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Introduction

Let ( ) be a (2 − 1)-dimensional oriented Riemannian manifold equipped
with a Spin structure introduced in [11]: Spin (2− 1) = Spin(2 − 1) ×Z2

(1). Namely, the reduced structure bundle (2 −1) is assumed to have princi-
pal Spin (2 − 1)-, (3)-bundles Spin (2 −1), (3) together with a Spin (2− 1)-
equivariant bundle map

(0.1) ξ = (ξ0 ξ1 ) : Spin (2 −1)→ (2 −1) × (3)

Using the canonical action of Spin (2− 1) on the quotient Spin (2− 1)/Spin (2 −
1) = (1)/ (1) = C 1, we get aC 1-fibration

(0.2) π : = Spin (2 −1) ×can
Spin (2 − 1)
Spin (2 − 1)

→

whose total space is called a (Spin -style) twistor space ([12]). We will fix a con-
nectionα (3) on (3) and take the Levi-Civita connectionα on (2 −1). Pulling
back the product connectionα ⊕α (3) by ξ , we obtain a connection onSpin (2 −1),
which induces a splitting of the tangent bundle of into horizontal and vertical com-
ponents

(0.3) =H⊕ V

through which the given orientation on and the natural one on the standard fibre
C 1 induce an orientation on . Further we take a Riemannian metricV on V asso-
ciated to the Fubini-Study metric 2 of C 1, and define a metric ε (ε > 0) on
by

(0.4) ε = ε−1π∗ + V π∗ = 1 |H

Now let ε be the signature operator of the oriented Riemannian manifold
( ε ), i.e., the tangential part of the usual signature operator ( +δ)+ of the even
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dimensional ( × [0 ∞) ε + 2). The purpose of the paper is to investigate the lim-
iting behaviors whenε → 0 of the η-invariants of ε and some intrinsically twisted
ones. The operation of blowing up the metric =π∗ + V in the base space direc-
tion as in (0.4) is called passing to the adiabatic limit. The idea of extracting some in-
trinsic values by taking the adiabatic limit is originally due to Witten [15] who relates
the adiabatic limit of a certainη-invariant with the so-called global anomaly: refer to
[4, 6, 3, 7] for the rigorous treatment and certain extensions. Our argument depends
mainly on the general theory of Dai [7]. Essentially because the fibres are all totally
geodesic in the case (0.2), our results are fairly neat. Let us state here only the result
for the nontwisted ε .

We take the Levi-Civita connection∇ on and denote its curvature 2-form
by . Further we take the Levi-Civita one∇ associated to and, by composing
the orthogonal projection V : → V , we obtain a connection∇V = V∇ on V ,
whose curvature 2-form is denoted byV . Define now theL̂-genus forms associated
to the curvatures by

(0.5) L̂( ) = det1/2
( √

−1 /4π

tanh(
√
−1 /4π)

)

etc. Then we have

Theorem 0.1. The (adiabatic) limit of the η-invariant limε→0 η( ε ) exists and
there is an odd degree form̃η on such that

lim
ε→0

η( ε )=2 +1
∫

L̂( ) ∧ η̃(0.6)

η̃=2
∫

/

L̂( V )(0.7)

where
∫
/ is the integral over the fibres.

There are some interesting ways of twistingε . We will discuss in§4 the adia-
batic limits of theη-invariants of twisted ones.

1. Signature operators

Let us recall the definition of signature operator and some relevant facts related to
it ([1], [7, §4.1]).

Let ( ) be a (2 − 1)-dimensional oriented Riemannian manifold. Denote the
∗-operator, the exterior differential and its formal adjoint by∗ = ∗ , = and δ =
δ . Moreover, setτ = τ = (

√
−1) + ( +1)∗, called the complex∗-operator, acting on

the complex exterior bundle∧ ( ) = ∧ ( ∗ ) of degree . The signature operator of
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is then defined by

(1.1) =τ ( + δ)

which acts on the spaceA( ) consisting of ∞-cross-sections of∧( ) = ⊕ ∧ ( ).
The operator is just the tangential part of the signature operator of the even-

dimensional oriented Riemannian manifold (+
+) = ( × [0 ∞) + 2) in the

following sense: Setτ + = (
√
−1) + ( −1)∗ + acting on∧ ( +). Note thatτ2

+
= 1.

Accordingly the signature operators of+ are defined by

(1.2) +
± = ( + + δ +)± : A±( +)→ A∓( +)

where we putA±( +) = {φ ∈ A( +) | τ +φ = ±φ}. It is well-known that this can be
expressed as

(1.3)

+
± =(ext∂ −int∂ )(∂ + ˜ ±)

˜ ±=(−1) /2+ +1(ǫ∗ − ∗ ) : A±( +)→ A±( +)

where ext∂ , int∂ are the exterior and interior products of = +(· ∂ ) and the
above expression for the tangential part˜ ± is for forms of degree 2 (ǫ = 1) or of
degree 2 − 1 (ǫ = −1) in the -direction. Through the identification

(1.4) A( ) ∼= A+( 0) ≡ A+( +)| = 0 φ↔ φ + τ +φ

the operator˜ + acting onA+( 0) corresponds now to the signature operator .
Next, let us show that can be seen as a kind of twisted Dirac operator.

Take the complex Clifford bundleC ( ) the Clifford multiplication of which is de-
noted by ◦, a locally defined Spin structureξ : Spin(2 −1)( ) → (2 −1)( ) of
the reduced structure bundle and the associated locally defined spinor bundleS( ) =

Spin(2 −1)( ) × 2 −1. Here is the complex spinor representation of Spin(2− 1)
so that dim 2 −1 = 2 −1. Note that, since the global existence of a Spin structure
is not assumed, above ought to be replaced by its sufficiently small open sub-
sets. But, to simplify the description, we do not replace so. Similarly, we take those
for +. Its locally defined spinor bundleS( +) = Spin(2 )( +) × 2 has a split-
ting S( +) = S+( +) ⊕ S−( +) induced from the usual splitting = + ⊕ − of
the complex spinor representation of Spin(2 ). SetC ( 0) = C ( +)| = 0 etc.
as above. We have natural inclusionsC ( ) ⊂ C ( 0) ( ∋ 7→ ◦∂ ) and

Spin(2 −1)( ) ⊂ Spin(2 )( 0), which induce a canonical isomorphism

(1.5) S( ) ∼= S+( 0)

as C ( )-module bundles. Hence we obtain isomorphisms

(1.6) ∧( ) ∼= ∧+( 0) ∼= S+( 0)⊗ S( 0) ∼= S( )⊗ S( 0)
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as left C ( )-module bundles. For ∈ ⊂ C ( ) the left action ◦ on (1.6) is
expressed consistently as ext−int , (ext −int )(ext∂ −int∂ ), ◦∂ ◦ = ( ◦∂ ◦) ⊗ 1,

◦ = ( ◦) ⊗ 1 on each of it. Notice that (1.6) has also the right action∗◦ of ∈
⊂ C ( ) given as (ext +int )(−1) (on ∧ ( )), −(ext +int )(ext∂ +int∂ ),

( ◦∂ )∗◦ = 1⊗ (∂ ◦ ◦), ( ◦∂ )∗◦ = 1⊗ (∂ ◦ ◦) on each of it.
Now let us take a positively oriented orthonormal basis{ } of , a connection

