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1. Introduction

Let M be the topological group of all linear fractional transfations. Its multi-
plication is the composition of mappings and its topologythe uniform convergence
topology on the extended complex plaﬁe

Let » be a positive integer. We denote the free group with bésis..,r} by
F.. The mapping fromd € Hom(F,,M) to (6(1),...,0(r)) € M" is bijective. We
give Hom(F,, M) the topology such that this bijection is a homeomorphismhew
6 € Hom(F,, M) is a monomorphism@—! is the inverse of the isomorphisth whose
range is restricted to Ith For ¢ € M and 6 € Hom(F,, M), we definepl €
Hom(F,, M) to be (0)(x) = ¢ o 6(x) o o~ ! for every x in F,. In this way,M acts
on Hom(,, M.

Let r be a positive integer greater than one. Define Skhottky spac&, of rank
r to be

S, ={0 € Hom(F,, M) | Im#6 is a Schottky group of rank}.

S, is M-invariant. The Schottky space of rank defined in Chuckroyi§2s, /M.
But the results of Chuckrow [2] which we use also hold for theh@tky space in
our sense. We denote @5, the boundary ofS, in Hom(F,, M). An element ofdS,

is called acuspif its image has parabolic transformations. The followirggults are
shown in Chuckrow [2]:

(1) S, is open and connected in Hom( M) (Chuckrow [2, Lemma 5]).

(2) Every element oBS, is a monomorphism and has an image without elliptic trans-
formations (Chuckrow [2, Theorem 4]).

(3) If & € 0S, is not a cusp, then I does not act discontinuously on any open
subset ofC (Chuckrow [2, Theorem 5]).

Define theclassical Schottky spac®® of rank r to be

S? = {6 € Hom(F,, M) | Im@ is a classical Schottky group of rank.

Let SO be the closure of? in Hom(F,, M). If ¢ belongs todS, N'SY, then Imd acts

2000 Mathematics Subject ClassificatioRrimary 30F40; Secondary 32G15, 37F35.



90 N. YOsHIDA

discontinuously on some open subset@)f(Marden [4, Proposition 3.1]). Thus every
element ofdS, NSO is a cusp.

For each loxodromic transformatiofi , we denote the mudtipbf f by A(f)
(IAM(f)] > 1). The main result of this paper is as follows:

Theorem. Letr be an integer greater than one. If a sequefiég}*=s in S? con-
verges tod in 8SmS_9 asn tends totoo, then for each parabolic transformatiop of
Imé, (0,00~ 1(p)) converges tdl conically asn tends te-co. Namely,\(6, 00~1(y))
converges tdl and

{ IA(G © 07 1(p)) — 1] }*‘”
Al o0~ — 1/,

is bounded.
Using McMullen [7, Theorem 7.3], we obtain the following:

Corollary. Letr be an integer greater than one. If a sequeddg}’y in S?
converges td in 8S, NS? asn tends totoo, then
(1) Imé, converges tdm @ geometrically
(2) the limit set oflm#, converges to the limit set dm@ in the sense of Hausdorff
convergence
(3) the Patterson-Sullivan measure lofh 6, converges to the measure loh 6 weakly
(4) the critical exponent ofm 8, converges to the critical exponent h 6,
asn tends totoo.

In section 2, we will recall the definition of a Schottky grougnd we will also
prove a lemma. In section 3, we will prove our theorem. Inisect, we will show
that S? in our theorem cannot be replaced wil) even if6 belongs tods, mS_E.

The author is deeply grateful to Professor Hiroki Sato far valuable suggestions
and encouragement. Also he is gratitude to Professors KatsMatsuzaki and Yoshi-
hide Okumura. Thanks are due to the referees for their darefding and valuable
suggestions.

2. Schottky Groups

Let r be an integer greater than one. A subgraip Mbfis a Schottky group
of rank r if there exist a set of generators, ..., h, of G and 2 mutually disjoint
Jordan curve<;,C_4,...,C,,C_, on C which satisfy the following conditions:

1) C1,C_q,...,C,,C_, bound a 2 -ply connected regiak
(2) For eachi in{1,...,r}, h; mapsC; ontoC_;.
(3) For eachi in{1,...,r}, h;(R) and R are mutually disjoint.
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In the above definition, if Jordan curves can be replaced wiitties, thenG is called
a classical Schottky group of rank A Schottky group of rank- is free of rank ,
purely loxodromic and acts discontinuously on some operseiubf C.

ExavpLe (cf. McMullen [6, Theorem 3.1]). For each positive integer { le
Cin,...,Cre1, be circles onC which bound an { + 1)-ply connected region ¢
2). Suppose thaCy,, ..., C,+1, converge to circle<s, ..., C,+1 asn tends to do,
respectively; Cq,...,C,+1 may be tangent but cannot intersect. Defifig 0 €
Hom(F,, M) to be

0,(i) = pre1n © pin, 0@)=pr10p; foreveryi in{l,...,r},

respectively, where;, and p; are the reflections irC;, and; oﬁ, respectively
(j=1,...,r+1). It is shown that{6,},% is contained inS? and converges t6 asn
tends to +o. If ¢ € Im@ is parabolic, then there exist [ € {1, ..., r+1} such thaty
and p; o p; are conjugate in the group generated Ay. .., p,+1 (in this case,C; and
C, are tangent). Since the composite of two reflections in twadually disjoint circles
is hyperbolic, (8, o 6~ (y)) is real for everyn . Therefore\(d, o ~1(¢)) converges
to 1 conically asn tends toot: this is a special case of our theorem.

