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1. Introduction

The Alexander polynomial [1] is a classical invariant of kn@and links inS2,
which has been known since its discovery 70 years ago to beelglaelated to the
topology of the knot (or link) complement, and which has be#ying a central role
in knot theory over decades (see [16]). Thus, after the appea of the relatives
of the Alexander polynomial, the Jones polynomial  [8] argl ilnmediate succes-
sors [6, 2, 10], it has been hoped to find a topological undedshg of these in-
variants, too. This succeeded only for special evaluatiohshe above polynomials
[13, 9]. (A summary on this matter can be found in [12].) In edises these evalua-
tions have been related to the homology modules of brancheeriags ofS® over the
link with coefficients in some finite field. Of particular imést is theQ polynomial
of Brandt-Lickorish-Millett-Ho [2, 5], a polynomial invaaint with values inZ[z, z~1],
from which the rank of the homology of the double branchedecawith coefficients
in Z3 can be obtained from the evaluation at =1 (see [2, p. 570] and Theo-
rem 8.4.8 (2) of [11]) or the one with coefficients #x, recoverable from the (Galois
equivalent) evaluations at =/5— 1)/2 [9]. See also [17].

To prove that such an evaluation gives lower bounds for theneotting number
was initiated by Traczyk [19] foV and the continued by mydé&®] for Q by con-
sidering the skein/Kauffman relation of the polynomial. &ihthe evaluation igntirely
determined by the rank of the homology of the double branatmaer with values in
some finite field, these bounds, in view of the homologica¢riptetation of the value,
are only weaker versions of the inequality already writtenwvid by Wendt [20, theo-
rem p. 690]. However, the diagrammatic view on this inequdias the advantage that
it can make use of the additional information carried by $ign of the other evalu-
ations (this sign is understood in [14] for the Lickorish-Mit value V ¢™/3) and in
[17] for the one of Jones). This enabled, in [19, 18], a decidb be made about the
unknotting number of 9 open cases in Kawauchi’s tables [11].

An important point in the argumentation of [19, 18] was tha¢ televant evalua-
tion at z € C is discrete i.e., the set

S(z) ={P(z) : Llnk}cC
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(with P = V resp. Q) is a discrete subsétx( € S(z)Jde > 0 : S(z) N B(x,¢) =
{x}, with B(x, ) being the ball inC aroundx of radius). This suggests that every
discrete polynomial evaluation may give some informationumknotting numbers, and
thus the reasonable question comes about: are the knownatindiscrete evaluations
of VandQ?

As a partial (and disappointing) result towards this prohlén this note we begin
by showing that; =-1 andz = @&+/5— 1)/2 are indeed the only evaluations ¢
(beside the other special values = 1 and +2, where the picture was clarified
already in [2]), which are, not only up to sign, but even up toltiplication with unit
norm complex numbers, determined by the homology of the lkgobbanched cover
with values in some finite field.

For the proofs we consider certain rational functighs, z(  )iclhare generating
series associated to polynomials of twist sequences. Treeglasely related to Przyty-
cki's k-moves [15]. He showed, as a special case of his resulthe Kauffman poly-
nomial [15, Corollary 1.17], thaQ z( ) for = 2cos2/k (except for a couple of
special values of this type) is invariant undetka -move. Tesult will follow more
elegantly from our approach by considering the (perioglioit the) Taylor development
of f. Moreover, our arguments will show the converse.

Theorem 1.1. If for somez € C\ {0} the evaluationQ(z), or even just its norm
|O(z)|, is invariant under ak -move, then must be of the f&wos 2rn /k.

Also, by writing out the Taylor coefficients of in terms of (jaive powers of)
the zeros of its denominator polynomial, one could show, teatept possibly for val-
ues of the above form, any< [—2, 2] is not a discrete evaluation @ . The problem
with the other (including complex) values ef , however, eggemore complicated.

The reason we chose to consid@r rather tivan is because th®maldterm
in the relation causes the denominator of the generatingtifums we obtain to be cu-
bic (rather than quadratic), which makes the discussiortsofesidues more interesting.
Nevertheless, a similar reasoning can be applied for theslpolynomial as well, and
we leave it to an interested reader to do so.

Finally we should remark that there is a more elementary aggbr to show our
results on the unrelatedness ¢f  evaluations and branchest tmmology by ex-
amining explicitly the polynomials of some low crossing rien knots/links. This
method, however, did not seem less awkward than the one wechadbse here, al-
though it is certainly less elegant, and it also does notaletlee relation to thek -
moves.
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Fig. 1. The Conway tangles.

2. SpecialQ evaluations determined completely by dinH,(D; Zy)

Recall, that theQ polynomial is a Laurent polynomial in oneialsle z for links
without orientation, defined by being 1 on the unknot and #lation

() A1+A_1=7(Ag+ AL),

where A; are theQ polynomials of link&; arkl i € Z U {co}) possess the same
diagrams except in one room, where ian -tangle (in the Conwagej is inserted; see
Fig. 1.

