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Introduction

Let A be a simplicial complex on the vertex set [K, a field, K=x1,[ .., x,]
the polynomial ring andk 4 ] the Stanley-Reisner ring over . In a series of pa-
pers ([4], [5], [7]) relations between Betti numbers &f A [ ] and those of the Stanley-
Reisner ringKk A*] of the Alexander dualA* have been studied.

In this paper we extend these results to squarefee -modules, which were in-
troduced by Yanagawa in [6]. This will be accomplished by defining the dual of a
squarefreeS -module. The definition is a natural extension of the Alexander dual.

To define the generalized Alexander dual we will see that there is an equivalence
of the categories of squarefree -modules and squarefree -modules, Where de-
notes the exterior algebra. In the category of squareffee -modules we may consider
the E -dualM* = Homg (M, E). If M is the squarefre& -module corresponding to a
squarefreeS -modul&v , then we call the squareffee -module correspondidf to
the generalized Alexander dual & . The construction which assigns to a squarefree
S-module a squarefre€ -module is described in [1].

For the applications it is important to consider the so called distinguished pairs
(Z, j) introduced by Aramova and Herzog in [3]. Distinguished pairs are homological
invariants of modules over the exterior algebra. The definition is based on the Cartan
homology, an analogue to the Koszul homology in the polynomial ring. We general-
ize this definition to homological distinguished paiés { ) and cohomological distin-
guished pairsi(j ).

We prove that a homological distinguished pdirj( )Mf  corresponds to the co-
homological distinguished pait,(z — j) of M*, which in turn corresponds to the ho-
mological distinguished pair(n — j —1+1) of M*. These homological considerations
lead to the following results about graded Betti numbers:

Let 3;;+; be the graded Betti number of a finitely generated grafled -module.
Bayer, Charalambous and S. Popescu introduced in [4] a refinement of the Mumford-
Castelnuovo regularity, the extremal Betti numbers. They call a Betti number 7 0
extremal if 5,4, = 0 for all » > j and all/ > i with (I,r) # (i, j). One of their re-
sults states the following: if; ;+;(K[A]) is an extremal Betti number oK A ], then
Bj+1i+j(K[A*]) is an extremal number oK A*] and 5; ;+;(K[A]) = Bj+1i+;(K[A*]).
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In this paper we will prove a similar result for any squarefr8e -modyle : if
Bii+j(N) is an extremal Betti number oV , the# ;+;(N*) is an extremal Betti num-
ber of N* and §; ;+;(N) = B;+;(N*). In particular for any pair of squarefree ideals
In C Ir one has: iff; ;+j(Ir /1) is an extremal number afr /14, theng; i+;(Ia~/Ir-)
is an extremal number ofs-/Ir- and 5; ;+;(Ir/1a) = Bj.i+j(Ia+/Ir+).

The author is grateful to Prof. Herzog for the inspiring discussions on the subject
of the paper.

1. Squarefree Modules and generalized Alexander Duality

We fix some notation and recall some definitions. kor asf (.., a,) € N', we
say a issquarefreeif 0 < a; < 1fori =1...,n. We setla] = a; +...+a, and
supp@ ) ={i 1 a; # 0} C [n] := {1,...,n}. Sometimes a squarefree vector afid =
suppg ) are identified. Let; = (0,...,1,...,0) € N" be the vector, where the one
is at the ith position. For an element  of &-graded vector spac®f &, . M.
the notation deg( ) = is equivalent 10 € M,; we set supp(deg( )) = supp( ) and

|degft ) = |ul.

Let S =K [xy, ..., x,] be the symmetric algebra over a fiekd amdthe graded
maximal ideal £, ..., x,) of S. Consider the naturaN"-grading onS . For a mono-
mial x7* ... x5 with a = (a1. .., a,) we setx® .

Let E =K{e1, ..., e,) be the exterior algebra over an -dimensional vector space
V with basisey, ..., e,. We denote byM the category of finitely generated graded
left and right E -modulesV , satisfyingx ~ =-(1)/9e9¢)1deat ) x; for all homogeneous

a € E andx € M. For example every graded idedl C E belongs toM. For
an elementM € M we define M* = Homg (M, E). Observe that (*)is an exact
contravariant functor [2, 5.1 (a)] antl* € M. For a K -vector spacé/  we define
WY = Homg (W, K ). The following was proved in [2, 5.1 (d)]M*); = (M,_;)V.

