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1. Introduction

In the present paper we study necessary conditions for the well-posedness of the
Cauchy problem for hyperbolic systems of arbitrary order with multiple characteristics.

In the scalar case the seminal paper of Ivrii and Petkov [6] has shown that the
correctness of the Cauchy problem implies that for a given hyperbolic differential op-
erator, near a multiple characteristic point, a set of vanishing conditions on the homo-
geneous parts of the lower order terms must be satisfied.

Evidently in the case of hyperbolic differential systems the situation is more com-
plex, the vector structure playing a relevant role. As a consequence the above men-
tioned result may not be true any more as we shall see in some examples in the sec-
ond section of the paper.

Before stating our main result we would like to recall, as a motivation, some re-
sults in the case of hyperbolic systems already existing in the literature.

Let us introduce the notation and the definition of well-posedness for a differen-
tial equation (system of differential equations). We work in an open subset ofR +1,
with coordinates = (0 1 . . . ) = ( 0

′), and assume that the origin belongs to
; let = { ∈ | 0 < }, = { ∈ | 0 > }.

DEFINITION 1.1. The Cauchy problem for a differential system ( ) is said to
be well-posed in ( , respectively) if
i) For every ∈ ( ∞

0 ( )) there is a ∈ (E ′( )) such that ( ) = in
( , respectively). Here denotes the size of the system.
ii) For every ∈

(
E ′( )

)
with ( ) = 0 in ( , respectively) we have = 0

in ( ).

In [7] Nishitani proved that if the system has real analytic coefficients defined in
and the Cauchy problem is well-posed in and for every small independently
of the lower order terms (i.e. is strongly hyperbolic) then the cofactor matrix of the
principal symbol of vanishes of order− 2 at a characteristic point of multiplicity
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. In [7] as well as in the other papers quoted here is assumed tobe a first order
differential system.

On the other hand in [8] it has been proved under some conditions on , where
= det 1 is the (operator whose principal symbol is the) determinantof the principal

symbol of , that if there exists a pseudodifferential operator ( ), of order −1,
whose principal symbol is the cofactor matrix of1, such that

= + −1 + · · · + − + · · ·

where − ( ξ) vanishes at a characteristic point of multiplicity of order − 2 ,
then the Cauchy problem for is well-posed.

For the non-strongly hyperbolic case, in [2] it is supposed that the rank of the
principal symbol of at a given characteristic point is maximal, i.e. −1. Then it is
proved that a certain differential polynomial of order mustsatisfy the well known
Ivrii–Petkov conditions if the Cauchy problem for is correctly posed. In [1] a more
precise Levi condition is found for a more particular case.

We point out that the rank of the principal symbol of at a characteristic point
plays a crucial role and that its maximality allows everything to come down to the
scalar case.

Our purpose here is to study a truly vectorial case and, when possible, to drop
the assumption about the rank of the principal symbol. Moreover, from what has been
said above, it is clear that there is a strong connection between first order systems and
higher order systems possibly of reduced size.

ACKNOWLEDGEMENTS. This paper was written while the first author was staying
at the Department of Mathematics of Osaka University. He is glad to seize this oppor-
tunity to thank both faculty and staff for a pleasant and stimulating year.

2. Notation and Statement of the Result

Let , , be positive integers, ≤ and an open subset ofR +1 containing
the origin. We denote by ( ) a differential operator of order with coefficients
in ∞( (C)), the space of all × matrices depending smoothly on the vari-
able ∈ . We shall also write

( ) = ( ) + −1( ) + · · · + 0( )(2.1)

where − ( ) is the homogeneous part of order− . We shall always assume
that

is hyperbolic(2.2)

i.e. the polynomial ( ξ0 ξ′) = det ( ξ0 ξ′) has only real roots with respect to
the variableξ0.
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We are interested in the well-posedness of the Cauchy problem for in the sense
of Definition 1.1. Without loss of generality we may think that the hyperplane{ 0 =
0} is non characteristic for , i.e. it is non characteristic for. The following defini-
tion will be useful in the sequel:

DEFINITION 2.1. Let ( ξ) be a smooth function defined on∗ \0 and assume
that at a pointρ ∈ ∗ \0, vanishes of finite order. Then byρ we denote the first
non vanishing term in the Taylor expansion of aroundρ;

(ρ + λ−1δ ) = λ−
[
ρ(δ ) + (λ−1)

]

so that ρ is a homogeneous polynomial of degree , whereλ is a large positive pa-
rameter andδ ∈ ∗R +1.

We are now ready to state our result. Letρ ∈ ∗ \ 0 be a characteristic point of
of multiplicity . For sake of simplicity we shall assume thatρ = (0 ). Then we

have

Theorem 2.1. Let be as in(2.1) and ρ = (0 ) be a characteristic point of
such that (0 ) = 0 for = 0 1 . . . − 1. Denote by the degree of the

homogeneous polynomial − (0 ), = 1 . . . [ /2]. Assume that
i) There exists at least one∈ {1 . . . [ /2]} for which < − 2 . Define then

θ0 = min
∈{1 ... [ /2]}

< −2
−

ˆ ( ξ) =
∑

− θ0= − − θ0
< when >0

− (0 )( ξ)(2.3)

ii) The polynomialξ0 7−→ det ˆ ( ξ0 ξ′) has non real roots at least one of which
has multiplicity at most3.
Then the Cauchy problem for is not well-posed.

Let us now look at an example in which Theorem 2.1 can be applied. For the
sake of simplicity we consider a case of matrix dimension 6, but this can be easily
generalized. Consider the following first order differential system

1( ) + ( ) =(2.4)

where 1 denotes the first order matrix operator

1( ) =




0 − 1( 0) 0

0 0 − 2( 0)

0 0 0 − 3( 0)
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⊕




0 − 4( 0) 0

0 0 − 5( 0)

0 0 0 − 6( 0)


(2.5)

where we assume (0) = 0, 1≤ ≤ 6. Here is a smooth 6× 6 matrix valued
function defined in a neighborhood of, say, the origin in the -variable. Let us look
at the characteristic point (0 ) and denote by1( ξ) = ( ( ξ)) the symbol of the
principal part. Let ( ξ) = ( ( ξ)) be the cofactor matrix of 1( ξ). Define

4( ξ) =




0 0 0

0 −( 0 12)ξ−1 −( 0 13)ξ−1

0 0 −( 0 23)ξ−1 + 22( 0 13)ξ−2




⊕




0 0 0

0 −( 0 45)ξ−1 −( 0 46)ξ−1

0 0 −( 0 56)ξ−1 + 55( 0 46)ξ−2




and

3( ξ) =




0 0 0
0 0 0

0 0 ( 2
0 13)ξ−2


⊕




0 0 0
0 0 0

0 0 ( 2
0 46)ξ−2




Note that 4( ξ) vanishes of order 2 at (0 ). We now study

( ) = ( 1( ) + ( ))( ( ) + 4( ) + 3( ))

= ( ) 6 + 5( ) + 4( ) + 3( )

where ( ξ) is of homogeneous of order inξ. It is easy to see that

5( ξ) ≡ ( ) ¯( ξ) 4( ξ) ≡ 0

modulo terms vanishing of order 4 and 2 at (0 ) respectively where

¯( ξ) =




0 0 α
0 0 0
0 0 0


⊕




0 0 β
0 0 0
0 0 0




with

α =
6∏

=4

(ξ0 − ( 0)ξ ) β =
3∏

=1

(ξ0 − ( 0)ξ )
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Then with θ0 = 1/3 we have

