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0. Introduction

Let Y be a normalQ-Gorenstein projective variety, and l¢gt X: — Y be a res-
olution of singularities. The discrepancy divis&wv Ky — f*Ky = > a;F;, where
the F; are the irreducible exceptional divisors fér , plays a key role in the geome-
try of Y. For example, the singularities allowed on a minimal (resp. on a canonical)
model of Y are defined in terms af . Also, effective results for global generation of
linear systems on singular threefolds (cf. [2]) depend on an upper bound for certain
coefficients ofA .

There are many difficult conjectures, and several important results (at least in di-
mension< 3), regarding the discrepancy coefficientslof  (i.e., the coefficiepts ). In
this paper we study a special case of the following problem:

Shokurov’s conjecture ([10], [6]). If dim(Y)=nr, andy € Y is a singular point,
thenmd, (Y)<n — 2.

The minimal discrepancyf ¥ at y, md, ), is defined as
md, V') = inf{ordr (A) | f(F) ={y}; f:X — Y resolution ofY}.

The following theorem gives an easy way to bound,nid ( ) for a large class of
hypersurface singularities.

Theorem 1. Assume that the gerr(t, y) is analytically equivalent to a hyper-
surface singularity(Y’, 0) C (A%, 0), given by

Y' = {(yl, ceey yn+1) | G(yl, e, y/z+l) = O}, G(O, ey 0) =0

For an n-tuple (ai, ...,a,) of positive integers, writeG(t“uy, ..., t%"u,,t) =
tAd(ug, ... up) + t2 ", ..., up, t) With é(uy, ..., u,) # 0. Note thate is always
a polynomial of degree at most , evendf is a power series. Assumebthat at
least one irreducible factor with exponehtin its factorization.

Thenmd, (Y) < d, whered = (a1 + - +a,) — A.
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This criterion applies, for example, to hypersurface singularities of multiplicity 2
and rank at least 2 (if the singularity,( 0) is defined 6y = 0, then we define its
rank as the rank of the quadratic part 6f at 0). It applies also to terminal (and,
more generallycDV) singularities in dimension 3. Shokurov’s conjecture for terminal
threefolds was proved by D. Markushevich [7], using the language of toric geometry,
Newton diagrams, admissible weights, etc., and using the fact that the singularities are
isolated. The proof we give in this papé€jd] is more elementary, and works for non-
isolated singularities as well. For this reason, we can prove Shokurov's conjecture for
log-terminal threefolds without using Mori’s very difficult results on existence of flips.
(The log-terminal case is not covered in [7].)

On the other hand, Shokurov’s conjecture is true for non-terminal threefold singu-
larities (and therefore it is true in full generality in dimension 3, by combining this
fact with Markushevich’s result). But the proof, cf. 2.5 below, which | learned from
S. Ishii, uses the existence of a terminal modification — and therefore the existence
of flips. From this point of view, the proof is not as satisfying as one might wish;
it would certainly be nice to have a complete proof of Shokurov's conjecture in di-
mension 3 without using the existence of flips. (Several experts have suggested to me
that, even in higher dimension, it should be possible to reduce the general case of
Shokurov’s conjecture to the terminal case, but | don’'t know how this can be done.)

The paper is organized as follows. §t | discuss discrepancy coefficients in gen-
eral. Everything in this section is well-known to the experts; | wrote it mainly to fix
the notation and terminology. | discuss in some detail the invariance of certain def-
initions under analytic equivalence of germs; | couldn’t find a satisfactory reference
in the literature. (N. Mohan Kumar pointed out to me that the matter is not com-
pletely trivial.) In §2 | discuss minimal discrepancies and prove several reductions of
Shokurov’s conjecture. In particular, Theorem 7 in 2.5 shows that the conjecture is true
for non-terminal threefold singularities. The proof may well be known among the ex-
perts, but | couldn’t find it in the literature. | am very grateful to S. Ishii for kindly al-
lowing me to include it here. I§3 | prove Theorem 1, and if4 | carry out the com-
putations forcDV threefold singularities. Note that the proof of Theorem 1 is easy; the
difficulty rests in applying it tocDV singularities.

| would like to express my gratitude to L. Ein, P. lonescu, S. Ishii, R. Lazarsfeld,
and N. Mohan Kumar; our many conversations were very useful.

1. Generalities about discrepancy coefficients

In this section | recall several definitions and results regarding discrepancy coeffi-
cients, cf. [9], [1], [5].

1.1. Let f:X — Y be a birational morphism of -dimensional normal projective
varieties overC. A prime Weil divisor F C X is f-exceptionalif dim f(F) < n — 2.
The closed subsef F( Y is called thecenterof F on Y. More generally, &)-
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Weil divisor D =) a;F; is f-exceptional if all the irreducible components are
f-exceptional. Let Ex¢ ) {x € X | f is not an isomorphism at}; then D is f -
exceptional if and only if Sup@d & Exc(f).