If @ € N" is squarefree we set, &, A...Ae, , where supp( ) Hj1 < ... < ji}
and we say, is a monomial if . For anyc N" we sete, =esuppey FOr monomials
u,v € E with supp@ )C suppf ) there exists an unique monomiale E such that
vw = u; then we setw =~ u. Notice that for monomials, v, w, z € E the equalities
below hold whenever the expressions are defined:

(v ww = v Huw) and ¢ ) ) =z .

A simplicial complexA is a collection of subsets of [ ] such tHa} € A for
i=1...,n, and thatF € A wheneverF C G for someG € A. Further we denote
by A* :={F : F ¢ A} the Alexander dual ofA . Theik A ]=/I, is the Stanley-
Reisner ring, wherdy =x{,...x;, : {i1,...,is} & A), and K{A} := E/J, is the
exterior face ring, wherda = A...Ae,  {i1,....is} & A).

The starting point of this section is a definition introduced by Yanagawa in [6].
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Derniion 1.1, A finitely generatedN"-graded S -moduleN =, N is
squarefreeif the multiplication mapsV, > y — x;y € N+, is bijective for alla € N"
and alli € suppg ).

For example the Stanley-Reisner ring A [ ] of a simplicial complax is a
squarefree module. It is easy to see that doe N and a squarefree modulg  we
have dinx N, = dink Nsyppe) @and N is generated by its squarefree paM, : a C
[n]}. Yanagawa proved in [6, 2.3, 2.4] that @ : N — N’ is a N"-homogeneous
homomorphism, wherev N’ are squarefree modules, Kerand Cokerp are again
squarefree. It follows that every syzygy module Syz ( ) in a multigraded minimal free
S-resolution F, of N is squarefree. Indeed the free -modWle  is generated by ele-
ments f with degf ) is squarefree and this is called a squarefree resolution. It follows
that anS -moduleN is squarefree if and onlyNf  has a squarefree resolution.

The following construction which is of crucial importance for this paper is due to
Aramova, Avramov and Herzog [1]:

Let (F,, 0) be an acyclic complex of fre&"-gradedS -modules. Furthermore we as-
sume that eachF; has a homogeneous ba&sis with fdeg( ) is squarefree for all
f € B,‘.

Fora € N* and f € B; we let y@ f be a symbol to which we assign deff{ f) =
a+deg(f ). Now define the fred"-gradedE -modules; € M with basisy@ f, where
a eN', f € B;, supp& )C supp(f ) and =Ha|+i. For f € B; and

0(f)= > AxPThif; with A; € K, b=deg(f) b; =degf; )

Jifi€Bi_1

we define homomorphism&; — G;_; of N*-gradedE -modules by

YOO f) = NP YT e fe,
kesuppg )
IGOf) = (D Y YO fiNe, e

Jifi€Bi_1

Setd =v+v: G, — G;_1, then G,, d) is a complex of freeN"-gradedE -modules in
M. Indeed if G, d) is the complex obtained by a different homogeneous bBASisf
F., thenG, and G/, are isomorph as complexes Bbiff-graded modules. Now there is
the important theorem [1, 1.3]

Theorem 1.2. If (F,, 0) is the minimal freeN"-graded S -resolution of a square-
free S-moduleN , ther(G,, d) is the minimal freeN"-graded E -resolution ofNg :=
Coker(G1 — Go).

Proof. See the proof of [1, 1.3]. There the theorem was proveds fdr where
I is a squarefree monomial ideal, but the proof works also in this more generalized
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situation. O

N and Np can also be seen Bsgraded modules ove§ andl by defining =
@a:w:i N, and the same foNz . By [1, 2.1] we get the following

Corollary 1.3. Let N be a squarefres -module, then

i . i1
CIOEES B (W) I 0}
k=0

where 3¢ denotes graded Betti-numbers over the exterior algebra ghdgraded
Betti-numbers over the polynomial ring.

It is a natural question if this construction has an inverse. This means, given an
E-module with its minimal freeE -resolution we want to constructsan -module with
a free S -resolution.