∇S( ) on S( ) associated to the the Levi-Civita one on , and, moreover, such a
connection∇S( +) on S( +). This restricts to connections∇S(±)( 0) on S(±)( 0). We
have then a twisted Dirac operator forS( )⊗ S( 0)

(1.7) ⊗ S( 0) =
∑

◦
(
∇S( )⊗ 1 + 1⊗∇S( 0)

)

It will be now clear that, through (1.6), we may have

(1.8) = ⊗ S( 0)

2. Signature operators ofZ

Let us take locally defined Spin structures for ( ), (V V ), which give natu-
rally a locally defined Spin structure for ( ). Accordingly we have locally defined
spinor bundlesS( ), S(V), S( ) = π∗S( )⊗S(V). Then, observing (1.6), we have the
following canonical identification:

A( )∼= (S( ))⊗ (S( 0))(2.1)
∼=
(
π∗ (S( ))⊗ (S(V))

)
⊗
(
π∗ (S( 0))⊗ (S(V))

)

∼=π∗ (S( )⊗ S( 0))⊗ (S(V)⊗ S(V))
∼=π∗A( )⊗A(V)

Notice that, givenφ ∈ A( ), its expression in terms of elements ofπ∗A( ) ⊗ A(V)
through (2.1) does not coincide with the one naively gotten through (0.3).

The first purpose of the section is to express the signature operator acting on
A( ) in terms of certain operators acting onπ∗A( )⊗A(V) through (2.1).

Let us take a positively oriented local orthonormal frame (1 . . . 2 −1) =
( ′

1 . . . ′
2 −1) of , whose lift to H is dented by the same symbol. Also let

( 2 2 +1) = ( ′′
1

′′
2 ) be such a frame ofV . We put τV =

√
−1 ′′

1 ◦ ′′
2 , called the com-

plex volume element ofV .

Lemma 2.1. Through (2.1), the actions ′◦, ′′◦, ′∗◦, ′′∗◦ on A( ) correspond
respectively to the actions′◦⊗τV◦, 1⊗ ′′◦, ′∗◦⊗1, ∂∗⊗(τV◦ ′′)∗◦ on π∗A( )⊗A(V).

The lemma is easily shown by rewriting the actions successively according to
(2.1). One may be convinced of the comment following (2.1) by the lemma.
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Bearing the lemma in mind, we denote by′◦ etc. the actions ′◦ ⊗ τV◦ etc. on
π∗A( )⊗A(V) to simplify the description. Let us then consider the following opera-
tors acting onπ∗A( )⊗A(V):

π∗ =π∗ ⊗ τV◦ =
∑

′◦
(
π∗
(
∇S( )

′ ⊗ 1 + 1⊗∇S( 0)
′

)
⊗ 1
)

V =1⊗ V = 1⊗ ( V + δV ) =
∑

′′◦
(

1⊗
(
∇S(V)

′′ ⊗ 1 + 1⊗∇S(V)
′′

))

∑
′◦∇V

′ =
∑

′◦
(

1⊗∇V
′

)
=
∑

′◦
(

1⊗
(
∇S(V)

′ ⊗ 1 + 1⊗∇S(V)
′

))
(2.2)

( )=
∑

≤

′◦ ′ ◦ ( )( ′ ′ ) =
∑

≤

′◦ ′ ◦
∑

( ( ′ ′ ) ′′) ′′◦

˜( )=
1
2

∑
( ( ′ ′ ) ′′)( ′′◦ ′∗◦ ′∗◦ + 2 ′◦ ′′∗◦ ′∗◦)

where is the torsion tensor of the covariant derivative∇⊕ = π∗∇ ⊕ ∇V on
and∇S(V) is the covariant derivative onS(V) induced from∇V . Here V acting on
A(V) can be seen as a family of signature operators along the fibres

(2.3) V = ( V | ∈ ) V = V( ) + δV( ) = π−1( ) + δπ−1( )

and, according to the splittingA(V) = A+(V)⊕A−(V) = (S+(V)⊗S(V))⊕(S−(V)⊗S(V)),
it can be expressed as follows:

(2.4) V =

(
0 V

−
V
+ 0

)
V
± = ( V + δV )±

We will now express acting onA( ) in terms of operators (2.2) acting on
π∗A( )⊗A(V) through (2.1).

Lemma 2.2 (cf. [7, (4.6)]). = π∗ +
∑ ′◦∇V

′ + V − (1/4) ( ) + (1/4)˜( )

Proof. Set =∇ −∇⊕. For horizontal vectors , and a vertical vector ,
we have

(2.5) ( ( ) ) =− ( ( ) ) = ( ( ) ) =
1
2

( ( ) )

and ( (·)· ·) vanishes for all other combinations of horizontal and vertical vectors
([12, Lemma 2.1(3)]). Hence, calculating∇ = ∇⊕ + ( ), we have

(2.6)
∇ ′ = π∗∇ ′ +∇V

′ − 1
2

∑
( ( ′ ′ ) ′′)( ′′ ⊗ ′ − ′ ⊗ ′′ )

∇ ′′ = ∇V
′′ +

1
4

∑
( ( ′ ′ ) ′′)( ′ ⊗ ′ − ′ ⊗ ′ )
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Here { ′ ′′ } is the dual basis of{ ′ ′′}. These imply

(2.7)
∇S( )

′ = π∗∇S( )
′ +∇S(V)

′ − 1
4

∑
( ( ′ ′ ) ′′) ′ ◦ ′′◦

∇S( )
′′ = ∇S(V)

′′ +
1
8

∑
( ( ′ ′ ) ′′) ′◦ ′ ◦

Thus we have

∑
′◦(∇S( )

′ ⊗ 1) +
∑

′′◦(∇S( )
′′ ⊗ 1)(2.8)

=
∑

′◦(π∗∇S( )
′ ⊗ 1) +

∑
′◦(∇S(V)

′ ⊗ 1) +
∑

′′◦(∇S(V)
′′ ⊗ 1)− 1

4
( )

Similarly we have

∑
′◦(1⊗∇S( 0)

′ ) +
∑

′′◦(1⊗∇S( 0)
′′ )(2.9)

=
∑

′◦(1⊗ π∗∇S( 0)
′ ) +

∑
′◦(1⊗∇S(V)

′ ) +
∑

′′◦(1⊗∇S(V)
′′ )

+
1
8

∑
( ( ′ ′ ) ′′){ ′′◦(1⊗ ′◦ ′ ◦) + 2 ′◦(1⊗ ′′◦ ′ ◦)}

=
∑

′◦(1⊗ π∗∇S( 0)
′ ) +

∑
′◦(1⊗∇S(V)

′ ) +
∑

′′◦(1⊗∇S(V)
′′ ) +

1
4

˜( )

They certainly imply the lemma: see (1.7). Notice that, in our case, the term corre-
sponding to 2−1〈 ( ) α〉 ( α + ∗ ∗

α ) in [7, (4.6)] does not appear.