We notice the following:

Lemma 1 (Marden [4, Lemma 4.1]). Suppose thaG is a Schottky group and
that u, v andw are three distinct limit points af . Fix a regiah  as the above
definition of a Schottky group. Then there exists one and oné/y € G such thatu ,

v and w belong to three distinct components®f- (R).

In order to prove our theorem, we will prove the following lera.

Lemma 2. Let G be a classical Schottky group. Suppose tfiat and belong
to G and have no common fixed points. ketv , amd be the repulsie figint of
f, the attractive fixed point of and the attractive fixed poihigprespectively. Then
there exist two closed diske  an@ @ which have the following properties
(1) P and Q containu andw , respectively and they do not intersect edhbr.
(2) f(P) containsP andQ and it does not contain
(3) Q contains at least one of(x) and g(v).

Proof. Letr be the rank o6& . Suppose that is a region as in theeabefi-
nition of a Schottky group. Sinc& s classical, we may asstiraeevery component
of OR is a circle. Note thait p and are limit points 6f . By Lemma 1,réhex-
ists p € G such thatu w andv belong to three distinct component@ ofo(R). Let
U,V andW be components @ — »(R) which containu ,v andw , respectively. By
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the definitions ofU and/ , we can show thAtU ( ) contahs vV and does not con-
tain v. In particular, f U ) containg/ an® . If the repulsive fixedint of ¢ does
not belong toU (orV ), thery u( ) (og v( )) belongs & . Thus we can put U =
and Q =W . I

3. Proof of Theorem

Choose a loxodromic transformatiaf of Im & which does not fix the fixed point
of . We definep, =6, o ~(¢) and ), =6, o #~1(») for eachn . Note thatp, and
¥, have no common fixed points. Let, ang be the repulsive fixedtpafing,
and the attractive fixed point op,, respectively. We writek, for\(¢,). Clearly, k,
converges to 1.

Choose an element of M such thaty o ¢ o y7%(z) = z/(z + 1). Bothy(p,) and
v(g.) converge to 0 ag tends tox: We assume thai is sufficiently large such that
neither~(p,) nor ~(g,) is co. For eachn , define, € M to be

—k
(2) = ————=(1(z) — V(gqn)).
Y(pn) — ¥(qn)
We write
_ a,z+b
YOo@noy l(z) == - 5 (andn —bycy = 1)’
c,z+d,

for eachn . Note that, # 0 and thatc? converges to 1. Since(p,) and~(q,) are the
solutions of the quadratic equatiepx? — (a, — dy)x — b, =0,

2_
(1(Pa) = 7(@n))? = ((Pa) *+ 1(@a))* = 41(Pa)(4n) = W :

Using @, +d, ¥ =k, +k; 1+ 2, we have

(kn - 1)2

2
kncy

((Pn) — Y(@n))? =

Since bothk, an(r,zl converge to 1,

1—k%, 2_ )
<m> = kncy, 1 (n— +o0).

Thus v, converges toy, or some subsequence dfy,} converges to—~v, where
(=)(z) = —(y(z)). Considering fixed points and multipliers, we can shgwo ¢, o

77 z) = z/(z+ky). Sinceyopoy~Y(z) =z/(z+1) andk, converges to 1, converges
to v asn tends to do.
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Let c € M mapz to ¥z. Define f, andf to be

fu=ooyop,ov,too tand f =coyopoytoo

respectively. Thenf, z( ) %,z +1 and z( )= +1. Note that(1—k%,) is the repulsive
fixed point of f, . Defineg, ang to be

gn=0oy o0y, oo tandg =coyopoytoot

respectively. Clearlyg, converges o as tends to.tet w, andw be the at-
tractive fixed points ofg, ang , respectively. Note that neithg nor w is co. By
Lemma 2, there exist two closed disky agg Gnfor eachn which have the
following properties:

(1) P, andQ, contain L(1—k,) andw, , respectively and they do not intersect each
other.

(2) f.(P,) containsP, andQ, and it does not contain

(3) Q. contains at least one @f, o) and g, (1/(1 — k,)).

From (2), bothP, andQ, are contained @ We put

P,={z€C||z—an < pu}.
We easily obtain
Ja(Pu) ={z € C ||z — (kncw + 1)| < pulknl}.
From P, C f,(P,), we deduce that
latn(kn — 1) + 1 < pu([ka| — 1).