Derinmion 1.4, A finitely generatedN"-graded E -moduleM =@, .\, M, is
square freeif it has only squarefree components.

For example the exterior face ring{A} obtained from a simplicial complex
is a squarefreeZ -module. Also for any squareffee -moddle ,Fthe -madule is
squarefree as can be easily seen from its definition.

Now we consider the following inverse construction:
Let M be a squarefreeE -module with the minimal fré&-graded E -resolution
(G., ). Let B, a homogeneous basis 6f . Then we Bet= {f € B; | deg(f) is
squarefreg. We define a complexH,, 0) of S-modules, whereF; is a fre§ -module
with basisB;. If f € B; and

5(f)= Y firiey en with b=deg(f) b; =degf; ) and\; € K,

Jifi€Bi_1

then we set

G(f) = Z fj)\ijibj.
Jifi€Bi_y
It is easy to see thatF, 0) is indeed a complex. But a little more is true:
Theorem 1.5. If (G,, d) is the minimal freeN"-graded E -resolution of a square-

free E-moduleM , ther(F,, 0) is the minimal freeN"-graded S -resolution ofMg :=
Coker(F; — Fp) and Mg is a squarefrees -module.
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Proof. Let @.,5) be the minimal freeN"-graded S -resolution of th& -module
Ms. By the first construction (see 1.2) we get a minimal fi€egradedE -resolution
(G.,S) of the E-module {45 } . The definitions imply that(s ) # . Therefore
G. > G, as complexes, since both complexes are minimal fiee -resolutions of . If
we apply the second construction faG | 5) we get (., 5). All in all it follows that
F. = F, as complexes and hence,( 6) is the minimal freeN"-gradeds -resolution of
the S-moduleMs . Sincey, F; are squarefred -modules, we see that is a square-
free S-module. ]

We get immediately

Corollary 1.6. Let N be a squarefreeS -module andf be a squareffee -
module. We denote by the squarefrEe -module definetl.drand by My the
squarefreeS -module defined in5. Then

(Ms)e =M and (Ns)r = N.

Now consider two squarefreg® -modulds N’ and aN"-homogeneous homomor-
phismy : N — N’. Take the minimal freeN"-gradedS -resolutionH,, §) of N and
the minimal freeN"-graded S -resolution K/, ¢') of N’ with homogeneous bases,
and B,. It is well known thaty induce a complex homomorphism, : F, — F..
By construction 1.2 we get minimal fré§”-gradedE -resolutionsd,, 0) and G5, ¢’)
of Ng and N, respectively. Letf € B; and p;(f) = Zj:f;eB; )\ij*bffj{, where
b =deg(f ) andb) = deg(f’). Then we define a complex homomorphism

e :Go — Gy YO f — Z y(a)fjAje;jleba
Jjifj€B]

for all @ € N* and all f € B;. Now %, induces aN"-homogeneous homomorphism
VMg — Mp.

Similary two squarefreeE -modules M’ and a N"-homogeneous homomor-
phism : M — M’ induce aN"-homogeneous homomorphism: Mg — M.

It turns out that these assignments define functors. Denots§ @) the abelian
category of the squarefreg& -modules, where the morphisms ar&"th@emogeneous
homomorphisms. LetSQ(E) be the abelian category of the squarefrBe -modules,
where the morphisms are again thé-homogeneous homomorphisms. Then

F:89(S) — SQ(E), N +—— Ng
and

G :SQ(E) — SO(S), M +— Mg
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are additive covariant exact functors of abelian categories. Hence we see by 1.6 that
the categoriesSQ(S) and SQ(E) are equivalent.

We conclude the section with an example. [etC A be simplicial complexes. Then

It /1A is an element ofSQ(S) and Jr/J, is an element ofSQ(E).

Corollary 1.7. With the notation introduced we have
(Ir/IN)E =Jr/Ja and (Jr/Ja)s = Ir/IA.

We further have

Lemma 1.8. (Jr/Ja)* = Jax/Jr~.

Proof. We see thatH/Jx)* = Homg (E/Ja, E) = 0 g Jao = Ja~. Consider the
exact sequence © Jr/Ja — E/Jx — E/Jr — 0. Since the functor (*)is exact we
get the exact sequence-0 (E/Jr)* — (E/Ja)* — (Jr/Ja)* — 0O, and the assertion
follows. ]

This lemma gives us the hint how to define the generalized Alexander dual for
elements inSQ(S).