Next, we want to find out a similar expression forε . Note that the identification
(2.1) depends on the metric . We need hence to change it into the identification in-
duced by ε . It will be obvious then that the result is

(2.10) ε = ε1/2
[
π∗ +

∑
′◦∇V

′

]
+ V − ε

4
( ) +

ε

4
˜( )

If we pull back the right side which acts onπ∗A( )⊗A(V) through (2.1) (induced by
), the resulting operator̂ ε does not coincide with the originalε . Actually, ˆ

ε is
what we obtain by pulling back ε through the isomorphism

(2.11) ιε : A( ) ∼= A( )
∑

αβ( ′)α ∧ ( ′′)β 7→
∑

αβ(ε−1/2 ′)α ∧ ( ′′)β

where we set ( ′)α = ′α1 ∧ · · · ∧ ′α (α = (α1 . . . α )) etc. Concretely it can be
described aŝ ε = τ ( ˆ

ε + δ̂ε) with

(2.12) ˆ
ε = ι∗ε = ε1/2π∗ + V δ̂ε = ι∗εδ( ε ) = ε1/2π∗δ + δV
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3. Proof of Theorem 0.1

The η-function of ε is defined by

(3.1) η( ε )( ) =
1

(( + 1)/2)

∫ ∞

0

( −1)/2 Tr
(

ε
− ( ε )2

)
Re >> 0

By analytic continuation to the whole complex plane we obtain a meromorphic func-
tion, which is regular at = 0 ([1]). Theη-invariant of ε is the value at = 0, i.e.,

(3.2) η( ε ) = η( ε )(0) =
1√
π

∫ ∞

0

−1/2 Tr
(

ε
− ( ε )2

)

Note that Tr( ε exp(− ( ε )2)) = ( 1/2) as → 0 ([4, (2.13)]) so that the above inte-
gral expression is well-defined.

We begin with investigating the limiting behavior of Tr(ε exp(− ( ε )2)) when
ε → 0. Let us take aZ2-graded infinite dimensional vector bundle∞ = ∞

+ ⊕ ∞
−

over defined by

(3.3) ∞
± = A±(V)|π−1( )

at each ∈ . The obvious functorial isomorphism

(3.4) A(V) ∼= ( ∞) ψ ↔ ψ̃ ψ̃( ) = (π−1( ) ∋ 7→ ψ( ))

induces a fibrewise hermitian metric on∞ as (ψ̃1 ψ̃2) =
∫
π−1( ) ψ1 ∧ ∗V ψ̄2. Now,

observing the expression (2.10) forε , we will take a unitary superconnection on∞

(3.5) = [1] + 1/2
[0] + −1/2

[2] = ∇̃V + 1/2 V − 1
4 1/2

ˆ( )

where we set∇̃V
′ ψ̃ = (∇V

′ψ)̃ and ˆ( ) =
∑

≤
′ ∧ ′ ∧⊗ ( )( ′ ′ ) (a C (V)-valued

2-form on ).
Let us explain here the origin of (3.5): see [3, 4]. Consider an obvious functorial

isomorphism

(3.6) π∗A( )⊗A(V) ∼= (∧( )⊗ ∞) π∗φ⊗ψ ↔ φ⊗ψ̃

and take a superconnection

(3.7) B = ∇ ⊗ 1 + 1⊗

on the right side. Through (2.1) and (3.6) this may be seen as a superconnection on
∧( ). ε − ε˜( )/4 is then just the quantization ofε1/2B1/ε, i.e., what is obtained
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by replacing the wedge products′ ∧, ′ ∧ ′ ∧, etc. by the Clifford products ′◦,
′◦ ′ ◦, etc. The superconnection (3.5) was taken so that it fits such a framework.

If 6= 1, then we have

(3.8) [ ] ∈ ( ∧ ( )⊗ End ( ∞))

Further, we may think of the curvature2 as being (the operator given by) an element
of ( ∧( )⊗End ( ∞)) so that the heat operator−

2
can be regarded also as (the

operator given by) an element of it ([2, Proposition 1.38]),

(3.9) − 2 ∈ ( ∧( )⊗ End ( ∞))

We set End ( ∞) = Hom ( ∞
±

∞
± ) (if = 0), Hom ( ∞

±
∞
∓ ) (if = 1), and say

that the elements of ( ∧ ( ) ⊗ End ( ∞)) are of total degree + . Then [ ]

( 6= 1) is of odd total degree. Further2 is of even total degree and so is the heat
operator − 2

. The fibrewise supertrace

(3.10) η̂( ) = str

[(
V +

ˆ( )
4

)
− 2
]

on ∞ is thus an odd degree form on . We denote by[η̂( )]2 −1 its homogeneous
component of degree 2− 1, and set

(3.11) η̃( ) =
∑ 1

(2π
√
−1)

[η̂( )]2 −1

Then, in the same way as the proof of [3, (4.40)], we can prove

Lemma 3.1. We have uniform convergence asε→ 0

(3.12) Tr ( ε
− ( ε )2

) = 2
√
π

∫
L̂( ) ∧ η̃( ) + (ε1/2(1 + ))

for some > 0.

Proof. may be seen as a twisted Dirac operator⊗S( 0): see (1.7). Hence
it is easily shown in the same way as the proof of [3, (4.40)] that the left side of
(3.12) can be expanded whenε→ 0 as follows:

(3.13)

√
π

(2π
√
−1)

∫
Â(2π

√
−1 ) Tr(exp(− S( 0))) ∧ η̂( ) + (ε1/2(1 + ))

where Â(2π
√
−1 ) is the (renormalized)Â-genus form associated to , i.e.,

Â(2π
√
−1 ) = det1/2 (( /2)/ sinh( /2)

)
, and S( 0) is the curvature of∇S( 0).
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Notice that the left side of (3.12) contains the termε˜( )/4, which, however, does not
contribute to the first term in (3.13). This is because, in the Getzler’s transformation (a
rescaling method) which induces the first term, we only rescale the left Clifford vari-
ables but not the right ones. The first term is then equal to

√
π

(2π
√
−1)

∫
2 L̂(2π

√
−1 )∧ η̂( )

=2
√
π

∫ ∑

2 + =

1

(2π
√
−1)2

L̂(2π
√
−1 )∧ 1

(2π
√
−1)

[η̂( )]2 −1

=2
√
π

∫
L̂( ) ∧ η̃( )

Next, let us consider the family of signature operators along the fibres given in
(2.4). It is easily verified by the fact Ker(V | ∞) ∼= Ker( C 1 + δC 1) ∼= ∗ (C 1)
that its index bundle

(3.14) Ind V =
∏

∈
Ker( V | ∞) = Ind V

+ ⊕ Ind V
−

is a trivial two dimensionalZ2-graded vector bundle over with canonical cross-
sections (1± τV1)̃ ∈ (Ind V

±), whereτV is the family of complex∗-operators along
the fibres. The orthogonal projection of∇̃V to the subbundle IndV gives its connec-
tion ∇Ind, which obviously equals just the exterior differential on . Now let us take
a twisted signature operator

(3.15) ⊗ Ind V =
∑

′◦
(
∇ ′ ⊗ 1 + 1⊗∇Ind

′

)

acting onA( )⊗ (Ind V ).