ˆ ( ξ) = ˆ( ξ) 6 + (0) ˆ ( ξ)

where ˆ ( ξ) = (0 )( ξ) and

ˆ ( ξ) = ¯(0 )( ξ) =




0 0 α̂
0 0 0
0 0 0


⊕




0 0 β̂
0 0 0
0 0 0




with

α̂ =
6∏

=4

(ξ0 − ′(0) 0) β̂ =
3∏

=1

(ξ0 − ′(0) 0)

Thus it follows that

det ˆ = det(̂ 6 + (0) ˆ ) = ˆ4

∣∣∣∣
ˆ + α̂ 31(0) β̂ 34(0)

α̂ 61(0) ˆ + β̂ 64(0)

∣∣∣∣

Since α̂β̂ = ˆ this gives

det ˆ = ˆ5

∣∣∣∣
β̂ + 31(0) 34(0)

61(0) α̂ + 64(0)

∣∣∣∣ = ˆ5 ˆ

Taking 0 = 0, it is clear that

ˆ = ξ6
0 + (tr )ξ3

0 + det(2.6)

where

=

[
31(0) 34(0)

61(0) 64(0)

]

If is not nilpotent thenˆ = 0 has a non real root of multiplicity at most 2. Then by
Theorem 2.1 the nilpotency of is necessary in order that the Cauchy problem for
is well posed. Since + 4 + 3 is upper triangular and hence the Cauchy problem
for + 4 + 3 is well posed (microlocally near (0 )) the nilpotency of is also
necessary for the well posedness of the Cauchy problem for the original 1 + .

On the other hand, if the first and the fourth columns of ( ) vanish near the
origin and ′(0) are different from each other then the Cauchy problem for, and
hence for 1 + is well posed which follows from Theorem 1.2 in [8].
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3. Inductive Lemmas

The method of proof is just to construct an asymptotic solution to the equation
≡ 0 depending on a large parameterλ and violating an a priori estimate (Proposi-

tion 3.1 below) which follows from

‖ ‖ 0( ) ≤ ‖ ‖ ( )(3.1)

where > 0 is a suitable constant and ⋐ is a compact set containing the origin
and ∈

( ∞
0 ( )

)
. The estimate (3.1) is deduced if the Cauchy problem for is

well-posed (see e.g. [6] and [3]).
Let now θ0 be defined by (2.3). Due to assumption i) in the statement of Theorem

2.1, we obtain that

θ0 <
1
2

(3.2)

Define

σ0 = 1− 2θ0(3.3)

Let us compute

λ( ) =
∑

=0

−
(
λ−θ0 λ + λθ0

)
(3.4)

=
∑

=0

λ −
−
(
λ−θ0 + λ−θ0−σ0

)

=
∑

=0

∑

≥0
− − θ0− θ0>−

λ − − θ0− θ0

×
∑

|α+β|= +

1
α!β!

(α)
− (β) (0 ) β

(
λ−σ0

)α
+

(
λ−

)

where is an arbitrarily large positive integer and by (λ− ) we denoted a differ-
ential operator whose coefficients are bounded byλ− on any bounded preassigned
open set inR +1. Here we note that the a priori estimate (3.1) implies an a priori
estimate for λ (see Proposition 2.2 in [7]).

Proposition 3.1. Assume that0 ∈ and the Cauchy problem for ( ) is
well posed in both and for every small . Then for every compactset ⊂ R +1

and for every positive > 0 we can find > 0, λ̄ > 0 and ∈ N such that

‖ ‖ 0( ) ≤ λ(θ0+1) ‖ λ ‖ ( )
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‖ ‖ 0( ) ≤ λ(θ0+1) ‖ λ ‖ ( )

for every ∈ ∞
0 ( ), λ ≥ λ̄, | | < .

We point out explicitly that the sum in the above formula (3.4) is a finite
sum since θ0 > 0. Moreover the terms obtained when = 0 correspond to

− (0 )( λ−σ0 ).
Let

˜ (0)( ξ;λ) =
∑

=0

∑

≥0
− − θ0− θ0>−

λ− +( − )θ0− θ0(3.5)

×
∑

|α+β|= +

1
α!β! −

(α)
(β)(0 ) βξα

then it is clear that

λ( ) = λ − θ0 ˜ (0)( λ−σ0 ;λ) + (λ− )

It is useful to rewrite ˜ (0)( ξ;λ) in the following way

˜ (0)( ξ;λ) =
∑

≥0

λ−δ ( ˜ (0)) ˜ (0)( ξ)(3.6)

where

0 = δ0( ˜ (0)) < δ1( ˜ (0)) < · · · < δ ( ˜ (0)) < · · ·(3.7)

and it is understood that the sum in (3.6) is finite. Furthermore from (3.5) we obtain

˜ (0)
0 ( ξ) =

∑

≥0 <
−( − )θ0=0

− (0 )( ξ)(3.8)

and that all theδ ( ˜ (0)) are multiples of the same rational numberθ0. As a conse-
quenceδ1( ˜ (0)) ≥ θ0 and we may find a positive integer (0) such thatσ0, θ0 and
δ ( ˜ (0)), for ≥ 0, can be expressed as fractions whose denominator is (0) and
whose numerator is a non-negative integer.

DEFINITION 3.1. We say that a differential operator ( ;λ), depending on a
large positive paramenterλ is in the classR if there exists a positive rational
numberκ and differential operators ( ) whose coefficients are in∞( ), =
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0 1 . . . , for some ∈ N, such that

( ;λ) =
∑

=0

λ−κ ( )

Our next step is to prove the following general purpose lemma.

Lemma 3.1. Let ( ) be a differential operator with smooth coefficients de-
fined in and letσ, θ be rational numbers withσ ≥ θ > 0. Denote byϕ( ) a func-
tion in ∞( ). Then
i) − λθϕ( ) ( λ−σ ) λθϕ( ) = ( λ−(σ−θ)(ϕ ( ) + λ−θ )) + λ−θ ( λ−θ ;λ)
where ∈ R .
ii) If ( ξ) = (|ξ| ) as |ξ| → 0, uniformly with respect to , for some positive
integer , then

(3.9) − λθϕ( ) ( λ−σ ) λθϕ( )

= ( λ−(σ−θ)(ϕ ( ) + λ−θ )) + λ−(σ−θ) −θ ( λ−θ ;λ)

where again ∈ R .

REMARK 3.1. It is important to remark that in the notation above the quantity
( λ−(σ−θ)(ϕ ( ) + λ−θ )) does not contain the terms in which the derivatives land

on ϕ ( ), as will be clear from the proof; those terms are pushed into the “error” term
and thus ( λ−(σ−θ)(ϕ ( ) +λ−θ )) is to be thought of as a commutative expres-

sion.

Proof. Denote byϕ2( ) = ϕ( ) − ϕ( ) − 〈 − ϕ ( )〉. Then, if ( ) denotes
a smooth function,

( ;λ) = − λθϕ( ) ( λ−σ ) λθϕ( ) ( )

=
∑

α≥0

1
α!

(α)( λ−σ+θϕ ( ))(λ−σ )α
[

λθϕ2( ) ( )
]
| =

=
∑

α≥0

1
α!

(α)( λ−σ+θϕ ( ))(λ−σ )α ( )

+
∑

α≥0

1
α!

(α)( λ−σ+θϕ ( ))

×
∑

2≤|β|≤|α|

(
α

β

)[
(λ−σ )β λθϕ2( )(λ−σ )α−β ( )

]
| =

The first sum is “by definition” what has been called (λ−(σ−θ)(ϕ ( )+λ−θ )) (see
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the remark above). Let us take a closer look at the second sum.Due to the vanishing
of ϕ2( )| =

and of ∇ ϕ2( )| =
, the quantity β λθϕ2( )

| =
is a polynomial in

the variableλθ of degree less than or equal to [|β|/2]. Factoring outλθ(|β|/2) we ob-
tain a polynomial of the same degree in the variableλ−θ. Thus the second sum above
can be rewritten as

∑

α≥0

1
α!