First, for simplicity we letQ ¢ ) depend entirely on the homgyoof the double
branched cover ol. . We start with the following

Proposition 2.1. Letz € C\ {0} be so thatQ,(z) is determined by the dimen-
sion overZ, of the homologyH:(D, ;Z,) of the double branched covdp; &f with
values in some finite field,, n prime. Thenz =—-2,1,0r z=—-1andn = 3.

RemArRk 2.1. The Jones values =(/5— 1)/2 do not occur here, because for
them Q ¢) is determinedust up to a signby dimH,(D;;Zs). We will later prove a
stronger version of Proposition 2.1, whegg z () is replaced ®y(z)| (but, unfortu-
nately, with much more effort).

Proof of Proposition 2.1 and Theorem 1.1 forz (). We use thesndagion of
Przytycki [15] using the Goeritz matrix [4], thatly(D.;Z,) is unchanged by an -
move. Ann -move is a move on a knot or link diagram, replacing &rigle (in the
Conway [3] sense) by an  orn tangle (where a-n tangle is the obverse of am
tangle):

~— AN
— = oKX

Two links are called: -equivalent if there is a sequence ofd®wmieister and: -moves
transforming a diagram of one link into one of the other link.
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Now, assume that # —2, 1 and consider the series

flr2) =) Ao

i=0

As the coefficients ofp are exponentially bounded in the éngssumber, if allK; ,
exceptK,, are knots, the series has a positive convergence radiusmar@® 0) and
converges absolutely within this radius and defines an #oafynction. More pre-
cisely, the series converges absolutely fof < 1 and|z| < 1, and for|z| > 1 and
|xz| < 1. Therefore, for any given we can choose small enough so g=®ito
form the following calculations. If som&; are links, theirmber of components is
bounded and the arguments that follow will apply by reseplin by a power ofz .
From (1) we obtain

—f(x, )+ Ao(2) + As(z)x | f(x,2) — Aoz) |z
x2 . X 1-

flx,2) = ono(Z)’

whence

(- zx)(L—x)Ag+x(1— x)A1 +zx2A,
B 1-zx+x9)(1—x)

) f

The dependency off omo 1. We will not mark explicitly, but should implicitly
keep in mind.

Assume now that for some concrete valuezofQ z () depends jusi @b, ;Z,).
Then f , z) would have az -periodic Taylor expansionin  around dr @ny zo,
f(x, zo) converges absolutely fdx| < &,,). So

3) ((17zx)(lfx)A0+x(1—x)A1+zx2Aoo)(1—x") = (1—x)x?—zx +1)P(x, 2),

for some polynomialP € Z[z, x] of degree at mosiz — 1 in x.

Now, first we show that =2cosi/n for some natural numbér ,Qk <n-—1.
Assume that it is not the case. Thef—zx+1 has zeros, which are not zeros of .
Then x? — zx + 1 must divide the first factor

L= ((1-zx)(1—x)Ao+x(1—x)A1+2x%A)

on the left side of (3). But, already making the simplest trvial choice A, = A1 =
1, Ap=(2/z) — 1, we find

z- (L mod (2 — zx +1)) = x(22 — 2) +(2— 22) #0,

unlessz =1, which is a contradiction.
Therefore,z = 2cosik/n. Now, connected sum shows that the map rHpk—
Q(z) sends addition to multiplication, and hence must be anoeeptial. The only
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candidate for a base is found by examining the 2 componemlurfo we must have

k 1 dim H1(Dy,Zy)
2 - =—-1 .
Q< COS%n) <COSZTk/n )

Consider the trefoil with polynomial =3+ 2 + %? andn > 3 prime. The
above equality specializes to

~3+4c+8% =1,

with ¢ := cos 2tk /n, whencec = 12 or ¢ =—1, which impliesz =1 orz =2. So
we are done checking the cases< 3 directly. Ul

Remark 2.2. Proposition 2.1 is also, if not implied, at least stignguggested
by the complexity results of Vertigan, Jaeger and Welshgp], (at least if the deter-
mination is supposed to be of polynomial complexity), andsitlso a special case of
[17, Proposition 1] (which | noticed after the preparatidntiee initial version of this
paper). Moreover, the proof given above does not necessey the use of the gen-
erating functions. They are, however, relevant for the pfoTheorem 1.1 and will
later be importantly used in the proof of Theorem 3.1.

