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A SEQUENCE IN THE CLASSICAL SCHOTTKY SPACE
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1. Introduction

Let M be the topological group of all linear fractional transformations. Its multi-
plication is the composition of mappings and its topology isthe uniform convergence
topology on the extended complex planeĈ.

Let be a positive integer. We denote the free group with basis{1 . . . } by
. The mapping fromθ ∈ Hom( M) to (θ(1) . . . θ( )) ∈ M is bijective. We

give Hom( M) the topology such that this bijection is a homeomorphism. When
θ ∈ Hom( M) is a monomorphism,θ−1 is the inverse of the isomorphismθ whose
range is restricted to Imθ. For ϕ ∈ M and θ ∈ Hom( M), we defineϕθ ∈
Hom( M) to be (ϕθ)( ) = ϕ ◦ θ( ) ◦ ϕ−1 for every in . In this way,M acts
on Hom( M).

Let be a positive integer greater than one. Define theSchottky spaceS of rank
to be

S = {θ ∈ Hom( M) | Im θ is a Schottky group of rank}

S is M-invariant. The Schottky space of rank defined in Chuckrow [2] is S /M.
But the results of Chuckrow [2] which we use also hold for the Schottky space in
our sense. We denote by∂S the boundary ofS in Hom( M). An element of∂S
is called acusp if its image has parabolic transformations. The following results are
shown in Chuckrow [2]:
(1) S is open and connected in Hom( M) (Chuckrow [2, Lemma 5]).
(2) Every element of∂S is a monomorphism and has an image without elliptic trans-
formations (Chuckrow [2, Theorem 4]).
(3) If θ ∈ ∂S is not a cusp, then Imθ does not act discontinuously on any open
subset ofĈ (Chuckrow [2, Theorem 5]).
Define theclassical Schottky spaceS0 of rank to be

S0 = {θ ∈ Hom( M) | Im θ is a classical Schottky group of rank}

Let S0 be the closure ofS0 in Hom( M). If θ belongs to∂S ∩ S0, then Imθ acts
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discontinuously on some open subset ofĈ (Marden [4, Proposition 3.1]). Thus every
element of∂S ∩ S0 is a cusp.

For each loxodromic transformation , we denote the multiplier of by λ( )
(|λ( )| > 1). The main result of this paper is as follows:

Theorem. Let be an integer greater than one. If a sequence{θ }+∞
=1 in S0 con-

verges toθ in ∂S ∩S0 as tends to+∞, then for each parabolic transformationϕ of
Im θ, λ(θ ◦θ−1(ϕ)) converges to1 conically as tends to+∞. Namely,λ(θ ◦θ−1(ϕ))
converges to1 and

{ |λ(θ ◦ θ−1(ϕ)) − 1|
|λ(θ ◦ θ−1(ϕ))| − 1

}+∞

=1

is bounded.

Using McMullen [7, Theorem 7.3], we obtain the following:

Corollary. Let be an integer greater than one. If a sequence{θ }+∞
=1 in S0

converges toθ in ∂S ∩ S0 as tends to+∞, then
(1) Imθ converges toIm θ geometrically;
(2) the limit set ofIm θ converges to the limit set ofIm θ in the sense of Hausdorff
convergence;
(3) the Patterson-Sullivan measure ofIm θ converges to the measure ofIm θ weakly;
(4) the critical exponent ofIm θ converges to the critical exponent ofIm θ,
as tends to+∞.

In section 2, we will recall the definition of a Schottky group, and we will also
prove a lemma. In section 3, we will prove our theorem. In section 4, we will show
that S0 in our theorem cannot be replaced withS even ifθ belongs to∂S ∩ S0.

The author is deeply grateful to Professor Hiroki Sato for his valuable suggestions
and encouragement. Also he is gratitude to Professors Katsuhiko Matsuzaki and Yoshi-
hide Okumura. Thanks are due to the referees for their careful reading and valuable
suggestions.