(α)( λ−(σ−θ)ϕ ( ))λ−(σ−θ)|α|

·
∑

2≤|β|≤|α|
λ−θ|α|+θ(|β|/2)

α β ϕ( ;λ−θ) α−β ( )

=
∑

α≥0

1
α!

(α)( λ−(σ−θ)ϕ ( ))λ−(σ−θ)|α|

·
[|α|/2]∑

ν=1

λ−θν
∑

|β|=2ν

α β ϕ( ;λ−θ)(λ−θ )α−β ( )

Since is a fixed differential operator we may assume that 0≤ |α| ≤ , for some
. Then the above quantity can be rewritten as

λ−θ
∑

=0

[ /2]∑

ν=1

λ−(σ−θ)
∑

|α|=

1
α!

(α)( λ−(σ−θ)ϕ ( ))

·
∑

|β|=2ν

λ−θ(ν−1)
α β ϕ( ;λ−θ)(λ−θ )α−β ( )

Hence the second term can be rewritten as

λ−θ ( λ−θ ;λ) ( ;λ) =
∑

=0

[ /2]∑

ν=1

ν( ;λ)

where

ν( ;λ) = λ−(σ−θ)
∑

|α|=

1
α!

(α)( λ−(σ−θ)ϕ ( ))

·
∑

|β|=2ν

λ−θ(ν−1)
α β ϕ( ;λ−θ) α−β

hence ∈ R . The first assertion of the lemma is proved.
Let us now turn to the second part. It is obvious that nothing is changed in the

first term, so that all we have to do is just look at the second sum. Now two cases
may occur:
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a) ≥ . Then trivially

λ−(σ−θ) ≤ λ−(σ−θ)

b) < . In that case our assumption implies that

(α)( ξ) = (|ξ| −|α|) = (|ξ| − )

and hence (α)( λ−(σ−θ)ϕ ( )) = (λ−(σ−θ)( − )).
Plugging this information into the expression forν we have

ν( ;λ) = λ−(σ−θ) ˜
ν( ;λ)

where, again,̃ ν ∈ R . This concludes the proof of the lemma.

In order to prove Theorem 2.1 we prove first a more general inductive lemma in
the following subsections.

From the assumption we may start off assuming that (see also Equation (2.3))

ξ0 7−→ det ˜ (0)
0 ( ξ0 ξ′) has a non real root of multiplicity 0 i.e.(3.10)

det ˜ (0)
0 ( ξ) = (ξ0 − τ0( ξ′)) 0

0( ξ) 0( τ0( ξ′) ξ′) 6= 0(3.11)

in some open set × in R +1×Rξ′ . In the sequel and stands for an open set
in R +1 and in R respectively which may differ from line to line but the subsequent
one will be contained in the preceding one.

Denote byϕ(0)( ) a complex-valued smooth (i.e. real analytic) function insuch
that

∂ 0ϕ
(0)( ) = τ0( ∂ ′ϕ(0)( ))(3.12)

Then

(3.13) − λσ0ϕ(0)( ) ˜ (0)( λ−σ0 ;λ) λσ0ϕ(0)( )

= ˜ (0)( ϕ(0)( ) + λ−σ0 ;λ) + λ−σ0 (0)( λ−σ0 ;λ)

where (0) is a symbol in the classR .
In order to construct an asymptotic solution for the× matrix-valued operator

˜ (0)( λ−σ0 ;λ) we first prove a general inductive lemma enabling us to construct
the phase functions required.

Lemma 3.2 (First inductive step). Let σ , θ ∈ Q+, ≤ , ϕ( )( ) be a smooth
function defined in and consider the × matrix-valued differential operator

˜ ( )( ϕ( )( ) + λ−σ ;λ) + λ−σ ( )( λ−σ ;λ)(3.14)
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where ( ) ∈ R and

i) ˜ ( )( ξ;λ) =
∑

≥0

λ−δ ( ˜ ( )) ˜ ( )( ξ)

the sum being finite and̃ ( )denoting differential operators with real analytic coeffi-
cients. Furthermore

0 = δ0( ˜ ( )) < δ1( ˜ ( )) < · · ·
and δ ( ˜ ( )) ∈ Q+ ≥ 1

(3.15)

ii) det ˜ ( )
0 ( ξ) = (ξ0 − τ ( ξ′)) ( ξ) ( τ ( ξ′) ξ′) 6= 0

in some open set × in R +1 × Rξ′ .
iii) The functionϕ( )( ), defined in , satisfies the eikonal equation

∂ 0ϕ
( )( ) = τ ( ∂ ′ϕ( )( ))(3.16)

iv)

rank ˜ ( )
0 ( ϕ( )( )) = − +1(3.17)

in for a suitable positive integer +1 ≤ .
v) There exists a positive integer( ) such that

σ θ δ ( ˜ ( )) ≥ 1 belong to
N

( )

(i.e. are positive rational numbers with the same denominator ( )).
Then we can find a +1 × +1 matrix-valued differential operator

( )( λ−σ ;λ)(3.18)

such that

( )( ξ;λ) =
∑

≥0

λ−δ ( ( )) ( )( ξ)(3.19)

the sum being finite and

0 = δ0( ( )) < δ1( ( )) < · · ·
and δ ( ( )) ∈ Q+ ≥ 1

(3.20)

σ θ δ ( ( )) ≥ 1 belong to
N
′( )

(3.21)

for a suitable positive integer ′( ).

( )
0 ( 0) = 0(3.22)
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det ( )
0 ( λ−σ ξ) =

1
( λ−σ ξ)

det ˜ ( )
0 ( ϕ( )( ) + λ−σ ξ) + (λ−( +1)δ∗)(3.23)

where is an arbitrarily large positive integer andδ∗ > 0, suitable and ( ξ) is an
elliptic symbol. Moreover the construction of an asymptotic solution for the operator
(3.14) is reduced to the construction of an asymptotic solution forthe operator(3.18).

3.1. Rank reduction Set

( )( ξ;λ) = ˜ ( )( ϕ( )( ) + ξ;λ) + λ−σ ( )( ξ;λ)(3.1.1)

Then ( ) can be written as a finite sum of differential operators:

( )( ξ;λ) =
∑

≥0

λ−δ ( ( )) ( )( ξ);(3.1.2)

we remark that in the above (finite) sum

δ0( ( )) = δ0( ˜ ( )) = 0(3.1.3)
( )
0 ( ξ) = ˜ ( )

0 ( ϕ( ) + ξ)(3.1.4)

Due to Assumption v) and Definition 3.1 it is then obvious thatθ , σ and the
δ ( ( )), ≥ 1, satisfy a condition of the same type as v) , with possibly a differ-
ent ( ). For our present purpose we shall continue to denote this new number by the
same symbol.

By (3.17) we have

rank ( )
0 ( 0) = − +1(3.1.5)

Thus we can find two non singular smooth matrices, ( ), ( ), defined in , such
that

( ) ( )
0 ( 0) ( ) =


 − +1 0

0 0


(3.1.6)

where − +1 denotes the ( − +1) × ( − +1) identity matrix. Now we set

ˆ ( )( λ−σ ;λ) = ( ) ( )( λ−σ ;λ) ( )(3.1.7)

=
∑

≥0

λ−δ ( ˆ ( )) ˆ ( )( λ−σ )

We point out that theδ ( ˆ ( )), ≥ 1, satisfy the same assumption v) as theδ ( ( )),
≥ 1, do, even though they are not the same, due to the following lemma whose

proof is straightforward.
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Lemma 3.1.1. Let

( λ−σ ;λ) =
∑

≥0

λ−δ ( ) ( λ−σ )

and

( λ−σ ;λ) =
∑

≥0

λ−δ ( ) ( λ−σ )

be operators of the form(3.1.2). Then

( ◦ )( λ−σ ;λ) =
∑

≥0

λ−δ ( ) ( λ−σ )

whereδ ( ) = δ ( ) + δ ( ) + σ for suitable , and .