DerFinimion 1.9, Let N € SQ(S). Then we call
N*=((Ng)")s
the generalized Alexander dualf N.

We note that
() :89(S) — S9O(S), N+~ N*,
is a contravariant exact functor on the categS/@(S).

2. The Cartan complex

In this section we recall theCartan complexwhich provides a minimal free
gradedE -resolution of the residue class fi&d  of the exterior algé&bra

For a sequence& = vy, ..., v, C E; the Cartan complex_,(v; E) is defined to be
the free divided power algebr&(x, ..., x,) together with a differentiab. The free
divided power algebr& (xi, ..., x,) is generated oveE by the divided poweafé)
fori=1,...,m andj > 0, satisfying the relations)x® = ((j +k)!/(j!k!))xY*"). We
setx,.(o) =1 andx,.(l) =x; fori =1,..., m. ThereforeC,(v; E) is a free E -module with
basisx@ = x{ . x@) 4 € N", We set deg®@ =i if |a| =ay+...+a, =i and
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Ci(V; E) = D= Ex@. The E -linear differentiad on C,(v; E) is defined as follows:
for x(@ = x{)  x(@) we set

S(x @y = Z v,-xgal) . .xl.(""fl) Cxam),
a; >0

Now one sees easily thato § =0 andC,(v; E) is indeed a complex.
DeriniTion 2.1, LetM € M, v=u,,...,v, C E1. The complexes
Co(V; M) = Co(V; E) @ M, C*(v; M) =Homg (Co(V; E), M)

are calledCartan complexand Cartan cocompleyof v with values inM . We denote
the homology of these complexes by

Ho(v; M), H®*(v; M)
and call it theCartan homologyand Cartan cohomology

One can see that the elements @f v; M) can be identified with homogeneous
polynomials) " m,y® in the variablesys, ..., y, and coefficientsn, € M, wherey® =
ya... .y fora e N", a=(ay,...,ay). An elementm,y* € C*(v; M) is characterized
by the following property

= {5 10
Sety, =) -, viyi, then
& CHv; M) — C™H (v M), f— W f.
Now there is a naturally grading of the complexes and their homology. We set
degx; =1 C; ¢; M); :=spary (1,x® : |a| +|b| =i, |b| = j),
and
degy; =—1, C/(v; M); :=span fu.y” ila| —|b| =i, |b| = j).

In [3, 4.2] the following is shown

Proposition 2.2. Let M € M. Then for alli there is an isomorphism of graded
E-modules

H;(v; M)* = H'(v; M*).
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Cartan homology can be computed recursively. et vq, ..., v, be a sequence
in E1. Forj =1 ..., m — 1 the following sequence is exact

0— C.(Ul, e, Uj;M) SLAN C.(’Ul, cey U M) SN C.,]_(’Ul, cey U M)(—l)—> 0.

Here. is a natural inclusion map, whereis given by

k k—1
T(go+ guxjs1t .+ gx) = g1+ gaxjia .+ gl

with g; € Ci_i(vy, ..., v;; M). This implies (see [3, 4.1, 4.3])

Proposition 2.3. Let M € M. Then for allj = 1,...,m — 1 there exist exact
sequences of graded -modules

. i . Bi .
c— Hi(vy, .. 05 M) 25 Hiug, -, vjen; M) 5 Hi_q(vi, - - ., 0415 M)(—1)
6,'_ i— i —
—1>H,-_1(U1,...,Uj;M)a—% ,-_1(v1,...,vj+1;M)ﬁ—1>...,
and

— H Y v, v M) — H Moy, oo 05 M) — HI 7 (e, -0, 040 M)(+1)

S H (g, v M) — Hi (v, v M) —

Here o; is induced by:, 3; by 7. For a cyclez = go + gaxjss + ... + gi_1x{? in
Ci—1(v1, ..., vj+1; M) one haso;_1([z]) = [gov;+1].

Corollary 2.4. Letv = wv,...,v, be a basis forE;. The Cartan complex
C.(v; E) is a free resolution of the residue class fiekd Bf . In particular for all
M e M,

Torf (K, M)~ H;(v; M), Ext;(K,M)= H'(v; M)
as graded modules.