2. Schottky Groups

Let be an integer greater than one. A subgroup ofM is a Schottky group
of rank if there exist a set of generators1 . . . of and 2 mutually disjoint
Jordan curves 1 −1 . . . − on Ĉ which satisfy the following conditions:
(1) 1 −1 . . . − bound a 2 -ply connected region .
(2) For each in{1 . . . }, maps onto − .
(3) For each in{1 . . . }, ( ) and are mutually disjoint.
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In the above definition, if Jordan curves can be replaced withcircles, then is called
a classical Schottky group of rank. A Schottky group of rank is free of rank ,
purely loxodromic and acts discontinuously on some open subset of Ĉ.

EXAMPLE (cf. McMullen [6, Theorem 3.1]). For each positive integer , let

1 . . . +1 be circles onĈ which bound an ( + 1)-ply connected region (≥
2). Suppose that 1 . . . +1 converge to circles 1 . . . +1 as tends to +∞,
respectively; 1 . . . +1 may be tangent but cannot intersect. Defineθ , θ ∈
Hom( M) to be

θ ( ) = ρ +1 ◦ ρ θ( ) = ρ +1 ◦ ρ for every in {1 . . . }

respectively, whereρ and ρ are the reflections in and on̂C, respectively
( = 1 . . . + 1). It is shown that{θ }+∞

=1 is contained inS0 and converges toθ as
tends to +∞. If ϕ ∈ Im θ is parabolic, then there exist ,∈ {1 . . . +1} such thatϕ
and ρ ◦ ρ are conjugate in the group generated byρ1 . . . ρ +1 (in this case, and

are tangent). Since the composite of two reflections in two mutually disjoint circles
is hyperbolic,λ(θ ◦ θ−1(ϕ)) is real for every . Therefore,λ(θ ◦ θ−1(ϕ)) converges
to 1 conically as tends to +∞: this is a special case of our theorem.

We notice the following:

Lemma 1 (Marden [4, Lemma 4.1]). Suppose that is a Schottky group and
that , and are three distinct limit points of . Fix a region as in the above
definition of a Schottky group. Then there exists one and onlyoneϕ ∈ such that ,

and belong to three distinct components ofĈ − ϕ( ).

In order to prove our theorem, we will prove the following lemma.

Lemma 2. Let be a classical Schottky group. Suppose that and belong
to and have no common fixed points. Let , and be the repulsive fixed point of

, the attractive fixed point of and the attractive fixed point of , respectively. Then
there exist two closed disks and in̂C which have the following properties:
(1) and contain and , respectively and they do not intersect eachother.
(2) ( ) contains and and it does not contain .
(3) contains at least one of( ) and ( ).

Proof. Let be the rank of . Suppose that is a region as in the above defi-
nition of a Schottky group. Since is classical, we may assumethat every component
of ∂ is a circle. Note that , and are limit points of . By Lemma 1, there ex-
ists ϕ ∈ such that , and belong to three distinct components ofĈ−ϕ( ). Let

, and be components of̂C− ϕ( ) which contain , and , respectively. By
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the definitions of and , we can show that ( ) containsĈ− and does not con-
tain . In particular, ( ) contains and . If the repulsive fixed point of does
not belong to (or ), then ( ) (or ( )) belongs to . Thus we can put =
and = .

3. Proof of Theorem

Choose a loxodromic transformationψ of Im θ which does not fix the fixed point
of ϕ. We defineϕ = θ ◦ θ−1(ϕ) andψ = θ ◦ θ−1(ψ) for each . Note thatϕ and
ψ have no common fixed points. Let and be the repulsive fixed point of ϕ
and the attractive fixed point ofϕ , respectively. We write forλ(ϕ ). Clearly,
converges to 1.