Since and are non singular matrices then the construction ofan asymp-
totic solution for ( )( λ−σ ;λ) is equivalent to the construction of an asymptotic
solution for ˆ ( )( λ−σ ;λ) and moreover we have that

ˆ ( )
0 ( ξ) = ( ) ( )

0 ( ξ) ( )(3.1.8)

so that

ˆ ( )
0 ( 0) =


 − +1 0

0 0


(3.1.9)

Here ˆ ( )( ξ;λ) has the same properties as( )( ξ;λ) where (3.1.5) has to be re-
placed by (3.1.9).

From now on we switch back to the ( ) notation, dropping the hat sign. Let us
write ( ) in block form:

( )( λ−σ ;λ) =




( )
11 ( λ−σ ;λ) ( )

12 ( λ−σ ;λ)

( )
21 ( λ−σ ;λ) ( )

22 ( λ−σ ;λ)


(3.1.10)

where the blocks have the same size as those in the block partition of (3.1.9). We have

( )
11 ( ξ;λ) =

∑

≥0

λ−δ ( ( )) ( )
11 ( ξ)(3.1.11)

= −
∑

≥0

λ−δ ( ( )) ( )( ξ)

= − ( )( ξ;λ)
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where ( )( ξ) are ( − +1) × ( − +1) matrices and

( )
0 ( 0) = 0(3.1.12)

Define

R( )( λ−σ ;λ) =
∑

=0

(
( )( λ−σ ;λ)

)
(3.1.13)

where is a positive integer that, in the sequel, will be chosen suitably large. We
may then write

R( )( λ−σ ;λ) =
∑

≥0

λ−δ (R( ))R( )( λ−σ )(3.1.14)

where the sum is a finite sum whose number of terms depends on and, using again
Lemma 3.1.1, theδ (R( )), ≥ 1, are an increasing sequence of rational numbers
whose denominator is the same, i.e. ( ). From (3.1.13) we obtain that

( )
11 ( λ−σ ;λ)R( )( λ−σ ;λ) = −

(
( )( λ−σ ;λ)

) +1
(3.1.15)

We want to show that
(

( )( λ−σ ;λ)
) +1

becomes negligible provided is cho-
sen large enough.

Lemma 3.1.2. Let ( ) be defined as in(3.1.11). Then

∂γξ σ
([

( )( λ−σ ;λ)
] +1

)
= (λ−( +1)δ∗ )

whereδ∗ = min{σ δ1( ( ))} > 0 and σ( · ) denotes the symbol of a given differential
operator.

Proof. Since

(
( )( λ−σ ;λ)

) +1
=


∑

≥0

λ−δ ( ( )) ( )( λ−σ )




+1

(3.1.16)

=
∑

1 ... +1≥0

λ−δ 1 ( ( ))−···−δ +1( ( )) ( )
1

( λ−σ ) · · · ( )
+1

( λ−σ )

we can easily compute (a derivative of) its symbol:
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∂γξ σ
((

( )( λ−σ ;λ)
) +1

)

=
∑

1 ... +1≥0

∑

α1 ... α ≥0P +1
= +1 |β |=|α |

=1 ...

∑

|γ1|+···+|γ +1|=|γ|
α β γλ

−
P +1

=1 δ ( ( ))

· ∂α1+γ1
ξ

( )
1

( λ−σ ξ) · · ·∂α +γ
ξ

β1 +···+β −1 ( )( λ−σ ξ)

· ∂γ +1
ξ

β1 +1+···+β +1 ( )
+1

( λ−σ ξ)

Now remark that if 6= 0 thenδ ( ( )) ≥ δ1( ( )) by definition. Moreover, because
of (3.1.12), if = 0 we collect a contribution of size (λ−σ ) from that factor, no
matter how many derivatives are landing on it. Thus, in a generic summand in the
above formula, let =♯{ | > 0} then

+1∑

=1

δ ( ( )) ≥
∑

6=0

δ1( ( )) = δ1( ( ))

On the other hand, again no matter how many derivatives land on them, the terms cor-
responding to = 0 yield a contribution of size (λ−( +1− )σ ). Since

δ1( ( )) + ( + 1− )σ ≥ ( + 1)δ∗

we have proved the assertion.

REMARK 3.1.1. From the above proof we can also deduce that

∂γξ σ
((

( )( λ−θξ;λ)
) +1

)
=

(
λ−( +1)θ

)

where 0< θ ≤ min{σ δ1( ( ))}.

Now define

( )( λ−σ ;λ) =




−R( )( λ−σ ;λ) ( )
12 ( λ−σ ;λ)

0


(3.1.17)

in block form notation, the blocks corresponding to those inEquation (3.1.10). We
have

( )( λ−σ ;λ) ( )( λ−σ ;λ)(3.1.18)

=




( )
11 ( λ−σ ;λ)

(
− ( )

11 R( )
)

( λ−σ ;λ) ( )
12 ( λ−σ ;λ)

( )
21 ( λ−σ ;λ)

(
( )
22 − ( )

21 R( ) ( )
12

)
( λ−σ ;λ)
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and define

( )( λ−σ ;λ) =
(

( )
22 − ( )

21 R( ) ( )
12

)
( λ−σ ;λ)(3.1.19)

Furthermore we have that

(
− ( )

11 R( )
)

( λ−σ ;λ) ( )
12 ( λ−σ ;λ)

=
(

( )( λ−σ ;λ)
) +1 ( )

12 ( λ−σ ;λ)

Here ( ) ( )( λ−σ ;λ) stands for ( )( λ−σ ;λ) ( )( λ−σ ;λ). The proof
of the following proposition is then a straightforward consequence of Lemma 3.1.2.

Proposition 3.1.1. The (1 2)-block of the matrix in(3.1.18), as a differential op-
erator, is (λ−( +1)δ∗). In particular if is chosen suitably large, since( ) is non
singular, the construction of an asymptotic solution for the × matrix of differential
operators ( )( λ−σ ;λ) reduces to the construction of an asymptotic solution for
the +1 × +1 matrix of differential operators ( )( λ−σ ;λ), defined in(3.1.19).

We write

( )( λ−σ ;λ) =
∑

≥0

λ−δ ( ( )) ( )( λ−σ )(3.1.20)

We still have to prove (3.20)–(3.23).
First remark that (3.22) is immediate because of the construction of ( ). From

(3.1.19) we may analyze the sequence
(
δ ( ( ))

)
≥1

, δ0( ( )) being 0. Using the proof

of Lemma 3.1.2 we can see that the exponentsδ ( ( )) are obtained summing a num-
ber of δ ( ( )) to integer multiples ofσ . This proves (3.20), (3.21), because the
sequence

(
δ ( ( ))

)
≥1

satisfies assumption v) . Due to Lemma 3.1.2 we can see
that the (operator-valued) matrix in (3.1.18) is lower triangular modulo terms that are

(λ−( +1)δ∗) and therefore

( )
0 ( ξ) = ( )

22 0( ξ) − ( )
21 0( ξ)R( )

0 ( ξ) ( )
12 0( ξ)(3.1.21)

det ( )
0 ( λ−σ ξ)(3.1.22)

=
1

det ( )
11 0( λ−σ ξ)

det ( )
0 ( λ−σ ξ) +

(
λ−( +1)δ∗

)

This proves (3.23), since det( )
11 0( 0) 6= 0.