Proof. Use the exact sequences of 2.3 to show €hdv; E) is a free resolution
of K. The other statements follow then immediately. O

3. Distinguished Pairs

This section describes the behavior of the so catletinguished pairdgntroduced
by Aramova and Herzog [3]. Let € M andv =4, ..., v, be a basis forE;. Con-
sider the long exact homology sequence 2.3
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— Hi(vy, ..., vj—s M) — Hi(vy, ..., vj; M) — Hi_1(vy, ..., v;; M)(—1)

— H,'_]_(Ul,...,'l)j_l;M) — H,-_]_(Ul,...,'l)j;M) —_— ...

To simplify the notation we setH; k() &H; v{, ..., v; M) for i > 0 and Hp(k) =
(0] M1, )M vk)/vk(M/(vl, .o, V_1)M), where Oy ¢) ={a e W:.ea= 0} for
an E-moduleW and € E. Let H;(0) =0 fori > 0. Notice thatHy(k) is not the Oth
Cartan homology of\f with respect ta, ..., v;. We obtain the exact sequence

-— Hi(j — 1) — Hi(j) — Ho(j)(-1) — 0
The following lemma leads to the concept of distinguished pairs [3, 9.5]

Lemma 3.1. Letl <[ <n, j € N. The following statements are equivatent
(@) (1) Ho(k); =0for k <1 and Ho(l); 70,
(2) Ho(k);,=0forall j/>jandallk <i+j—j"
(b) Foralli >0
(1) H,'(k),‘+j =0for k<! and H,‘(l),'+j Z0,
(2) Hi(k)i+j»=0forall j'>jandallk<Il+j—j.
(c) Condition (b) is satisfied for some
Moreover, if the equivalent conditions hold, théfi(l);+; = Ho(l); for all i > 0.

Derinimion 3.2. A pair of numbersi(j ) satisfying the equivalent conditions of
3.1 will be called ahomological distinguished paiffor ).

Next we give a similar definition of distinguished pairs for the Cartan cohomol-
ogy. Consider the long exact cohomology sequence

. — Hi_l(vl,...,vj;M) —s H vy, ..., v, M) — H vy, ..., vj; M)(+1)

— H'(v,...,v;; M) — H'(vg,...,v,_; M) — ...
We define

Ho(k) = (0 :(O:M(U]_ ..... vk,j_)) Uk)/vk(o :M (vlv M) vk*l)) and
Hi(k)=H (v, ..., v, M) for i > 0.

Furthermore we seH’ (0) = O far > 0. Notice that H°(k) is not the Oth Cartan
cohomology ofM with respect toq, ..., v,. We obtain the exact sequence

0 — HO(j)(+1) — HYj) — HY(j - 1) — ....

There is a result similar to 3.1
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Lemma 3.3. Letl </ <mn, j€N. The following statements are equivaltent
(@) (1) H°(k); =0 for k < and H(I); #0,
(2) H°k);  =0forall j/ < j and allk <I+j — j.
(b) Foralli >0
(1) H'(k)—i+;j =0for k <l and H'(I)_;+; #0,
(2) H'(k)—i+j»=0forall j<jandallk </+j —j.
(c) Condition (b) is satisfied for some .
Moreover, if the equivalent conditions hold, théri(/)_;.; = H°(); for all i > 0.

Proof. The proof is analog to the proof of [3, 9.5]. ]

DeriniTioN 3.4, A pair of numbersi(j ) satisfying the equivalent conditions of
3.3 will be called acohomological distinguished paiffor M).

As a first corollary we get.

Corollary 3.5. Let M € M. The following statements are equivatent
(@) (¢, J)is a homological distinguished pair fayr
(b) (,n — j) is a cohomological distinguished pair fav*.
Moreover, if the equivalent conditions hold, thé(l; M),.; = H'(l; M*)_;+,—; for all
L.

Proof. Letv C E; be a sequence of elements. Then by by ZL2v; M)i+; ¥

(Hi(v; M)ixj)Y = (Hi(V; M)*)y—i—j = H'(V; M*)_iss—;. The claim follows directly
from the definitions 3.2 and 3.4. ]

We setMyy = (0 iy (vi,...,v)) and M%) = M/(vq, ..., v)M. We shall need
the following two technical lemmata.