Choose an elementγ of M such thatγ ◦ ϕ ◦ γ−1( ) = /( + 1). Both γ( ) and
γ( ) converge to 0 as tends to +∞. We assume that is sufficiently large such that
neitherγ( ) nor γ( ) is ∞. For each , defineγ ∈ M to be

γ ( ) =
1−

γ( ) − γ( )
(γ( ) − γ( ))

We write

γ ◦ ϕ ◦ γ−1( ) =
+
+

( − = 1)

for each . Note that 6= 0 and that 2 converges to 1. Sinceγ( ) andγ( ) are the
solutions of the quadratic equation 2 − ( − ) − = 0,

(γ( ) − γ( ))2 = (γ( ) + γ( ))2 − 4γ( )γ( ) =
( + )2 − 4

2

Using ( + )2 = + −1 + 2, we have

(γ( ) − γ( ))2 =
( − 1)2

2

Since both and 2 converge to 1,

(
1−

γ( ) − γ( )

)2

= 2 −→ 1 ( −→ +∞)

Thus γ converges toγ, or some subsequence of{γ } converges to−γ, where
(−γ)( ) = −(γ( )). Considering fixed points and multipliers, we can showγ ◦ ϕ ◦
γ−1( ) = /( + ). Sinceγ ◦ϕ◦γ−1( ) = /( +1) and converges to 1,γ converges
to γ as tends to +∞.
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Let σ ∈ M map to 1/ . Define and to be

= σ ◦ γ ◦ ϕ ◦ γ−1 ◦ σ−1 and =σ ◦ γ ◦ ϕ ◦ γ−1 ◦ σ−1

respectively. Then ( ) = +1 and ( ) = +1. Note that 1/(1− ) is the repulsive
fixed point of . Define and to be

= σ ◦ γ ◦ ψ ◦ γ−1 ◦ σ−1 and =σ ◦ γ ◦ ψ ◦ γ−1 ◦ σ−1

respectively. Clearly, converges to as tends to +∞. Let and be the at-
tractive fixed points of and , respectively. Note that neither nor is ∞. By
Lemma 2, there exist two closed disks and inĈ for each which have the
following properties:
(1) and contain 1/(1− ) and , respectively and they do not intersect each
other.
(2) ( ) contains and and it does not contain∞.
(3) contains at least one of (∞) and (1/(1− )).
From (2), both and are contained inC. We put

= { ∈ C | | − α | ≤ ρ }

We easily obtain

( ) = { ∈ C | | − ( α + 1)| ≤ ρ | |}

From ⊂ ( ), we deduce that

|α ( − 1) + 1| ≤ ρ (| | − 1)

Let be the ray which hasα as its initial point and which passes through the center
(in the Euclidean sense) of . Suppose that crosses∂ at ′ , ∂ at and ,
and (∂ ) at ′ ( lies between ′ and ). Under this condition,

| − | ≤ | ′ − ′ | = | ′ − α | − ρ ≤ |α ( − 1) + 1| + ρ | | − ρ

Using |α ( − 1) + 1| ≤ ρ (| | − 1), we have

| − | ≤ 2ρ (| | − 1)

We assume that is sufficiently large such that the following inequalities are satisfied:

| − | < | − (∞)|
4

| (∞) − (∞)| < | − (∞)|
4
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∣∣∣∣ (∞) −
(

1
1−

)∣∣∣∣ <
| − (∞)|

4

From these inequalities, we obtain

| − (∞)|
2

< | − (∞)|
| − (∞)|

2
<

∣∣∣∣ −
(

1
1−

)∣∣∣∣

Since contains and at least one of (∞) and (1/(1− )), and | − | is
the diameter (in the Euclidean sense) of ,

| − (∞)|
2

< | − |

Since | − | ≤ 2ρ (| | − 1),

| − (∞)| < 4ρ (| | − 1)

Using this inequality and|α ( − 1) + 1| ≤ ρ (| | − 1), we have

1 ≥ |α ( − 1) + 1|
ρ (| | − 1)

≥ |α |
ρ

| − 1|
| | − 1

− 1
ρ (| | − 1)

>
|α |
ρ

| − 1|
| | − 1

− 4
| − (∞)|

Since does not belong to ,

1<
| − α |

ρ
≤ | |

ρ
+
|α |
ρ

<
4| |(| | − 1)
| − (∞)| +

|α |
ρ

Since | |(| | − 1) converges to 0 as tends to +∞, |α |/ρ is greater than 1/2 for
sufficiently large . Therefore,

| − 1|
| | − 1

<
ρ

|α |

(
1 +

4
| − (∞)|

)
< 2

(
1 +

4
| − (∞)|

)

for sufficiently large . This completes the proof.