Lemma 3.2. η( ⊗ Ind V ) = 0

Proof. Obviously we have an identification

(3.16) A( )⊗ (Ind V ) ∼= A( )⊕A( )

given byφ+⊗ (1 + τV1)̃ +φ−⊗ (1− τV1)̃ ↔ (φ+ φ−). Since the action ′◦ on the left
side means ′◦⊗ τV◦ (refer to Lemma 2.1), we may identify accordingly

(3.17) ⊗ Ind V = ⊕ (− )

Hence we haveη( ⊗ Ind V ) = η( )− η( ) = 0.
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Now, applying [7, Corollary 4.1] to ε , we will investigate the limit ofη( ε ).
Since we have Ker ε ∼= Ker( +δ( ε )) ∼= ∗ ( ), the dimension of Ker ε is con-
stant. Hence limε→0 η( ε ) really exists (refer to the argument following (3.21)) and
we have

lim
ε→0

η( ε ) = lim
ε→0

1√
π

∫ ∞

0

−1/2Tr
(

ε
− ( ε )2

)
(3.18)

=
1√
π

∫ ∞

0

−1/2 lim
ε→0

Tr
(

ε
− ( ε )2

)
+ η( ⊗ Ind V ) + lim

ε→0

∑
(0) sgnλε

=2 +1
∫

L̂( ) ∧ η̃ + lim
ε→0

∑
(0) sgnλε

where the last equality is due to Lemmata 3.1 and 3.2 with

(3.19) η̃ =
∫ ∞

0
η̃( )

2 1/2

which is convergent because of ˜η( ) = ( −1) ( → ∞), (1) ( → 0) ([2, Theo-
rems 9.23 and 10.32(1)]). Hence, to finish the proof of (0.6), it suffices to show that
limε→0

∑
(0) sgnλε vanishes.

Let us begin with the explanation of the (finite) summation
∑

(0) sgnλε ([7, Theo-
rem 1.5]). The eigenvalues ofε are analytic with respect toε1/2 on ε > 0. Namely,
there exist (infinitely many) functionsλε analytic with respect toε1/2 on ε > 0 such
that the spectrum of ε , Spec( ε ), equals{λε} for eachε > 0. Moreover,λε with
limε→0 λε = 0 may be extended to a function smooth (may not analytic) with respect
to ε1/2 up to ε1/2 = 0 so that it has an asymptotic expansion whenε→ 0

(3.20) λε ∼ 1(λ)ε1/2 + 2(λ)(ε1/2)2 + 3(λ)(ε1/2)3 + · · ·

The coefficient 1(λ) is an eigenvalue of ⊗ Ind V and the mapλε 7→ 1(λ) de-
fines a bijective correspondence between{λε | limε→0 λε = 0} and Spec( ⊗ Ind V )
(with multiplicity). Now, taking onlyλε corresponding to the zero-eigenvalues of⊗
Ind V , we set sgnλε = 1 (if λε > 0), = −1 (if λε < 0), or = 0 (if λε = 0), which
sum up to

∑
(0) sgnλε. Put

(3.21) ρ(ε) =
∑

(0) sgnλε

Since dim Ker ε is constant andλε are analytic, eachλε in (3.21) is nowhere zero or
identically zero so thatρ(ε) is constant, which certifies the existence of limε→0 η( ε ).
We denote the constant byρ, i.e.,

(3.22) ρ = lim
ε→0

ρ(ε) = lim
ε→0

∑
(0) sgnλε
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Before studyingρ, we want to make an important comment. It will be clear that,
in the argument above and below, we may replaceε by ˆ

ε given in (2.12) and, fur-
thermore, the study becomes quite manageable by replacing so. Actually, for example,
as explained in the comment preceding (2.11), though the inner product ofA( ) on
which ε acts varies according toε, the inner product ofA( ) on which ˆ

ε acts
does not vary fortunately. In the following we proceed with the argument usingˆ

ε ,
so that{λε} = Spec(̂ ε ) and, more important, the metric of is (notε ).

Now we denote by (λε) the eigenspace associated toλε (of ˆ
ε ) in (3.21). Take

≥ 2 and define (ε) to be the direct sum of (λε) corresponding toλε with (λ) =
0 for all ≤ − 1 in the expansion (3.20). It is proved in [7, Proposition 4.2] that

(ε), ε1/2 > 0, is a family of finite dimensional vector space that depends smoothly
on ε1/2 down to ε1/2 = 0, that is, there exist smooth formsϕ1 ε . . . ϕ ε (ε1/2 ≥ 0)
which are orthonormal (with respect to ) to each other and generate (ε) for each
ε1/2 > 0. Hence the limit

(3.23) = lim
ε→0

(ε)

is a well-defined finite dimensional vector space. Further the following map is well-
defined (see the proof of [7, Theorem 0.2]):

(3.24) : → φ = lim
ε→0

φε 7→ φ = lim
ε→0

ε− /2 ˆ
εφε

where ˆ
ε is given in (2.12). We may state now an important lemma.

Lemma 3.3 (Dai [7, Theorem 0.2]).
(1) {( )} ≥2 forms a spectral sequence.
(2) The Dai’s spectral sequence{( )} ≥2 is isomorphic to the Leray spectral se-
quence{( ¯ ¯)} ≥2 of the fibration(0.2) through the canonical map ∋ φ 7→ [φ] ∈
¯ .

By investigating the Leray spectral sequence we have

Lemma 3.4. The Dai’s spectral sequence degenerates at= 2 in our case.

Proof. It is obvious that the local coefficient system∗ (V) consisting of de
Rham cohomology rings ∗ (π−1( )) (with coefficients inC) is trivial. The general
theory implies then that the Leray spectral sequence degenerates at = 2.

Now we can prove

Lemma 3.5. ρ = 0
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Proof. The lemma follows directly from Lemma 3.4 and the Dai’s topological
formula ([7, §4.3]) for ρ, i.e., set ( ) = limε→0 (ε) ∩ δ̂εA +1( ), then we have

(3.25) ρ =
∑

≥2

ρ = 2
∑

≥2

sgn
(

( ) × ( ) → C
)

where the pairing is given by (φ ψ) 7→
∫
φ ∧ ψ (if 2 + 1 = 4 − 1), (φ ψ) 7→√

−1
∫
φ∧ ψ (if 2 +1 = 4 +1). (The proof of the formula in the case 2 +1 = 4 +1

is similar.)

(3.18) and Lemma 3.5 imply now (0.6). Next we will show (0.7) for (3.19).

Lemma 3.6 (cf. [2, Corollary 9.22 and Theorem 10.23], etc.).

lim
→∞

str
(

− 2
)

=0(3.26)

lim
→0

str
(

− 2
)

=(π
√
−1)−1

∫

/

L̂(2π
√
−1 V )(3.27)

Proof. Since the connection∇Ind on Ind V is trivial, its curvature Ind vanishes.
Hence [2, Corollary 9.22] implies

(3.28) lim
→∞

str
(

− 2
)

= str
(
exp(− Ind)

)
= 1− 1 = 0

On the other hand, if we denote byS(V) the curvature of∇S(V), [2, Theorem 10.23]
implies

(3.29) lim
→0

str
(

− 2
)

= (2π
√
−1)−1

∫

/

Â(2π
√
−1 V ) Tr (exp(− S(V)))

which obviously equals the right side of (3.27).