Lemma 3.6. (a) For all r there exists a natural graded -module homomor-
phism

a(t) 1 (0 pe-v v) — O (Wa,...,0))(t—1)
(b) Suppose that for some arnyd one has
Ho(k); =0 for k <1, Ho(k); =0forall j'>j and allk <7+ j—j"
Then
a(r); (0 e v); — (0 (1, V) jar—1

is bijective and
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at)jrr s (0 ra-n v)jrr — (0 1, -0, V1))
is injective.
Proof. (a) We prove the existence af(r) : (O :yu-n v) — (0 i
(vi, ..., v))( — 1) by induction onr . For = 1 there is nothing to show. Now let

t > 1 and consider the compositioh of gradedE -module homomorphisms

M=2) ey M=2)

Bs (t—2) Ba .
v M(1=2) —> (0 :pre-2 vi—1) M YD = 0age-n v-a)D)

M-D Py

Here theg; are defined as follows: by the definition 81~ we see that there
is a natural gradedz -module isomorphista Now considerv,_1M =2 C (0 -2
v,_1). It follows that there is a natural graded surjectide -module homomorphism
and a natural graded injectiv@ -module homomorphigmFurthermoress is the nat-
ural gradedE -module isomorphism.
The following diagram is commutative singeis an E -module homomorphism

Uy

M= L N M1
d 7|
(0 :yi-2 vi—1)(+1) —— (0 102 v,-1)(+1)
and therefore induces a natural gradeéd -module homomorphism between the two ker-
nel of the multiplication homomorphisms witlh

1) a1 (0 ye-n v) — (0 yu—2 (vi—1, v,))(+1).

By our induction hypothesis for — 1, we get a natural grade -module homomor-
phism a(t — 1) : (0 ;0-2 vi—1) — (0 3y (va,...,v,-1))( — 2), and the following
diagram is commutative

Uy

(O M—2) v,,l) Em— (O M—2) v,,l)

a(tfl)l a(tfl)J(

O @1, v—))(t =2) —— Oy (1., v-2))(t —2)

Thus we get a graded -module homomorphism between the two kernel of the multi-
plication homomorphisms:

2 a2 (0 e (v—1,v)) — (0 1y (v1, ..., v))(t = 2).

We define the natural gradell -module homomorphisfm) : (0 :j¢—n v;) — (0 iy
(v, ..., v))( — 1) as the composition of the maps (1) and (2).
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(b) This is again proved by induction an . For =1 there is nothing to show. So let
t >1andj, where

Ho(k); =0 for k <, Ho(k); =0 for all j/ > j and allk <t +j— .
Then forr —1 andj +1 we see that

Ho(k)j+1:0 fork <r—1,
Ho(k);; =0 forall j/> j+1landallk <tr—1+;+1— ;'

By the induction hypothesia(r — 1) is an isomorphism in degreg + 1:
(3 aft —1)j+1: (0 -2 vi-1)j41 — 0w (1, .-, V1)) j+r—1,
and a(r — 1) is injective in degreg +2

4) alt — D)2 0 (00— vi—1)j+2 — (0 V1, - .-, v,-1)) jr

Now consider fors the conditionHo(r — 1); = Ho(t — 1);+1 = 0. This is equivalent to

(5) (0 tpre—2) V—1)j = v—a (M), 4
and
(6) (0 M2 Ut—l)j+1 = Ul—l(M<172>)j-

With the decomposition of th& -module homomorphigimn (a) it follows for the
pair (¢, j):

From (5) and (6) we see that, is bijective in degreej andg + 1. From (6) we
get that the map3, is bijective in degreej . Thus it follows that in this case (1)
O :yo-v v); — (O -2 (vi—1,v))j+1 is bijective. From (3) we see that (2)
O ppe-2 (vi—1,v))j+1 — (O iy (v1,...,v))j+—1 IS bijective. Therefore the compo-
sition a(t); 1 (0 ppu-v vr); — (0 iy (va, ..., v))j+—1 IS bijective.