3.2. End of the inductive step The purpose of this section is to complete, un-
der an additional technical assumption, the inductive stepwhose first part is Lemma
3.2.
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Let us consider the operator( ) as given by (3.1.20), defined in , and denote
by ( ) the vanishing order with respect to the variableξ as |ξ| → 0 of ( ), =
0 1 . . .:

( )( λ−θξ) = λ−θ
( )
[

ˆ ( )( ξ) + (λ−θ)
]

(3.2.1)

whereθ is any positive real number. Herê( ) is an +1 × +1 matrix valued homo-

geneous polynomial in the variableξ of degree ( ). Define

θ +1 = min
≥1

( )< ( )
0

{
δ ( ( ))
( )
0 − ( ) θ

}
(3.2.2)

so that, in particular,θ +1 ≤ θ , and let

σ +1 = σ − θ +1(3.2.3)

For our present purpose we shall assume thatσ +1 > 0. If σ +1 ≤ 0 we make a dif-
ferent argument in the following.

Let now ϕ( +1)( ) be a real analytic function defined in some open set ; in the
following we shall precise this function. Applying Lemma 3.1 we compute

− λσ +1ϕ( +1)( ) ( )( λ−σ ;λ) λσ +1ϕ( +1)( )

=
∑

≥0

λ−δ ( ( )) ( )( λ−θ +1(ϕ( +1)( ) + λ−σ +1 ))

+
∑

≥0

λ−δ ( ( ))−θ +1
( )−σ +1 ˜ ( +1)( λ−σ +1 ;λ)

where ˜ ( +1) ∈ R . Defining ˜ ( +1)( ξ;λ) and ( +1)( ξ;λ) by

( )( λ−θ +1ξ;λ) = λ−θ +1
( )
0 ˜ ( +1)( ξ;λ)

= λ−θ +1
( )
0

∑

≥0

λ−δ ( ˜ ( +1)) ˜ ( +1)( ξ)(3.2.4)

∑

≥0

λ−δ ( ( ))−θ +1
( )

˜ ( +1)( ξ;λ) = λ−θ +1
( )
0 ( +1)( ξ;λ)

the right-hand side of the above equality can be written as

λ−θ +1
( )
0
[

˜ ( +1)( ϕ( +1)( ) + λ−σ +1 ) + λ−σ +1 ( +1)( λ−σ +1 ;λ)
]

(3.2.5)

= λ−θ +1
( )
0


∑

≥0

λ−δ ( ˜ ( +1)) ˜ ( +1)( ϕ( +1)( ) + λ−σ +1 )
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+ λ−σ +1 ( +1)( λ−σ +1 ;λ)




We want to show that, provided an additional assumption is made, the operator
˜ ( +1) satisfies the conditions i)+1– v) +1 of Lemma 3.2, thus enabling us to start over
again the induction process.

i) +1 is obvious. By definitionθ +1 is a positive rational number and so isσ +1,
therefore also v)+1 is satisfied. From (3.2.4) we obtain

˜ ( +1)
0 ( ξ) =

∑

θ +1
( )
0 =θ +1

( )+δ ( ( ))
( )< ( )

0 if >0

ˆ ( )( ξ)(3.2.6)

each ˆ ( ) being homogeneous of degree( ) with respect to the variableξ.
We make the following assumption:

= +1
( )
0(3.2.7)

From (3.1.22) and Remark 3.1.1 we have

det ( )
0 ( λ−θξ) =

1

det ( )
11 0( λ−θξ)

det ( )
0 ( λ−θξ) + (λ−( +1)θ)(3.2.8)

for a suitableθ > 0. But

( )
0 ( λ−θξ) = λ−θ

( )
0

[
ˆ ( )

0 ( ξ) + (λ−θ)
]

so that

det ( )
0 ( λ−θξ) = det ( )

11 0( λ−θξ)λ−θ
[
det ˆ ( )

0 ( ξ) + (λ−θ)
]

(3.2.9)

+ (λ−( +1)θ)

= λ−θ
[

( ) + (λ−θ)
] [

det ˆ ( )
0 ( ξ) + (λ−θ)

]

+ (λ−( +1)θ)

On the other hand

det ( )
0 ( λ−θξ) = ( ) det ˜ ( )

0 ( ϕ( )( ) + λ−θξ)(3.2.10)

= λ− θ ( )
∑

|α|=

1
α!

(
det ˜ ( )

0

)(α)
( ϕ( )( ))ξα + (λ− θ)
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where denotes a non zero smooth function defined in . Thus from(3.2.9) and
(3.2.10) we obtain

det ˆ ( )
0 ( ξ) = ( )

∑

|α|=

1
α!

(
det ˜ ( )

0

)(α)
( ϕ( )( ))ξα(3.2.11)

The above relation allows us to conclude that:
a) The right-hand side of (3.2.11) is a non characteristic polynomial with respect
to the variableξ0 with real analytic coefficients. Then one can find a real analytic
τ +1( ξ′) defined in × such that

det ˜ ( +1)
0 ( ξ) = (ξ0 − τ +1( ξ′)) +1

+1( ξ)

+1( τ +1( ξ′) ξ′) 6= 0
(3.2.12)

where +1 ≤ .
b) We can find a real analytic functionϕ( +1)( ), defined in such that

∂ 0ϕ
( +1)( ) = τ +1( ∂ ′ϕ( +1)( ))(3.2.13)

c) There exists a non negative integer+2 such that

rank ˜ ( +1)
0 ( ϕ( +1)( )) = +1 − +2(3.2.14)

in .
These statements easily imply conditions ii)+1– iv) +1. Thus far we proved the follow-
ing

Lemma 3.2.1 (Second half of the induction step).Let ( )( ξ;λ) be as in
Lemma 3.2and assume that hypothesis(3.2.7) holds. Then we can find a positive ra-
tional numberθ +1 ≤ θ with σ +1 = σ − θ +1 > 0, a real analytic functionϕ( +1)( )
defined in and +1 × +1 matrix valued differential operators˜ ( +1)( ;λ),

( +1)( ;λ) with ( +1) ∈ R such that the construction of an asymptotic solution
for the operator(3.18) is reduced to the construction of an asymptotic solution for

˜ ( +1)( ϕ( +1)( ) + λ−σ +1 ;λ) + λ−σ +1 ( +1)( λ−σ +1 ;λ)(3.2.15)

Furthermore conditionsi) +1–v) +1 hold.

As a consequence of Lemma 3.2 and Lemma 3.2.1 we can state the following

Lemma 3.2.2. Assume(3.2.7) holds. Then the construction of an asymptotic so-
lution for (3.14) verifying i) –v) is reduced to the construction of an asymptotic so-
lution for (3.2.15)verifying i) +1–v) +1.
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4. Proof of Theorem 2.1

4.1. The caseq0 ≤ 2 This section is devoted to the proof of Theorem 2.1. We
start our argument in the case0 ≤ 2 and in the next subsection we show how to
modify it to prove Theorem 2.1 in the case0 = 3.

By (3.11), (3.12) and (3.13) we may start our induction process with ˜ (0), σ0, θ0

and apply Lemma 3.2.2.
We point out explicitly here that (3.2.7) is not assumed to hold. However by

(3.2.12) for each either = 2 or = 1 and ≥ +1
( )
0 in general. This im-

plies that if = 1 necessarily +1 = ( )
0 = 1, i.e. we are in a scalar case and (3.2.7)

is verified.
If the former case holds, i.e. if = 2, then either+1 = 2 and (3.2.7) holds or

+1 = 1. But in this case we are again in a scalar case and it cannot occur then that
> +1

( )
0 .