Proof of (0.7) for (3.19). The transgression formula ([2]) for the superconnection
says

(3.30)
∂

∂
str
(

− 2
)

= − η̂( )
2 1/2

Hence, by putting ˆη =
∫∞

0 η̂( )/(2 1/2) , we have

(3.31) η̂ = lim
→0

str
(

− 2
)
− lim

→∞
str
(

− 2
)

= (π
√
−1)−1

∫

/

L̂(2π
√
−1 V )

The second equality is due to Lemma 3.6. Thus we obtain (0.7).
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4. Some twisted signature operators

( ) has a natural Spin structure ([12])

(4.1) ξ = (ξ0 ξ1) : Spin (2 +1)( )→ (2 +1)( )× (1)( )

which is constructed as follows: The mapSpin (2 −1) → , 7→ [ [1]], obvi-
ously has a structure of principal Spin (2− 1)-bundle, whose total space is denoted
by Spin (2 −1)( ). This gives a Spin structure ofπ∗

(2 −1), which is isomorphic by
π to the reduced structure bundle of (H |H),

(4.2) ξ : Spin (2 −1)( )→ π∗
(2 −1) × H

(1)( )

On the other hand, the reduced structure bundleV (2)( ) of (V V ) has a canonical
Spin structure ([10, Example D.6])

(4.3) ξ : V
Spin (2)( )→ V

(2) × V
(1)( )

Here V
(1)( ) is the set of unitary frames with respect to the hermitian complex bun-

dle structure ( V V ) induced from the canonical (2 C
1
) of C 1. We may re-

gard Spin (2 − 1) and Spin (2) as subgroups of Spin (2 + 1) through the inclu-
sions R2 −1, R2 → R2 +1 and define a group homomorphism mult : Spin (2− 1)×
Spin (2)→ Spin (2 + 1) by multiplication in Spin (2 + 1). Then we set

(4.4) Spin (2 +1)( ) =
(

Spin (2 −1)( )× V
Spin (2)( )

)
×mult Spin (2 + 1)

We have hence (1)( ) = H
(1)( )⊗ V

(1)( ).
Further ( ) admits remarkably a canonical Spin structure ([13])

(4.5) ξ : Spin(2 +1)( )→ (2 +1)( )

which is uniquely determined (if it exists) by the condition that there exists an isomor-
phism

(4.6) Spin (2 +1)( ) ∼= Spin(2 +1)( )×canSpin (2 + 1)

Thus (4.1) is just a trivial Spin structure induced from the canonical action of
Spin(2 + 1) on Spin (2 + 1), so that we have (1)( ) ∼= (1) (trivial).

It will suffice to manage only (4.5) from the standpoint of studying only topolog-
ical invariants such as indices, butη-invariant is not such a invariant, nor is its adia-
batic limit. Actually it is not permitted, in Theorem 0.1, to replaceL̂( ), L̂( V ) by
their cohomology classeŝL( ), L̂(V). Accordingly, if there exist some nontrivial in-
trinsic connections on (1)( ) which is trivial, then certain intrinsic properties of Z
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will be reflected naturally in the signature operators twisted by such connections. In
particular in connection with Theorem 0.1, it will be of interest to investigate the lim-
its of their adiabatic versions.

Let us introduce now such an interesting connection on it.Spin (2 −1)( ) ≡
Spin (2 −1) can be embedded as a subbundle intoπ∗

Spin (2 −1) by the map 7→
([ [1]] ): see [12, Lemma 1.3]. Accordingly H

(1)( ) = Spin (2 −1)( ) ×ξ1
(1)

can be embedded as a subbundle intoπ∗
(3) = π∗

Spin (2 −1) ×ξ1
(3) naturally,

where ξ1 is the adjoint action of (1) onsp(1) = R3. (1) = (2) is then canon-
ically reductive in (3), i.e., there is a natural splittingso(3) = u(1) ⊕ m with
Ad( (1))m ⊂ m. Hence, theu(1)-component ofπ∗α (3) restricted to the subbundle
gives its connectionαH

(1). On the other hand, since the Ehresmann connectionαV as-
sociated to∇V is unitary with respect to ( V V ) ([12, Lemma 2.1 (4)]), it induces
a connectionαV

(1) on V
(1)( ). Thus we obtain a connection

(4.7) α (1) = αH
(1)⊗ 1 + 1⊗ αV

(1)

on (1)( ) = H
(1)( )⊗ V

(1)( ).
Let us twist (ε) using α (1). Using the standard representation : (1)→

C(C) ≡ C( ) we define a spinor bundle

(4.8) S ( ) = Spin (2 +1)( )× ⊗ 2 +1 2 +1 = 2 +1⊗

to which we attach a covariant derivative∇S ( ) associated to the connectionα =
ξ ∗(α ⊕α (1)). Since Spin (2 +1)( )× = Spin(2 +1)( )×can(Spin (2 +1)× ) = C
(trivial), we have

(4.9) S ( ) ∼= S( )⊗C ∼= S( ) ≡ Spin(2 +1)( )× 2 +1

S ( ) with ∇S ( ) may be thus regarded asS( ) with a twisted covariant derivative
∇S( ) . In this manner, we obtain a twisted signature operator

= ⊗ S( 0)=
∑

◦
(
∇S( ) ⊗ 1 + 1⊗∇S( 0)

)
(4.10)

=
∑

◦
(
∇S ( )⊗ 1 + 1⊗∇S( 0)

)

on

(4.11) ∧( ) ∼= S( )⊗ S( 0) ∼= S ( )⊗ S( 0)

In the following we want to investigate the limit ofη-invariant of its adiabatic version

ε . But we face a problem here. Namely, the dimension of kernel of the twisted one
may vary according toε. I hope it does not. (If it does not, then the following conclu-
sion can be more strengthened.) But I am not sure so far. We will lay down a scheme
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which relieves us from such a concern. To do so, let us assume for a moment that
the dimension varies really. Precisely, we assume that, for anyε0 > 0, it is not con-
stant on the interval (0ε0). Take eigenvaluesλε of ε and setρ (ε) =

∑
(0) sgnλε

as in (3.21). thenρ (ε) has no limit whenε → 0, nor hasη( ε ) consequently. Thus
we cannot investigate limε→0 η( ε ) naively. Here it is wise to perceive the fact that
ρ (ε) + dim Ker ε is constant modulo 2Z. Accordingly we will set

(4.12) η̄( ε ) =
1
2

{
dim Ker ε + η( ε )

}

called the reducedη-invariant, and investigate its limit inR/Z. It will be obvious that
this limit (mod Z) may exist even if the limit ofρ (ε) does not.

Let us take hermitian complex line bundles

(4.13) LH = H
(1)( )× LV = V

(1)( )×

with covariant derivatives∇LH , ∇LV induced fromαH
(1), α

V
(1). We denote their cur-

vatures by H, V , which take values inu(1). (Note that we use the same sym-
bol V to denote the curvatures of∇LV and∇V because the latter covariant deriva-
tive is the underlying real one of the former.) Define then their first Chern forms by

1( H) = tr(
√
−1 H/2π) =

√
−1 H/2π etc. We have now

Theorem 4.1. The (adiabatic) limit limε→0 η̄( ε ) exists inR/Z and there is an
odd degree formη̃ on such that

lim
ε→0

η̄( ε )≡2
∫

L̂( ) ∧ η̃ (mod Z)(4.14)

η̃ = 2
∫

/

L̂( V ) ∧ exp

(
1
2 1( V ) +

1
2 1( H)

)
(4.15)

Proof. First of all, let us attach the standard fibre metric to the trivial line bundle
C . Then we have a natural hermitian line bundle isomorphismLH ⊗ LV ∼= C and,
hence,

(4.16) LH ∼= L∗
V

Furthermore, it follows from [13, Proposition 3.3] that the covariant derivatives∇LH ,
∇L∗

V (induced from∇LV ) restricted to the fibres coincide with each other through
(4.16), i.e.,

(4.17) ∇LH |π−1( ) = ∇L∗
V |π−1( )

Let us take locally defined spinor bundlesS( ) and S(V) with S( ) = π∗S( )⊗S(V)
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and, moreover, locally defined vector bundles

(4.18) H = Spin (2 −1)( )× V = V
Spin (2)( )×

with S (H) ≡ Spin (2 −1)( )× ⊗ = π∗S( )⊗ H andS (V) ≡ V
Spin (2)( )× ⊗ =

S(V)⊗ V . Then it will be clear that there exist global canonical hermitian line bundle
isomorphisms

(4.19) H ⊗ H ∼= LH V ⊗ V ∼= LV ≡ H ⊗ V ∼= C H ∼= ∗
V

The connections on Spin (2 −1)( ) and V
Spin (2)( ) induce unitary covariant derivatives

∇ H , ∇ V on H, V . Through (4.19), we can identify as follows:

(4.20)
∇ H⊗ 1 + 1⊗∇ H = ∇LH ∇ V⊗ 1 + 1⊗∇ V = ∇LV

∇ H |π−1( ) = ∇ ∗
V |π−1( )

The third one is due to (4.17). We will end the preparation here: refer to [13] for more
information.