4. Convergence of critical exponents

Let 3 be the unit ball model of three-dimensional hyperbolic space, and let∂ 3

be the sphere at infinity of 3. M acts naturally on both of 3 and ∂ 3. A discrete
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subgroup ofM acts on 3 discontinuously. A discrete subgroup ofM is called geo-
metrically finite if there exists a finite-sided fundamental polyhedron for its action on

3 and geometrically infiniteotherwise. A Schottky group is geometrically finite.
Let be a discrete subgroup ofM. Define thecritical exponentδ( ) of to be

δ( ) = inf

{
α ≥ 0

∣∣∣∣
∑

∈
exp(−αρ(o (o))) < +∞

}

where o = (0 0 0) andρ(o (o)) is the hyperbolic distance betweeno and (o). Fur-
thermore, suppose that is geometrically finite. Then, thereexists one and only one
Borel probability measureµ on ∂ 3 such that it is supported on the limit set of
and that for every in and every Borel subset of∂ 3, the following equality
holds:

µ( ( )) =
∫

| ′( )|δ( ) µ( )

where | ′( )| is the linear distortion of at in the spherical metric on∂ 3 (Sullivan
[8, Theorem 1]). We call thisµ the Patterson-Sullivan measure of.

Let be an integer greater than one. For everyθ in ∂S , Im θ is discrete (Marden
[4, Lemma 2.2]). Using McMullen [7, Theorem 7.3], we obtain thefollowing:

Proposition. Suppose that a sequence{θ }+∞
=1 in S converges to a cuspθ as

tends to+∞ and that Im θ is geometrically finite. If for each parabolic transformation
ϕ of Im θ, λ(θ ◦ θ−1(ϕ)) converges to1 conically as tends to+∞, then
(1) Imθ converges toIm θ geometrically;
(2) the limit set ofIm θ converges to the limit set ofIm θ in the sense of Hausdorff
convergence;
(3) the Patterson-Sullivan measure ofIm θ converges to the measure ofIm θ weakly;
(4) the critical exponent ofIm θ converges to the critical exponent ofIm θ,
as tends to+∞.

For every θ in ∂S ∩ S0, Imθ is geometrically finite (Jørgensen, Marden and
Maskit [3]). Hence from this we obtain the corollary stated inthe introduction.

Finally, we will show thatS0 in our theorem cannot be replaced withS . If θ ∈
∂S is not a cusp, thenIm θ is geometrically infinite. Using Mostow rigidity, we can
prove this claim (see, for example, Matsuzaki and Taniguchi [5, Theorem 4.25]). If
a sequence{η }+∞

=1 in S converges toη and if Imη is geometrically infinite, then
δ(Im η ) converges to 2 as tends to +∞ (Bishop and Jones [1, Theorem 6.2]). It is
essentially proved in Chuckrow [2] that∂S removed all cusps is dense in∂S . Con-
sequently, by diagonal method, for eachθ in ∂S , there exists a sequence{θ }+∞

=1 in
S such thatθ converges toθ and δ(Im θ ) converges to 2 as tends to +∞. On
the other hand, if a discrete subgroup ofM is geometrically finite and if the limit
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set of does not coincide witĥC, thenδ( ) is less than 2 (Sullivan [8, Theorem 1]).
Therefore,S0 in our theorem cannot be replaced withS even if θ belongs to∂S ∩S0.
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