Summing up if ≤ 2 then necessarily (3.2.7) holds true. Next we show that the
induction process for computing the phase function ends after finitely many steps.

Proposition 4.1.1. Under the assumptions ofTheorem 2.1the iteration proce-
dure of Lemma 3.2.2occurs only a finite number of times before reaching a point
where

σ¯+1 = σ0 −
¯+1∑

=1

θ ≤ 0(4.1.1)

for a suitable integer .̄

In order to prove Proposition 4.1.1 we need a preliminary lemma:

Lemma 4.1.1. Assume that there exists ā∈ N such that

¯ = ¯+1 = · · · =

¯ = ¯+1 = · · · =

Under the hypotheses ofTheorem 2.1there exists a = ( )̄ such that

σ θ δ ( ˜ ( )) ≥ 1 belong to
N

(4.1.2)

for every ≥ .̄

Proof. By (3.2.12) we have ≤ 2. Let us start considering the case = 2. If
= 1 the argument is of the same kind and easier.

By what has been said above if = 2 then either( )
0 = 1 or = 1.
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i) ( )
0 = 1. The fact that +1 = implies that there are no roots of the equa-

tion det ˜ ( +1)
0 ( ξ) = 0 with respect toξ0 with uniform multiplicity less than .

˜ ( +1)
0 ( ξ) is given by (3.2.6). Two cases may occur: either the sum in (3.2.6) has

ˆ ( )
0 as the only summand or there are also other summands. In the former case we

have thatθ +1
( )
0 < θ +1

( ) + δ ( ( )), for every ≥ 1, which implies, if ( ) < ( )
0 ,

that

θ +1 <
δ ( ( ))
( )
0 − ( )

or, because of (3.2.2),

θ +1 = θ(4.1.3)

Assume now that there are terms other thanˆ ( )
0 , corresponding to > 0, in the sum

in (3.2.6). Since ( )
0 = 1 the condition defining the sum implies that

δ1( ( )) = θ +1(4.1.4)

ii) = 1. We are then in a scalar case. Again considering the sumin (3.2.6) we
conclude (4.1.3) if ˆ ( )

0 is the only summand. Let us assume that there are also other
summands different from̂ ( )

0 .
Now ( )

0 = and the assumption of the lemma implies that there is a≥ 1 such that

δ ( ( )) = θ +1(4.1.5)

because of the following lemma.

Lemma 4.1.2. Let ( ξ) be homogeneous polynomials with respect to the
variable ξof degree ,0 = 0 < 1 < · · · < . Assume that
i) there exists a point̄ such that 0( )̄ 6= 0,
ii) is non-characteristic with respect toξ0.
Then the roots of ( ξ) =

∑
=0 ( ξ) with respect toξ0 have multiplicity at most

near ( ξ′) = (¯ 0).

We skip the proof of Lemma 4.1.2 and go back to the proof of Lemma 4.1.1.
Summing up in both cases we conclude that either (4.1.3) or (4.1.4) hold. In particular
this implies that ( + 1) = ( ), since theδ ( ˜ ( +1)) are obtained summing and mul-
tiplying rational numbers whose denominator is ( ). This ends the proof of Lemma
4.1.1.

Proof of Proposition 4.1.1. By contradiction. If one could go through infinitely
many iteration steps then necessarily the assumption of Lemma 4.1.1 must hold. But
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in that case it is impossible for the series
∑∞

=1 θ to be convergent. Thus after a finite
number of iteration steps we get a negativeσ , for a suitable positive integer .

In order to complete the proof of Theorem 2.1, by Proposition4.1.1, we may as-
sume that for a certain positive integer

σ > 0(4.1.6)

but

σ +1 = σ − θ +1 ≤ 0(4.1.7)

Therefore

θ +1 = min
>0

( )< ( )
0

{
δ ( ( ))
( )
0 − ( ) θ

}
≥ σ(4.1.8)

Our purpose is to construct an asymptotic null solution for the operator

˜ ( )( ϕ( )( ) + λ−σ ;λ) + λ−σ ( )( λ−σ ;λ)(4.1.9)

where ( ) ∈ R , in a neighborhood of the origin.
At this stage of the construction we can still apply Lemma 3.2in order to pos-

sibly reduce the rank of the matrix in Equation (4.1.9). Hence we wind up with the
construction of an asymptotic solution for the operator

( )( λ−σ ;λ) =
∑

≥0

λ−δ ( ( )) ( )( λ−σ )(4.1.10)

of size +1 × +1. If

( )( λ−1ξ) = λ−
( )
[

ˆ ( )( ξ) + (λ−1)
]

(4.1.11)

when ≥ 0 andλ→ +∞, the operator in (4.1.10) can be written as

( )( λ−σ ;λ) =
∑

≥0

λ−δ ( ( ))− ( )σ
[

ˆ ( )( ) + (λ−σ )
]

(4.1.12)

where (λ−σ ) stands for a (matrix-valued) differential operator of order ≤ ( ) whose
coefficients are (λ−σ ) uniformly in . The fact thatθ +1 ≥ σ implies that for every
≥ 1

δ ( ( )) + σ ( ) ≥ σ ( )
0(4.1.13)
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so that

( )( λ−σ ;λ)(4.1.14)

= λ−σ
( )
0




∑

σ ( )
0 =σ ( )+δ ( ( ))

ˆ ( )( ) + λ−ε
∑

≥0

λ−δ̃ ( ( )) ˜ ( )( )




where ε is a positive rational number whose denominator can be chosen to be the
same as the denominator ofσ , δ ( ( )), ≥ 1. Moreover 0 =δ̃0( ( )) < δ̃1( ( )) < · · ·
and the terms with > 0 in the first sum have order( ), > 0, with ( ) < ( )

0 .
Arguing as in the proof of Lemma 3.2.1 we can show that the principal part of

the differential operator in the first sum,ˆ ( )
0 , is non characteristic.

Disposing of the power ofλ in front of the operator in square brackets we are
left, in the end, with the task of constructing an asymptoticsolution for an operator
of the form

( )
0

( ) + ˜ ( ) + λ− /
∑

≥0

λ− / ( )(4.1.15)

where ∈ N, ∈ N, ord ˜ < ( )
0 and ( )

0
is a non characteristic homogenous differ-

ential operator of order ( )
0 . One can then seek an asymptotic solution for (4.1.15) in

the form
∑

≥0

λ− / ( )

and this is a well-known procedure. This ends the proof of Theorem 2.1.

4.2. The caseq0 = 3 This subsection is devoted to the proof of Theorem 2.1
in the case 0 = 3. Actually we argue for a generic iteration step for which =3 and
show how to modify the above argument to prove the theorem.

If +1
( )
0 = = 3 then the argument in the previous section can be applied

without modification; so we stick to the case+1
( )
0 < = 3. Again if +1 = 1

we are in a scalar case, so that necessarily (3.2.7) holds andthe previous proof can
be applied. The only case left out is when+1 = 2 and then necessarily( )

0 = 1 and
this is the case considered in the present section.