Now, as is easily understood, to prove the theorem, it suffices to modify the proof
of Theorem 0.1 a little bit. Namely, we have only to twistε using the trivial line
bundle = H ⊗ V with nontrivial covariant derivative∇ = ∇ H⊗ 1 + 1⊗∇ V .

Let us take now a covariant derivative∇V = ∇V⊗ 1 + 1⊗∇ acting onA(V) =
A(V ⊗ ), which induces a covariant derivative∇S(V) on S(V). We define then an op-
erator

(4.21) V =
∑

′′◦
(

1⊗
(
∇S(V)

′′ ⊗ 1 + 1⊗∇S(V)
′′

))

acting onπ∗A( )⊗A(V) as in (2.2). It will be obvious now that we have the expres-
sion

(4.22) ε = ε1/2
[
π∗ +

∑
′◦∇V

′

]
+ V − ε

4
( ) +

ε

4
˜( )

corresponding to (2.10). Following the comment around (3.7) we take a unitary super-
connection

(4.23) =∇̃V + 1/2 V − 1
4 1/2

ˆ( )

on the infinite dimensional hermitian vector bundle∞ = ∞. Similarly to (3.10)
and (3.11) we define ˆη ( ) and η̃ ( ). Then we have uniform convergence asε→ 0

(4.24) Tr( ε
− ( ε )2

) = 2
√
π

∫
L̂( ) ∧ η̃ ( ) + (ε1/2(1 + ))
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for some > 0 as in Lemma 3.1. Moreover, since the third equality in (4.20) implies
V | ∞ = V | ∞, Lemma 3.2 asserts

(4.25) η( ⊗ Ind V ) = 0

Thus, similarly to (3.18), we have

lim
ε→0

η̄( ε )=2
∫

L̂( ) ∧ η̃(4.26)

+ lim
ε→0

1
2

{
dim Ker( ⊗ Ind V ) + ρ (ε) + dim Ker ε

}

where we set

(4.27) η̃ =
∫ ∞

0
η̃ ( )

2 1/2

Precisely stating, (4.26) acquires a meaning only when the limit in the right side exists
(in some sense) and, as explained before, the limit may not exist inR. However, since
the term 2−1{dim Ker( ⊗ Ind V ) + ρ (ε) + dim Ker ε } is obviously an integer,
the limit exists inR/Z. Accordingly the limit limε→0 η̄( ε ) exits in R/Z and equals
the first term in the right side of (4.26). That is, (4.14) was proved. Next it will be
obvious that (4.15) follows from the similar formulas as in Lemma 3.6, i.e.,

lim
→∞

str
(

−( )2
)

=0(4.28)

lim
→0

str
(

−( )2
)

=(4.29)

(π
√
−1)−1

∫

/

L̂(2π
√
−1 V )∧ exp

(
1
2 1(2π

√
−1( V + H))

)

(4.28) is just a reformation of (3.26) because IndV and Ind V coincide with each
other including hermitian metrics. By noticing that the curvature of∇ is equal to
( V + H)/2, (4.29) is shown similarly to (3.27).

Second, let us defineS ( 0) (= S( 0)) with ∇S ( 0) (= ∇S( 0) ) similarly to (4.8)
and take a twisted signature operator

= ⊗ S ( 0)=
∑

◦
(
∇S( ) ⊗ 1 + 1⊗∇S( 0)

)
(4.30)

=
∑

◦
(
∇S ( )⊗ 1 + 1⊗∇S ( 0)

)

on

(4.31) ∧( ) ∼= S( )⊗ S( 0) ∼= S ( )⊗ S ( 0)
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In contrast to which is twisted with =H⊗ V , this is gotten by twisting
with L = LH⊗LV . The proof of the following is quite similar to the proof of Theorem
4.1.

Theorem 4.2. The (adiabatic) limit limε→0 η̄( ε ) exists inR/Z and there is
an odd degree form̃ηL on such that

lim
ε→0

η̄( ε )≡2
∫

L̂( ) ∧ η̃L (mod Z)(4.32)

η̃L = 2
∫

/

L̂( V ) ∧ exp
(

1( V ) + 1( H)
)

(4.33)

Third, let us discuss an extraordinary twisting. We put Spin (2 + 1) = Spin(2 +
1)×Z2 (1)×Z2 (1), which has a double covering homomorphism

(4.34) ξ : Spin (2 + 1)→ (2 + 1)× (3)× (1)

with ξ = (ξ0 ξ1 ξ2 ) = (ξ ξ1 ξ1). Note that the Lie group (1)×Z2 (1) =
(2) ×Z2 (1) plays a significant role in the Weinberg-Salam theory which unifies

weak and electromagnetic interactions. The twistor space ( ) has a twisted Spin
structure, say, a Spin structure,

(4.35) ξ : Spin (2 +1)( )→ (2 +1)( )× π∗
(3) × V

(1)( )

with Spin (2 +1)( ) =
(
π∗

Spin (2 −1) × V
Spin (2)( )

)
×mult Spin (2 + 1): see [12,§5].

This produces a spinor bundle

(4.36) S ( ) = Spin (2 +1)( )× ⊗ ⊗ 2 +1 2 +1 = 2 +1⊗ ⊗

Here is the standard complex representation of (1) given by left multiplica-
tion on H, : (1) → ( H(H) →) C(C2) ≡ C( ). The connection
α ⊕π∗α (3)⊕αV

(1) on the right side of (4.35) induces a covariant derivative∇S( )

on (4.36). We obtain thus a twisted signature operator

(4.37) = ⊗ S( 0) =
∑

◦
(
∇S( ) ⊗ 1 + 1⊗∇S( 0)

)

on S ( )⊗ S( 0). Let us take a locally defined vector bundle

(4.38) H = Spin (2 −1)×

with S ( ) ≡ Spin (2 −1) × ⊗ ⊗ = S( ) ⊗ H. (Notice thatS( ) was taken in
the proof of Theorem 4.1 and has been fixed.) Thenπ∗H ⊗ V is globally defined and
we have

(4.39) ∧( )⊗ π∗H ⊗ V ∼= S ( )⊗ S( 0)
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Accordingly (4.37) is just twisted withπ∗H ⊗ V having covariant derivative
π∗∇H⊗ 1 + 1⊗∇ V . Here∇H is a covariant derivative onH induced fromα (3). In
the following we want to investigate the limiting behavior of the reducedη-invariant
of its adiabatic version ε .