Similar we get for the pairs(j +1) that

a(t)j+1 (0 ppe-v vr)jrr — (0 (UL, -5 V) jwe
is injective. ]
Lemma 3.7. Suppose that for some and one has
Ho(k); =0 for k < t, Ho(k); =0 forall j/> j and allk <t+j— j'

Then it follows thatHo(t); = HO(t)j+—1.
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Proof. We see the following: in the proof of 3.6 we defined a natural graded -
module homomorphisng : M~ — (0 :u-2 v,_1)(+1). With the condition 0 =
Ho(t — 1); for the pair (, j ) we get,_1(M~2);_1 = (0 {0-2 v,-1);. We see that
0 is surjective in degreg — 1, because3, is an isomorphism in degreg¢ — 1. The
pair (t —1, j) satisfies the assumption of 3.6 (b) and it follows that,f0-2 v,_1); ¥
0y (v1, ..., v-1))j+—2. Therefore the composition

([ (M<’_l>)j—1 - (0 ‘M (Ula ceey vt—l))j+t—2

is surjective.
Now there exists the commutative diagram

0 —— O po-v vi)j—1 —_— (M<[71>)j71

d ]

0 —— (O 1, v))jrr—2 —— (O (1,..., v-1))j—2

The K -linear mapy is surjective (see above) and tlke -linear mags the E -module
homomorphisma(z) in degreej — 1 (see 3.6 (a)). Furthermore

O ppe—n v) = Ker(M<1—1> LN v,(M<’_1>))
and
O @1, v)) =Ker(Q iy @1, -+, v-1)) == vi(0 iy (1, -+, vi-1))).
It follows that the inducedk -linear map between the cokernel

v oMY — 0,0 iy (v, v— 1) 2 = 0 (M) 2

is surjective. Now consider the commutative diagram

0 — v,(M<ril>)j_]_ — (O :M</—1) v,)j E— Ho(t)j — 0
’Yi (x(r)l ,
0— v(My_3))js—2 — (0 1, ..., 0))js—1 — HO(t)js—1 — 0

where ~ is the induced map. Since the pait [ ) satisfies the assumption of 3.6 (b)
we get thata(z) is bijective in degreej . Now we see that a bijectike -linear map

Ho(t); = Ho(t) j+r—1

is induced and therefore the claim of this lemma follows. O
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We are able to prove the main theorem

Theorem 3.8. Let M € M. The following statements are equivatent
(@ (,j)is a homological distinguished pair fa¥f
(b) @, j+1—1)is a cohomological distinguished pair fav
Moreover, if the equivalent conditions hold, théh(l);+; = H'(l)_i+;+—1 for all i.

Proof. (a}=(b): We show condition 3.3 (a). Let,(j ) be a homological dis-
tinguished pair forM . We get

(7) Ho(k); =0 for k <1 and Ho(l); # 0O,
and
(8) Ho(k);; =0 for all j'> j and allk <1+ — '

Fork <1 andj we see that
Ho(s); =0 for s <k, Ho(s);; =0 for all j/ > j and alls <k+j — j".
Fork <I+j— j"  andj’ > j we have
Ho(s);» =0 for s <k, Ho(s);» =0 for all j” > ;" and alls <k+ ;" — ;".

Using 3.7 it follows that

) Ho(k); = HO(k) k-1,
and
(10) Ho(k)j = HO(K)jrsi—1,

for the pairs &, j ) andk j’).

To prove thatl, j 4 — 1) is a cohomological distinguished pair faf  we must show
that

(11) HO(k)jy_1=0fork <1 and H°(l);._1 #0,

and

(12) HO(k); =0forall j/<j+l—1andallk <[+j —(j+l—1)

First we prove (11). Fok % and A1 it follows from (7) and (9) that

HO(1)j+1-1 = Ho(l); #0.
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Fork <l andj +/ — 1 it follows from (8) and (10) that
HO(k)j+1-1 = Ho(k)j+1—x = 0,

becausej’ = j+l—k > jandk <I+j—(j+I—k)=1+j—j".

Finally we prove (12). Letj’ < j+1—1 andk <[+ j' — (j +1— 1). We can write
j'=j+1—1—t, wherer =1...,j+1—1 and thereforek <1 — .