Let I, be the ray which hag, as its initial point and which passes through the center
(in the Euclidean sense) @, . Suppose that crog¥satu),, 00, atu, andv, ,
and f, OP,) at v, (u, lies betweeru/ andv, ). Under this condition,

|tn — va| < ‘”;1 - U//1| = |U;/1 — | = pn < |an(kn — 1) + 1 + pulky| — pa.
Using |ay, (k, — 1) + 1| < p,(/k,| — 1), we have
ltn — V| < 2p4(|kn| — 1)

We assume that is sufficiently large such that the followimggualities are satisfied:

lw — g(c0)|
lw —w,| < 4 .
lw — g(c0)|

|g(oo)—g,1(oo)| < #
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‘g(OO)—gn (ﬁ)’ < w.

From these inequalities, we obtain

w — oo
|72g()| < ‘wn —g,1(OO)|.
[w — g(c9)| 1
> < |Wp — &n 1—k, .

Since 0, containsw, and at least one gf coX and g, (¥ (1 — k,)), and |u, — v,| is
the diameter (in the Euclidean sense) @f

lw — g(0)|

5 < |uy — vy)-

Since [u, — va| < 2pu(Jka| — 1),
lw — g(o0)| < 4pa(|kn| — 1).

Using this inequality andw,(k, — 1) + 1| < p,(|k,| — 1), we have

1 Z |an(kn - 1) + 1|
pn(|kn| - 1)
|| |kn — 1] 1
> .
on |kal =1 pa(lkn| — 1)
|| |kn — 1] 4

P [kl =1 |w—g(c0)|’
Sincew, does not belong t8,
|w, — |

< |wn| +M < 4|wn|(|kn|71)+M

1< < .
Pn Pn Pn |w - g(oo)| Pn

Since |w,|(|k,| — 1) converges to 0 a8 tends tect |«,|/p, IS greater than A2 for
sufficiently largen . Therefore,

|kn _1| Pn < 4 ) < 4 )
< 1+—m— | <21+ ———
kn| =1 ol |w — g(c0)] |w — g(c0)]

for sufficiently largen . This completes the proof.

4. Convergence of critical exponents

Let B2 be the unit ball model of three-dimensional hyperbolic spand letd B3
be the sphere at infinity oB3. M acts naturally on both oB® and 9B3. A discrete
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subgroup ofM acts onB? discontinuously. A discrete subgroup bf is called geo-

metrically finiteif there exists a finite-sided fundamental polyhedron fardttion on

B3 and geometrically infiniteotherwise. A Schottky group is geometrically finite.
Let G be a discrete subgroup d. Define thecritical exponentd(G) of G to be

5(G) = inf{a >0

S expl-ap(o, g(0) < +oo},

geG

whereo = (0, 0, 0) andp(o, g(0)) is the hyperbolic distance betweenand g ©). Fur-
thermore, suppose th&@ is geometrically finite. Then, thetists one and only one
Borel probability measurg: on 9B3 such that it is supported on the limit set 6f
and that for everyg inG and every Borel subget @83, the following equality
holds:

w(g(E)) = /E 18O (),

where |g’(x)| is the linear distortion og at in the spherical metric @82 (Sullivan
[8, Theorem 1]). We call thig. the Patterson-Sullivan measure @f.

Let r be an integer greater than one. For everiy 0S,, Im@ is discrete (Marden
[4, Lemma 2.2]). Using McMullen [7, Theorem 7.3], we obtain fledowing:

Proposition. Suppose that a sequen¢é,}.27 in S, converges to a cusp asn
tends to+oo and thatim 6 is geometrically finite. If for each parabolic transfornati
@ of Im@, A0, o 6~(y)) converges tdl conically asn tends teroo, then
(1) Im@, converges tdm 6 geometrically
(2) the limit set oflm#, converges to the limit set dmé in the sense of Hausdorff
convergence
(3) the Patterson-Sullivan measure loh 6, converges to the measure loh 0 weakly
(4) the critical exponent ofm6, converges to the critical exponent h 6,
asn tends totoo.

For everyd in 9S, N SY, Im@ is geometrically finite (Jgrgensen, Marden and
Maskit [3]). Hence from this we obtain the corollary statedtlie introduction.

Finally, we will show thatS? in our theorem cannot be replaced wih. If ¢ €
dS, is not a cusp, therim @ is geometrically infinite Using Mostow rigidity, we can
prove this claim (see, for example, Matsuzaki and TaniguhiTheorem 4.25]). If
a sequencen, } 2] in S, converges ton and if Imn is geometrically infinite, then
o(Imn,) converges to 2 ag tends taxct (Bishop and Jones [1, Theorem 6.2]). It is
essentially proved in Chuckrow [2] thalS, removed all cusps is dense #§,. Con-
sequently, by diagonal method, for eaghn JS,, there exists a sequendé,},;>5 in
S, such that#, converges tod and 6(Imé,) converges to 2 aa tends toxt: On
the other hand, if a discrete subgroGp Mfis geometrically finite and if the limit
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set of G does not coincide witkl, then 4(G) is less than 2 (Sullivan [8, Theorem 1]).
Therefore,S£’ in our theorem cannot be replaced with even if § belongs tadS, NSP.
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