The locally defined vector bundles ⊗H andV ⊗ V have covariant derivatives
∇ H = ∇ ⊗ 1 + 1⊗ ∇H and∇V V = ∇V ⊗ 1 + 1⊗ ∇ V . These induce covariant
derivatives∇S( ) H , ∇S(V) V on the locally defined spinor bundlesS( )⊗H, S(V)⊗ V .
Let us consider now twisted signature operators

(4.40)

H =
∑

′◦
(
∇S( ) H

′ ⊗ 1 + 1⊗∇S( 0)
′

)
= ⊗ H

V V =
∑

′′◦
(
∇S(V) V

′′ ⊗ 1 + 1⊗∇S(V)
′′

)
= V⊗ V

acting onA( )⊗ (H) = (S( )⊗H)⊗ (S( 0)), A(V)⊗ ( V ) = (S(V)⊗ V )⊗ (S(V)).
Regarding these as operators acting onπ∗(A( )⊗ (H))⊗A(V)⊗ ( V ), we obtain a
similar expression as in (2.10),

(4.41) ε = ε1/2
[
π∗ H +

∑
′◦∇V V

′

]
+ V V − ε

4
( ) +

ε

4
˜( )

Let us define a locally defined infinite dimensional hermitian vector bundle∞ V =
∞ V
+ ⊕ ∞ V

− over by ∞ V
± ( ) = A±(V)⊗ ( V )|π−1( ). Again following the com-

ment around (3.7), we will take its unitary superconnection

(4.42) V = ∇̃V V + 1/2 V V − 1
4 1/2

ˆ( )

Similarly to (3.10) and (3.11), we define ˆη V ( ) and η̃ V ( ). Since End ∞ V is glob-
ally defined, these odd degree forms on are globally defined. We have now uniform
convergence asε→ 0

(4.43) Tr( ε
− ( ε )2

) = 2
√
π

∫
L̂( ) ∧ ch( H) ∧ η̃ V ( ) + (ε1/2(1 + ))

for some > 0 as in Lemma 3.1. Here H is the curvature 2-form of
∇H and ch( H) is the (globally defined) Chern character form, i.e., ch(H) =
tr exp(

√
−1 H/2π). Denote by (3) the curvature 2-form ofα (3) and take its first

Pontryagin form 1( (3)) = − 2( (3)). Then it follows from [12, (4.9)] that we
have

(4.44) ch( H) = 2 cosh

(
1
2 1( (3))

1/2

)

We will next regard V V as a family of twisted signature operators along the
fibres and investigate its index bundle IndV V . The bundle V restricted to each fibre
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π−1( ) has a holomorphic line bundle structure induced from the structure ofC 1.
Let us denote the spaces of their holomorphic cross-sections byHol( V |π−1( )), which
together form a (locally defined) vector bundleHol( V ).

Lemma 4.3. We haverankHol( V ) = 2 and

Ind V V
+ = (1 +τV1)̃ ⊗ Hol( V ) Ind V V

− = 0

Proof. LV |π−1( ) is canonically isomorphic to the canonical tangent bundle (or
the holomorphic tangent bundle) ∗

C 1 = C 1 = ∧1 0( CC 1) and V |π−1( ) is
canonically isomorphic to the hyperplane bundleC 1. Moreover, the covariant deriva-
tive ∇ V restricted to the fibreπ−1( ) can be identified with the covariant derivative
associated to 2 through the isomorphism: see [13]. Accordingly let us take the co-
variant exterior differentialD and its formal adjointD∗ acting on (∧(C 1)⊗ C 1)
and consider a twisted signature operator

(4.45) (D +D∗)± : (∧±(C 1)⊗ C 1)→ (∧∓(C 1)⊗ C 1)

From the above, it will suffice to investigate its kernel. We have decompositions

(4.46)
∧+(C 1)⊗ C 1 = ((1 +τC 11)⊗ C 1)⊕ ( C 1⊗ C 1)

∧−(C 1)⊗ C 1 = ((1− τC 11)⊗ C 1)⊕ ( ¯
C 1⊗ C 1)

We want to show

(4.47) Ker(D +D∗)+ = (1 +τC 11)⊗ Hol( C 1) Ker(D +D∗)− = 0

where Hol( C 1) is the space of holomorphic cross-sections ofC 1. To show these
let us take canonical holomorphic local cross-sectionsℓ of the universal bundle ∗

C 1

over local coordinate neighborhoods (ℓ = {[ 0 1] | ℓ 6= 0} ℓ(= 1/ 0 (ℓ = 0) =

0/ 1 (ℓ = 1))), i.e., ℓ( ℓ) = ( 0 (1 0)) (ℓ = 0), ( 1 ( 1 1)) (ℓ = 1). An ele-
ment φ = φ0 + φ1 of (∧+(C 1) ⊗ C 1) can be expressed on ( ) = (ℓ ℓ) as
φ0 = (1+τC 11)⊗ ∗, φ1 = ⊗ ∗, where ∗ = ∗

ℓ is the dual of ℓ. Then it is eas-
ily shown thatφ belongs to Ker(D+D∗)+ if and only if D′′( ⊗ ∗) = D′′( ⊗ ∗) =
D′∗( ⊗ ∗) = 0. Here we use the usual decompositionsD = D′ +D′′ (D′′ = ∂̄) and
D∗ = D′∗ +D′′∗. D′′( ⊗ ∗) = 0 means thatφ0 belongs to (1 +τC 11)⊗ Hol( C 1),
and D′′( ⊗ ∗) = 0 means thatφ1 belongs to the space 0(C 1 1( C 1))
of holomorphic 1-forms with coefficients in C 1. By the Kodaira vanishing theorem
the space 0(C 1 1( C 1)) = 0(C 1 O( ∗

C 1)) equals{0}. Thus we obtain the
first equality in (4.47). Next, an elementφ = φ0 + φ1 of (∧−(C 1) ⊗ C 1) can
be expressed on ( ) = (ℓ ℓ) as φ0 = (1 − τC 11) ⊗ ∗, φ1 = ¯ ⊗ ∗.
Then φ belongs to Ker(D + D∗)− if and only if D′( ⊗ ∗) = D( ¯ ⊗ ∗) =
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D∗( ¯ ⊗ ∗) = 0. D′( ⊗ ∗) = 0 means that τC 11 ⊗ ∗ belongs to KerD′′ ∩
KerD′′∗(∼= 1(C 1 1( C 1)) = 0), andD( ¯ ⊗ ∗) = D∗( ¯ ⊗ ∗) = 0 means
that φ1 belongs to KerD′′ ∩ KerD′′∗(∼= 1(C 1 O( C 1)) ∼= 0(C 1 1( ∗

C 1)) ∼=
0(C 1 O(3 ∗

C 1)) = 0). Thus we get the second equality in (4.47). Finally, as is
well known ([9]), we have dimHol( C 1) = 2.