First we need some more precise notation; formula (3.2.1) can be written in the
form

( )( λ−θξ) = λ−θ
( )
[

ˆ ( )
0 ( ξ) + λ−θ ˆ ( )

1 ( ξ) + (λ−2θ)
]

(4.2.1)

θ being a positive real number,̂ ( )
0 ( ξ) vanishes of order ( ) as |ξ| → 0 and

ˆ ( )
1 ( ξ) vanishes of order ( ) + 1 as |ξ| → 0.
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By Lemma 3.2, since det( )
0 vanishes atξ = 0 of the third order and ( )

0 = 1 we
conclude that det̂ ( )

00 ( ξ) ≡ 0, ˆ ( )
00 ( ξ) being in general a non zero matrix depend-

ing linearly onξ. Let us use a simpler notation for̂( )
00 ( ξ):

ˆ ( )
00 ( ξ) =

[
11( ξ) 12( ξ)

21( ξ) 22( ξ)

]
(4.2.2)

where the ( ξ) are linear forms in the variableξ with real analytic coefficients de-
pending on the variable defined in . We may always assume that the linear form

11( ξ) is not identically zero.
Then we have the following lemma, whose proof we omit:

Lemma 4.2.1. Using the above notation and assuming that11( ξ) 6≡ 0 we can
find two real analytic non singular matrices, ( ), ( ), defined in , such that
ˆ ( )

00 ( ξ) can be written in one of the following forms:
i) If 11( ξ) and 12( ξ) are linearly independent then

( ) ˆ ( )
00 ( ξ) ( ) =

[
11( ξ) 12( ξ)

0 0

]
;

ii) If 11( ξ) and 21( ξ) are linearly independent then

( ) ˆ ( )
00 ( ξ) ( ) =

[
11( ξ) 0

21( ξ) 0

]
;

iii)

( ) ˆ ( )
00 ( ξ) ( ) =

[
11( ξ) 0

0 0

]

otherwise.

Using this lemma we want to modify the argument in Subsection3.2 in order to
complete the inductive step. Obviously (3.2.7) no longer holds.

The first and second cases in the above lemma are essentially the same, since
the forms differ only by a transposition. We focus first on thesecond case, i.e. when

11( ξ) and 21( ξ) are linearly independent linear forms with respect to the variable
ξ. Denote by

˜ ( )( λ−σ ;λ) = ( ) ( )( λ−σ ;λ) ( ) λ(4.2.3)

where ( ) and ( ) are the matrices in Lemma 4.2.1 andλ is the matrix

λ =

[
λ−θ/2 0

0 λθ/2

]
(4.2.4)
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Since ( ) and ( ) are non singular matrices, the construction of an asymptotic so-
lution for ( )( λ−σ ;λ) is reduced to the construction of an asymptotic solution
for ˜ ( )( λ−σ ;λ). On the other hand

˜ ( )( λ−σ ξ;λ) =
∑

α≥0

∑

≥0

1
α!
λ−δ ( ( ))−σ |α| ( ) ( )(α)( λ−σ ξ) (α)( ) λ

so that, if θ is a positive real number,θ < σ , we have

˜ ( )( λ−θξ;λ) =
∑

α≥0

∑

≥0

1
α!
λ−δ ( ( ))−σ |α| ( ) ( )(α)( λ−θξ) (α)( ) λ(4.2.5)

=
∑

≥0

( λ−θξ;λ)

Let us take a look at the ’s above when≥ 1. We have:

( λ−θξ;λ) =
∑

|α|≤ ( )

1
α!
λ−δ ( ( ))− ( )θ−(σ −θ)|α| [

α( ξ) + (λ−θ)
]

λ

+
∑

|α|≥ ( )+1

1
α!
λ−δ ( ( ))−|α|θ−(σ −θ)|α| [

α( ξ) + (λ−θ)
]

λ(4.2.6)

= λ−δ ( ( ))− ( )θ+θ/2
{[

0 ( ξ)
0 ( ξ)

]
+ (λ−θ)

}

where and have order≤ ( ) with respect toξ.
Let us now consider 0( λ−θξ;λ); proceding as above we have

0( λ−θξ;λ) =
∑

α≥0

1
α!
λ−σ |α| ( ) ( )

0
(α)( λ−θξ) (α)( ) λ

=

{
λ−θ

[
11( ξ) 0

21( ξ) 0

]
+ λ−2θ

[
11( ξ) 12( ξ)

21( ξ) 22( ξ)

]
+ (λ−3θ)

}
λ

+ λ−σ
{

01( ) + (λ−θ)
}

λ + (λ−2σ ) λ(4.2.7)

= λ−3θ/2

{[
11( ξ) 12( ξ)

21( ξ) 22( ξ)

]
+ (λ−θ)

}

+λ−σ +θ/2

{[
0 ( )

0 ( )
0 ( )

0 ( )

]
+ (λ−θ)

}
+ (λ−2σ +θ/2)

Here we have used the fact that first order derivatives with respect toξ of a linear
form in ξ yield only a function of .
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Lemma 4.2.2. Define ∗ = min{ | ( ) = 0}. We understand that ∗ = +∞ if
( ) ≥ 1 for every ≥ 0. Choose

θ +1 = min

{
δ1( ( ))

δ ∗ ( ( ))
2

σ

2

}
(4.2.8)

and

θ +1 = min
{
δ1( ( ))

σ

2

}

if ∗ = +∞. Then

˜ ( )( λ−θ +1ξ;λ) = λ−(3/2)θ +1
∑

≥0

λ−δ ( ˜ ( +1)) ˜ ( +1)( ξ)

= λ−(3/2)θ +1 ˜ ( +1)( ξ;λ)

In particular we have

˜ ( +1)
0 ( ξ) =

[
11( ξ) 12( ξ) + ( ξ)

21( ξ) 22( ξ) + ( ξ)

]

wheredegξ , ≤ 1 and

det

[
11( ξ) 12( ξ)

21( ξ) 22( ξ)

]
= ( )

∑

|α|=

1
α!

(
det ˜ ( )

0

)(α)
( ϕ ( ))ξα

where ( ) is a non zero smooth function.

Proof. Let us assume∗ < +∞. Then if ( ) ≥ 1 we have that

δ ( ( )) + ( )θ +1 −
θ +1

2
≥ δ1( ( )) +

θ +1

2
≥ 3θ +1

2

where equality implies ( ) = 1. On the other hand if ( ) = 0 then

δ ( ( )) + ( )θ +1 −
θ +1

2
≥ δ

∗
( ( )) − θ +1

2
≥ 3θ +1

2

where equality implies that the corresponding terms in the expansion (4.2.6) are func-
tions of only. At last we obviously haveσ −θ +1/2 ≥ (3θ +1)/2. We may therefore
write

˜ ( )( λ−θ +1ξ;λ) = λ−(3/2)θ +1
∑

≥0

λ−δ ( ˜ ( +1)) ˜ ( +1)( ξ)(4.2.9)
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and forget about the factor in front. The other relations arededuced from Lemma
3.2.2. This proves the lemma in the case∗ < +∞. If ∗ = +∞ the argument is the
same without any reference to the case( ) = 0.

In the definition ofθ +1 in (4.2.8) a division by two may occur. This could ham-
per our technique of showing that only a finite number of phases is needed. In the
next lemma we show that if we have a triple root of det( )

0 , then this can occur only
once in size 2× 2 and then everything becomes scalar.

Lemma 4.2.3. Assume thatdet ˜ ( +1)
0 ( ξ) has a root of uniform multiplicity3.

Then there is a real analytic phase functionϕ( +1)( ) such that

det ˜ ( +1)
0 ( ϕ( +1)( )) = 0

rank ˜ ( +1)
0 ( ϕ( +1)( )) = 1

in some open set inR +1.