Now let k =1 —¢. It follows from (7) and (9) that

HO(K) j41-1—¢ = Ho(k) js—k—: = 0.

becausej” = j+1 —k—t=j andk =l —r < I. Fork <[ —1 it follows from (8) and
(10) that

HO(Kk) j+1-1—¢ = Ho(k) j+1—k— = 0.

becausej” = j+1 —k—t > jandk <k+t=1l+j—(+l—k—t)=1+j—j"
Altogether we get that/(j #— 1) is a cohomological distinguished pair fof
(b)=(a): Let (,j +/ — 1) be a cohomological distinguished pair fof . The results
of 3.5 and 3.8 imply that/(j ) is a homological distinguished pair f6r

The claim H; ()+; = H'(I)—i+;+—1 follows also from 3.5 and 3.8. U

To avoid confusion we now sel; [ (¥ ) faH; [ () to indicate that the homology
is taken with values i .

Corollary 3.9. Let M € M. The following statements are equivalent
(@) (,Jj)is a homological distinguished pair fay/
(b) ((,n—j—1+1)is a homological distinguished pair far/*.
Moreover, if the equivalent conditions hold, théi(l; M);+; = H;(I; M*)i+n—j—1+1 fOr
all i.

Proof. This follows from 3.5 and 3.8. O

4. Applications

In this section we extend a theorem of Bayer, Charalambous and S. Popescu on
extremal Betti numbers to squarefrde -modules.
We quote the following result of [3]

Proposition 4.1. Let M € M and j € Z. The formal power seried;(r) =
> is0 854 (M)t" is the Hilbert series of a graded[yi, ..., y,]-module. In particu-
lar there exists a polynomia;(r) € Z[:] and an integerd; € N with d; < n such
that



484 T. ROMER

Q;(t)

pi() = d-1)

and ej = Qj(l) #0

Let N € SQ(S), k(j) = maxk : 6,f’k+j(N) # 0} and P; ¢) =350 65 (Ne)'.
Then 1.3 yields

k(j N
W BE s (N (L — 1y
(1 — )k

(13) Pi(r) =
As in [3, 9.2, 9.3] we conclude

Proposition 4.2. For j € N and N € SQ(S) we haved;(Ng) = k(j) + j and
¢i(NE) = B 1+ (N)-

Let M € M; as shown in [3] there exists a basisof E; and an integei > 0
such thatd; ¢4 ) =n + X min{k : H;(k, M);+; 7 O} ande; M) = dink H; ¢ — d; +
1, M);+j, whereH; , M ) =H; ¢1...,v,; M) for all k. Thus if ¢, j) is a homological
distinguished pair fo’M , we have

diM)y=n+1—-1 and e; M)=dink H; (, M )+;.
Therefore 3.9 implies

Corollary 4.3. Let M € M. If (I, j) is a homological distinguished pair fay/
thend;(M) = d,—;—1+1(M™) and e;(N) = e, j—1+1(M~).

The definition of an extremal Betti number together with (13) imply

Corollary 4.4. Let N € SQ(S). The following statements are equivalent
(@) B7.4;(N) is an extremal Betti number of
(b) i =k(j)andd;/(Ng) —d;(Ng) < j' — j for all j" > j.

Now we get

Corollary 4.5. Let N € SQ(S). The following statements are equivaltent
€) /Bfi+j(N) is an extremal Betti number gf
(b) m+1—i—j,J)is a homological distinguished pair favg
Moreover, if the equivalent conditions hold, théﬁ,.+j(N) =dimg Ho(n +1—i — j);.

Combining 4.5, 3.9 and 1.8 we get

Theorem 4.6. Let N € SQ(S). The following statements are equivatent
(a) 5;5,,-+,-(N) is an extremal Betti number of
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(b) ﬁﬁj+i(N*) is an extremal Betti number a¥*.
Moreover, if the equivalent conditions hold, thefy, (V) = 35 .., (N*).

In particular we have

Corollary 4.7. LetI” C A be simplicial complexes on the vertex $e}, K a
field. Letin C Ir € S = K|[xy, ..., x,] be the corresponding ideals in the polynomial
ring. The following statements are equivatent
(@) 5,-5,,-+j(1p/IA) is an extremal Betti number af-/1,,

(b) 67 ;4(Ia-/Ir~) is an extremal Betti number dfy-/Ir-.
Moreover, if the equivalent conditions hold, thef,, (Ir/1x) = 37 j.;(Ia- /Ir-).

In the casel” ) this is a result in [4].
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