Now we take a locally defined hermitian infinite dimensional vector bundle∞
V

over defined by ∞
V ( ) = ( V |π−1( )). This has a unitary connectioñ∇ ∞

V de-

fined by ∇̃
∞
V
′ ψ̃ = (∇ V

′ ψ)̃ as in (3.5). Its orthogonal projection to the subbundle

Hol( V ) gives its connection∇Hol( V ), whose curvature 2-form is denoted byHol( V ).
H⊗Hol( V ) is a globally defined vector bundle over with connection∇H ⊗ 1 + 1⊗
∇Hol( V ). Twisting with it we obtain a twisted signature operator

(4.48) ⊗ H ⊗ Hol( V ) = H ⊗ Hol( V )

Then we have

Theorem 4.4. The (adiabatic) limit limε→0 η̄( ε ) exists inR/Z and there is
an odd degree form̃η V on such that

lim
ε→0

η̄( ε )≡2
∫

L̂( ) ∧ ch( H) ∧ η̃ V(4.49)

+η̄( ⊗ H ⊗ Hol( V )) (mod Z)

η̃ V = 2
∫

/

L̂( V ) ∧ exp

(
1
2 1( V )

)
− ch ( Hol( V ))(4.50)

Proof. Since∇̃V V ((1 + τV1)̃ ⊗ ψ̃) = (1 +τV1)̃ ⊗ ∇̃ ∞
V ψ̃, we have

(4.51) ∧( )⊗ H ⊗ Ind V V
+

∼= ∧( )⊗ H ⊗ Hol( V )

by deleting (1 +τV1)̃ as in (3.16). Through it we have H⊗ Ind V V
+ = H⊗

Hol( V ). Thus, by considering the same formula as in (3.18) or (4.26), we obtain
(4.49) with

(4.52) η̃ V =
∫ ∞

0
η̃ V ( )

2 1/2

Next let us investigate str(exp(−( V )2)). The orthogonal projection of̃∇V V to the
subbundle Ind V V

+ gives its covariant derivative, whose curvature 2-form is equal to
Hol( V ). Hence, [2, Corollary 9.22] implies

(4.53) lim
ε→∞

str
(

−( V )2
)

= tr
(
exp(− Hol( V ))

)
= ch(2π

√
−1 Hol( V ))
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On the other hand, since the curvature 2-form of∇ V equals V/2, we can show

(4.54) lim
→0

str
(

−( V )2
)

= (π
√
−1)−1

∫

/

L̂(2π
√
−1 V )∧ exp

(
1
2 1(2π

√
−1 V )

)

in the same way as in the proof of (3.27). Thus we get (4.50).

Fourth, we consider a bundle

(4.55) S ( )⊗ S ( 0) ∼= ∧( )⊗ π∗(H ⊗ H)⊗ LV

and a twisted signature operator on it

(4.56) = ⊗ S ( 0) =
∑

◦
(
∇S( ) ⊗ 1 + 1⊗∇S( 0)

)

We want to investigate the limiting behavior of the reducedη-invariant of its adia-
batic version ε . H⊗H with ∇H⊗H can be decomposed into symmetric and anti-
symmetric parts

(4.57) H ⊗ H = H ⊕ ∧H ∇H⊗H = ∇ H ⊕∇∧H

Let us consider the standard representation : (3)→ C(C3) ≡ C( ) and
take a vector bundle over

(4.58) E = (3) × E

with covariant derivative∇E associated toα (3). Then canonically we have

(4.59)
H ∼= E ∇ H = ∇E

∧H ∼= C ∇∧H =

Accordingly we have the decomposition

(4.60) = EV ⊕ V = ( ⊗ π∗E⊗ LV )⊕ ( ⊗ LV )

It suffices now to investigate their reducedη-invariants respectively.
Similarly to Hol( V ) we take a bundleHol(LV ). This is obviously globally de-

fined and its rank equals 3. Further, similarly to (∞
V ∇̃ ∞

V ) we define (L∞
V ∇̃L∞

V ), and,
in the same way as before, take a unitary covariant derivative∇Hol(LV ) on Hol(LV ),
whose curvature 2-form is denoted byHol(LV ). Then we have

Theorem 4.5. The (adiabatic) limits limε→0 η̄( EV
ε ) and limε→0 η̄( V

ε ) exist
in R/Z and there is an odd degree form̃ηLV on such that
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lim
ε→0

η̄( EV
ε ) ≡ 2

∫
L̂( ) ∧ ch( (3)) ∧ η̃LV(4.61)

+ η̄( ⊗ E) + η̄( ⊗ E⊗ Hol(LV )) (mod Z)

lim
ε→0

η̄( V
ε ) ≡ 2

∫
L̂( ) ∧ η̃LV + η̄( ) + η̄( ⊗ Hol(LV )) (mod Z)(4.62)

η̃LV = 2
∫

/

L̂( V ) ∧ exp

(
1
2 1( V )

)
− ch ( Hol(LV ))− 1(4.63)

Proof. Let us take a twisted signature operator

(4.64) V LV =
∑

′′◦
(
∇S(V) LV

′′ ⊗ 1 + 1⊗∇S(V)
′′

)
= V⊗ LV

acting onA(V) ⊗ (LV ) = (S(V) ⊗ LV ) ⊗ (S(V)) and investigate the index bundle
Ind V LV . Similarly to Hol(LV ) we defineHol(L∗

V ⊗ LV ). Then, in the same way as
in the proof of Lemma 4.3, we can show

(4.65)
Ind V LV

+ = ((1 +τV1)̃ ⊗ Hol(LV ))⊕ Hol(L∗
V ⊗ LV ) ∼= Hol(LV )⊕ C

Ind V LV
− = 0

The covariant derivative on IndV LV
+ induced from∇̃V LV is then equal to∇Hol(LV )⊕

. Thus, similarly to Theorem 4.4 we obtain the theorem.

References

[1] M.F. Atiyah, V.K. Patodi and I.M. Singer:Spectral asymmetry and Riemannian geometry I,
Math. Proc. Cambridge Philos. Soc.77 (1975), 43–69.

[2] N. Berline, E. Getzler and M. Vergne: Heat kernels and Dirac operators, Springer-Verlag,
Berlin Heidelberg, 1992.

[3] J.-M. Bismut and J. Cheeger:η-invariants and their adiabatic limits, J. Amer. Math. Soc.2
(1989), 33–70.

[4] J.-M. Bismut and D. S. Freed:The analysis of elliptic families II, Dirac operators, eta invari-
ants and the holonomy theorem, Comm. Math. Phys.107 (1986), 103–163.

[5] J. Cheeger:On the formulas of Atiyah-Patodi-Singer and Witten, Proc. of ICM, Berkeley
(1986), 515-521.

[6] J. Cheeger:η-invariants, the adiabatic approximation and conical singularities, J. Diff. Geom-
etry 26 (1987), 175–221.

[7] X. Dai: Adiabatic limits, nonmultiplicativity of signature, and Leray spectral sequence, J.
Amer. Math. Soc.4 (1991), 265–321.

[8] P.B. Gilkey: Invariance theory, the heat equation and the Atiyah-Singer index theorem, Math.
Lecture Series, Publish or Perish, Boston, 1984.



564 M. NAGASE

[9] P. Griffiths and J. Harris: Principles of algebraic geometry, John Wiley & Sons, 1978.
[10] H.B. Lawson and M. Michelsohn: Spin geometry, Princeton Univ. Press, 1989.
[11] M. Nagase:Spin structures, J. Math. Soc. Japan47 (1995), 93–119.
[12] M. Nagase:Spin , twistor and Spin, Comm. Math. Phys.189 (1997), 107–126.
[13] M. Nagase:Twistor spaces and the adiabatic limits of Dirac operators, Nagoya Math. J., to

appear.
[14] S.M. Salamon:Quaternionic K̈ahler manifolds, Invent. Math.67 (1982), 143–171.
[15] E. Witten: Global gravitational anomalies, Comm. Math. Phys.100 (1985), 197–229.

Department of Mathematics
Faculty of Science
Saitama University
Saitama, Saitama 338, Japan
e-mail: mnagase@rimath.saitama-u.ac.jp


