have

(4.2.13) d(x,€) =0 and ma(x, &) = a(x)Z(x, £)

for a non zero smooth function(x).

Next we discuss case iii) of Lemma 4.2.1 when (4.2.13) ocddigding out the
factor \~(%+)/2 and keeping into account that in this case no rank redudsiqros-
sible, thus preserving the:22 size, we reach the point where

(42.14) G, 0) = FOD 60 = 3O A0 I g,

j>0
where
G0 )= pr D o = [0 0
(4.2.15) Gy (x, &) = Fy (x,f)—[ 0 a(x)lz(x,f)}’

I(x, &) being a linear form in¢ and o as above.
By (4.2.15) we do not need intertwining matrices any more eoihpute
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F)\F(p+l)(x, )‘_06; A)F)\ — ZA—éj(p(1’+1))r)\Fj§p+l)(x, /\_ef)r‘)\
j=0

(4.2.16) = Y AT TR, 9+ AT EE D+ I
j=0

where theﬁ}ﬁfl)(x,g) are homogeneous of ordeﬁ’”l) + h with respect to¢ as in
(3.2.2).
The above sum can be written as

I(x, €) 0 }

(p+1) -0 = )\—©0)/2
DAFP 2 (x, A7)0 = A [ 0 a)?(x,§)

izl

0 0
0 (Ff5 5))22]

o (o),
(FYe9) 0
o | (F5Y000) 0

o (F9),

o (),

(P ) 0

+AT

+A 77 2

Now denote byj* = min{; | s"*? = 0} and assume that* < oo. If (ﬁff})”(x)) L, 70
then we can choose

5+ (FrD)
A Up+1}

0p+2 = min{ >

and in such a case we can see using the same arguments as hmodetﬁ;g”z)(x, )
no longer has a triple root where

]“)\F(P+1)(x’ )\—9,;+2€; ATy = )\—(3/2)9,,+26;(p+2)(x’ £ 0).
On the other hand i(ﬁ}ffol)(x))zz =0 and

- 0 (ﬁf(%l)(x’ 5)) 12
(Frw.9) 0

21

#0
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we may choose
. [2 (p+1)
91,+2 =min §6j*(P ), Op+l

and see that either, as before, éé‘FZ)(x,Q no longer has a triple root or, if it still
has one, then there is a phase functigf*?(x) associated with the triple root such
that rankGé’”z)(x, gpﬁf”z)(x)) =1. Therefore we wind up in a scalar case.

If (ﬁ}f})l)(x)) =0 and

22
0 (ﬁ}f},”(x, g)) )
[(ﬁfffow)ﬂ : ] -

or j* = oo we take
9,,+2 =min {51(F(p+1)), 0',,+1} .
Then it is easy to see that

I(x, &) +c(x) 0

~(p+2) =
Gy (x, ) = 0 a(x)(x, &) +d(x, &)

where degd < 1. Note that def}g’*z)(x,g) = 0 has a root of multiplicity at most
double ifc(x)#0 ord (x,&) #0 by Lemma 4.1.2.
Summing up we proved the following

Lemma 4.2.5. Assume thatG*D(x, £;)\) verifies (4.2.15) Then we can find
0,+2 such that one of the following cases takes place
0] deté(()’”z)(x, &) = 0 has no longer triple root.
(ii) there is a phase functiop(?*?(x) associated with the triple root such that
rankG{ 2 (x, pP*2(x)) = 1.

X

(iii) 012 = min{6(F¥*Y), 01} and

= (p+2) - l(x,f) 0
Gy "= "] a(x)P(x, )]

If (i) or (i) in Lemma 4.2.5 occurs then the remaining part tbe construction
of asymptotic solutions is reduced to the case of doublesraod we skip it. If (iii)
occurs then one can apply again Lemma 4.2.5G(6"9(x, & \). If (iii) happens re-
peatedly then (4.1.2) in Lemma 4.1.1 holds because the deaton of §,., is the
same as that of .1 (and 0,1 and thed;(F?*V)'s). Thus the rest of the proof is just
a repetition of the case of double roots.
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