3. The evaluations determined by norm

More effort is necessary, when considering signed evalugtiovhich are the re-
ally significant ones from the point of view of unknotting nbers). We need some in-
tegration procedure. But this procedure turns out to worka#lg well not only when
consideringQ £ ) up to sign, but up to norm (that is, up to miittggion with unit
complex numbers). Therefore, we now repla@e; ( )|B\z)|. This makes life some-
what more complicated. The generating series is now

Flro2) = AP

j=0

This series converges absolutely faf < 1 and|z| < 1, and for|z] > 1 and|xz| < 1
(again possibly up to multiplying by a power ef ). Therefofer, any givenz we can
choosex small enough so as to perform the following calanati

7 still can be expressed in terms ¢f by Fourier calculus, bthteracomplicat-
edly. One way is to use the substitution— ¢>"** and the formula

1
/ eZTrtmkef%rmk dk = 5m,n ,
0
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whered,, , is Krenecker's delta. Then one has

1 -
For.2) = / FOJxeP™,2) f(Jxe?, ) dk
(4) 0
1
— / f(\/;eZm'k, Z) f(\/;e—Zm'k’Z) dk
0

(we take the same branch of the square root for bgtk’; which one of the two

branches we choose is of no importance after the integjation
Now we need to examine for which there is an  such that

o | a2 f(r ek =0

lx|<e

for any choice of Ag 1. This leads to the result we alluded to in the introduction.

Theorem 3.1. LetzeC\{0} be so thaiQ,(z)| is determined bylim H1(D,; Zy,),
n prime. Thenz;=—-2,1, orz=-1andn =3, or z=(-14++/5)/2 andn = 5.

Proof of Theorem 3.1 and Theorem 1.1 f@(z)|. Again we are interested in a
periodic Taylor expansion with regard to  around = 0, thisetiof the integral in
(4). This integral can be expressed as a curve integral

1 x N\ 1
o }'{ fk,2) f (;, z) L dk
Ik|=v/x
1 [(1— zk)(1 — k)Ao(z) + k(1 — k)A1(z) + 2k? A (2)]
2mi f{ (1—kz +k2)(L—k)
lk|=v/%

x{[(l—%“g)(l—%)k]l
<[5 -5 ast (1o ) me v eianc]

— 7{ {(1— kz + KA1 — k)(k? — xkz +xD)(k —x)} "

2mi
[k|=v/x

x { [(1— 2k)(L — k) Ao(z) + k(1 — k) A1(z) + kAo (2)]

x[(l—z%)(l—%)flo(z)"'%( ) M@ 75 oo(z)}kz}dk

where {k| = \/x’ means the circle inC with origin zero and radius/x, positively
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oriented. Asx — 0, the relevant zeros of the denominator arecke and x /ko, Where
k = ko is one zero ofk? — zk + 1, so that

1
5 =ko+—.
(5) e =kot o
To express ourselves more briefly, set

Ok, x,2) 1= [(1 - k)L~ K)Ao(a) + k(1 — K)Aa(2) + 2k? A (2)]
%[ = 20)(k = ) A0@) + x(k — 1) 42(D) + 21?4 3)|
The denominators of the residues are (in the order of appeaya

(1—xz+ x2) (1—x)x%(2-72),

(1 — xkoz +x2k_02) (1 — xk_o) (—x +xk_o) <xk_0 — %) s
0
2
1- iz+i—2 (1— i) <—x+i) (i —xk_0> .
ko ko ko ko) \ko

We may assume thaly # +1 (elsez =42, which is clearly not of the kind we
want). Then, regarded as functionsiain , they have the foligwderos (with multiplic-
ities)

ko, 1/ko, 1, 0O, 0O;
1k’ 1, 1/ko, 0, O;
ko, 1, ko O, 0.

If ko is ann -th root of unity we would have = 2cos2Zn. Now assume, thakg is
not ann -th unity root. Then, becauk_@i2 appear as zeros in only one of the denom-
inators above, we must have that they divide the correspgndumerators. Therefore,
X — k_o_2 divides the numerator of the second residue, Jandk_o2 divides the numer-
ator of the third residue foany choice of Ag 1.,. These numerators a® xk, x, z)
and ® (/ ko, x, z), respectively.

Therefore, ® ko, ko', 7) = ®(1/ ko, 1/k_02, z) = 0, for the given choice ot . Set
againA,, = A; =1 andAp = 2/z — 1. The equality® Ko, ks z) =0 yields

(6) 22ko +2(k3 — 1) + (2— 2ko) = 0,

where %’ means that one of both identities withreplaced by; o0& is to be satisfied.
But because of (5), the substitutidg — 1/ko does not change (ang), and hence
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from (6) we obtain under this substitution

2%ko +2(1 — k@) + (2k3 — 2ko) = 0,

with ‘Z’ meaning thesamechoice betweerz and as in (6).
Taking difference with (6), we findg = +1, hencez =t2, or z =—1, which are
evaluations already completely understood in [2].

Hence, assume that = 2casZn. As in the previous proof, we get

‘Q <2c052r§>’ =
n

Again with the trefoil we find forn > 3 this implies

1 dim Hy(Dy;Zy)

— -1
cos 2rk /n

| —3+4c+8% =1,

with ¢ as before. But-3 + 4c + &2 is real, s0—3 + 4c + &2 = +1. In former case we
get where we did in the previous proof, and in latter case wainlk = (—1++/5)/4,
giving the casex =5 of Jones. U
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