Proof. Using Lemma 3.2.2 we see that

det ˜ ( +1)
0 ( ξ) = +1( )

(
ξ0 − τ ( ξ′)

)3

for some non vanishing smooth function+1 and τ , a first order polynomial with re-
spect toξ′. We can then construct a functionϕ( +1) such thatϕ( +1)

0 = τ ( ϕ( +1)
′ ) and,

for some small ,ϕ( +1)( ′) = 〈 ′ η′〉. Then the matrix ˜ ( +1)
0 ( ϕ( +1)( )) has its

first column with entries 1( ϕ( +1)( )), = 1 2. We claim that 1( ϕ( +1)( )) can-
not both vanish. In fact if they both vanish at the same time identically, we could de-
duce that for 0 = the linear forms 1 are not linearly independent becauseη′ is arbi-
trary, and this is a contradiction to the assumption of case ii) of Lemma 4.2.1. Hence
the rank of ˜ ( +1)

0 ( ϕ( +1)( )) is one and the following iteration reduces it to a scalar
problem in which (3.2.7) holds.

This completes the discussion in the case ii) of Lemma 4.2.1.Let us now consider
case iii) of the same lemma. Let now

λ =

[
λ−θ/4 0

0 λθ/4

]
(4.2.10)

and define

˜ ( )( λ−σ ;λ) = λ ( ) ( )( λ−σ ;λ) ( ) λ(4.2.11)

Arguing as in the proof of Lemma 4.2.2 we can easily show the following
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Lemma 4.2.4. Define ∗ as in Lemma 4.2.2and chooseθ +1 according toEqua-
tion (4.2.8). Then

˜ ( )( λ−θ +1ξ;λ) = λ−(3/2)θ +1
∑

≥0

λ−δ ( ˜ ( +1)) ˜ ( +1)( ξ)

= λ−(3/2)θ +1 ˜ ( +1)( ξ;λ)

In particular we have

˜ ( +1)
0 ( ξ) =

[
11( ξ) 0

0 22( ξ) + ( ξ)

]
(4.2.12)

wheredegξ ≤ 1 and

det

[
11( ξ) 0

0 22( ξ)

]
= ( )

∑

|α|=

1
α!

(
det ˜ ( )

0

)(α)
( ϕ ( ))ξα

where ( ) is a non zero smooth function.

We point out explicitly that if ( ξ) in the above expression for̃ ( +1)
0 ( ξ) is

not zero or 22( ξ) is not proportional, as a quadratic form inξ, to 11( ξ)2, then
det ˜ ( +1)

0 ( ξ) has roots at most double and we fall back to the case discussed in
Subsection 4.1. Thus the worst case occurs when in (4.2.12) we have

( ξ) = 0 and 22( ξ) = α( ) 2
11( ξ)(4.2.13)

for a non zero smooth functionα( ).
Next we discuss case iii) of Lemma 4.2.1 when (4.2.13) occurs. Dividing out the

factor λ−(3θ +1)/2, and keeping into account that in this case no rank reductionis pos-
sible, thus preserving the 2× 2 size, we reach the point where

˜ ( +1)( ξ;λ) = ( +1)( ξ;λ) =
∑

≥0

λ−δ ( ( +1)) ( +1)( ξ)(4.2.14)

where

˜ ( +1)
0 ( ξ) = ( +1)

0 ( ξ) =

[
( ξ) 0

0 α( ) 2( ξ)

]
(4.2.15)

( ξ) being a linear form inξ andα as above.
By (4.2.15) we do not need intertwining matrices any more andcompute
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λ
( +1)( λ−θξ;λ) λ =

∑

≥0

λ−δ ( ( +1))
λ

( +1)( λ−θξ) λ

=
∑

≥0

λ−δ ( ( +1))−θ ( +1)

λ

[
ˆ ( +1)

0 ( ξ) + λ−θ ˆ ( +1)
1 + · · ·

]
λ(4.2.16)

where the ˆ ( +1)( ξ) are homogeneous of order( +1) + with respect toξ as in
(3.2.1).

The above sum can be written as

λ
( +1)( λ−θξ) λ = λ−(3θ)/2

[
( ξ) 0

0 α( ) 2( ξ)

]

+
∑

≥1

λ−δ ( ( +1))−θ ( +1)

{
λθ/2

[
0 0

0
(

ˆ ( +1)
0 ( ξ)

)
22

]

+


 0

(
ˆ ( +1)

0 ( ξ)
)

12(
ˆ ( +1)

0 ( ξ)
)

21
0




+λ−θ/2



(

ˆ ( +1)
0 ( ξ)

)
11

0

0
(

ˆ ( +1)
1 ( ξ)

)
22




+λ−θ


 0

(
ˆ ( +1)

1 ( ξ)
)

12(
ˆ ( +1)

1 ( ξ)
)

21
0


 + · · ·





Now denote by ∗ = min{ | ( +1) = 0} and assume that∗ <∞. If
(

ˆ ( +1)
∗ 0 ( )

)
22

6= 0

then we can choose

θ +2 = min

{
δ ∗ ( ( +1))

2
σ +1

}

and in such a case we can see using the same arguments as above that det˜ ( +2)
0 ( ξ)

no longer has a triple root where

λ
( +1)( λ−θ +2ξ;λ) λ = λ−(3/2)θ +2 ˜ ( +2)( ξ;λ)

On the other hand if
(

ˆ ( +1)
∗ 0 ( )

)
22

≡ 0 and


 0

(
ˆ ( +1)

∗ 0 ( ξ)
)

12(
ˆ ( +1)

∗ 0 ( ξ)
)

21
0


 6= 0
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we may choose

θ +2 = min

{
2
3
δ ∗ ( ( +1)) σ +1

}

and see that either, as before, det˜ ( +2)
0 ( ξ) no longer has a triple root or, if it still

has one, then there is a phase functionϕ( +2)( ) associated with the triple root such
that rank˜ ( +2)

0 ( ϕ( +2)( )) = 1. Therefore we wind up in a scalar case.

If
(

ˆ ( +1)
∗ 0 ( )

)
22

= 0 and


 0

(
ˆ ( +1)

∗ 0 ( ξ)
)

12(
ˆ ( +1)

∗ 0 ( ξ)
)

21
0


 = 0

or ∗ = ∞ we take

θ +2 = min
{
δ1( ( +1)) σ +1

}

Then it is easy to see that

˜ ( +2)
0 ( ξ) =

[
( ξ) + ( ) 0

0 α( ) 2( ξ) + ( ξ)

]

where degξ ≤ 1. Note that det̃ ( +2)
0 ( ξ) = 0 has a root of multiplicity at most

double if ( ) 6= 0 or ( ξ) 6= 0 by Lemma 4.1.2.
Summing up we proved the following

Lemma 4.2.5. Assume that ˜ ( +1)( ξ;λ) verifies (4.2.15). Then we can find
θ +2 such that one of the following cases takes place:
(i) det ˜ ( +2)

0 ( ξ) = 0 has no longer triple root.
(ii) there is a phase functionϕ( +2)( ) associated with the triple root such that

rank ˜ ( +2)
0 ( ϕ( +2)( )) = 1

(iii) θ +2 = min
{
δ1( ( +1)) σ +1

}
and

˜ ( +2)
0 ( ξ) =

[
( ξ) 0

0 α( ) 2( ξ)

]

If (i) or (ii) in Lemma 4.2.5 occurs then the remaining part ofthe construction
of asymptotic solutions is reduced to the case of double roots and we skip it. If (iii)
occurs then one can apply again Lemma 4.2.5 to˜ ( +2)( ξ;λ). If (iii) happens re-
peatedly then (4.1.2) in Lemma 4.1.1 holds because the denominator of θ +2 is the
same as that ofθ +1 (andσ +1 and theδ ( ( +1))’s). Thus the rest of the proof is just
a repetition of the case of double roots.
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