1.2. Choose a canonical divisdfy on . Assume tlifat QisSorenstein, with
global indexr ; i.e.mKy is Cartier for some integer> 1, andr is the smallest such
integer. Then we can define @-divisor f*Ky on X by f*Ky = (1/r)f*(rKy). On
the other hand, there is a unique canonical divi&gr Xon  such thaftbwisor
A=Ky — f*Ky is f-exceptional. Kx is obtained as follows: letbe a rational dif-
ferential n -form onYyy, the smooth locus of ; theyf*w extends uniquely to a ratio-
nal form on X , which we still denote by*w. If w is chosen such thaky = diwj,
then Kx = diw (f*w).) The divisorA =Kx — f*Ky is called thediscrepancy divisor
of f. Note thatKy varies in a linear equivalence classYon , and correspondihgly
varies in its own linear equivalence class Bn ; however, is uniquely determined by

I

1.3. Write A =) q;F;; the rational numbers; are callediscrepancy coeffi-
cients Now consider another birational morphisfif : X’ — Y (with X’ a normal
projective variety of dimension )f’_1 o f is a birational maps X ---— X'. Let
F; C X be an f -exceptional divisor which intersects the regular locus Reg( g of
and assume thag is an isomorphism at the generic poirft;of ;gi(&, N Regg))
is adivisor F; on X'. Then F| is an f’-exceptional divisor; in fact}; and’; have
the same center o f Ff ) F'(F;j). Moreover, ifa; is the coefficient of7} in
A =Ky — f"" Ky, thena’, = a;. In other words, for every exceptional divisé; , the
discrepancy coefficient and the center bn  depend only on the discrete valuation of
the rational function fieldC(Y’) determined byF; .

1.4. Let v be any divisorial discrete valuation @f(Y); that is, v is associated
to some divisorF® ¢ X° for some birational morphisnf® : X° — y. Then, by Hi-
ronaka’s embedded resolution of singularities, if we start \aitly birational morphism
f X — Y as before, we can find a suitabf® with X° smooth, Excf®) a divisor
with normal crossings, an&® obtained fromX by a finite sequence of blowing-ups
along smooth centersf®(F°) ¢ Y depends only onv ; this closed subset is called the
center ofv onY. v is Y-exceptionalif this center has dimension at most— 2, and
in this casev has a well-defined discrepancy coefficient with respekt to

15. Let f : X — Y be as before, and lef; C X be f -exceptional. The com-
putation of the discrepancy coefficienf  is local ah ; i.e., we may replace  with
an open neighborhood of the generic point 6fF; ( ), aad  with an open neighbor-
hood of the generic point of’; . From this point of view, the projectivity requirement
is irrelevant. In particular, we may consider discrepancy coefficientgéoms (Y, y)
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of algebraic varieties; one such coefficient is associated to #ach -exceptional discrete
valuation of C(Y) whose center orY  contains

Moreover, the requirement th&&  be normal is also irrelevant in some situations;
for example, if F; is a Cartier divisor oX  (or at least on some open sulisetX
with F; N U # (), then the generic point of; hasrensingularopen neighborhood
in X, and we may replac& with this neighborhood if we are interested only in the
discrepancy coefficient of’;

1.6. Definition. A projective varietyY as before (i.e. norm&)-Gorensteiny -
dimensional) haonly terminal (canonical, log-terminal, log-canonicakingularities if
all discrepancy coefficients of are 0 (resp.> 0, > —1, > —1). Similarly, Y is
terminal (canonical, etc.) at a poipt , or the gerih X ) is terminal (etc.), if all dis-
crepancy coefficients of divisorial discrete valuations with center containing >dre
(resp.> 0, etc.)

Proposition 2 ([1, Proposition 6.5]). Let f: X — Y be a proper birational mor-
phism, with X smooth andxc(f) a divisor with only normal crossings. Let =
Kx — f*Ky = Zaij, and leta = min{aj}.

If —1 < a <1, thenall the discrepancy coefficients & are« (even for those
divisorial discrete valuations of(Y) which are Y -exceptional but do not correspond
to divisors onX). And if o > 1, then all the discrepancy coefficients bf  arel.

In particular, to check whetheY  (or a germi, ¢ )) is terminal (etc.), it suffices
to examine the discrepancy coefficients of a single log-resolufion  as above.

We reproduce the proof here (cf. [1]) for the reader’s convenience, since the same
computation will be used again in 1.7 and in Definition 2.1.

Proof. As explained in 1.4, it suffices to consider a single blowing-ux of  along
a smooth centeZ C X. Leth : X’ — X be this bIowing—up,F; = h='F; (proper
transform), andF’ = the exceptional divisor oh . Let = codinZ( » 2. Since
Exc(f) =UF; has only normal crossings, is contained in at most of the divisors
Fj;sayZ C Fy,...,F,,s<r.Let f/=foh:X' —Y,andA’ = Kx, — f'"Ky; then

A/

KX/ —h*f*Ky :le —h*(KX — A)

s
Kx/fl’l*Kx"'/’l* (Z(lij):(l‘fl)F/‘FZajF;"' Z(lj F/,
j=1

the discrepancy coefficient of’ is thereforea’ = (r — 1)+ ("1 a;). If a <0, we have
Yia; > sa > ra (becauses < r anda < 0), and thereforer’ > (r — 1) +ra > «
(becauser > 1 anda > -1). f0<a <1, thenwe gett’ >r—-1>1> «, and if
a > 1 we get at least’ > 1. O
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REMARKS. 1. The conditiona < 1 can always be achieved for a suitabfe
as follows: let f :X — Y be any log-resolution; choose a smooth subvariety X
of codimension 2, such that & Exc(f); and replacef withf o g, whereg X > X
is the blowing-up ofX alond’ . The computation used in the proof of the proposition
shows that the exceptional divisor @f has discrepancy coefficient 1 relatiVe to
2. If a < —1, then the infimum of all discrepancy coefficients relativefto —iso,
cf. [1, Claim 6.3]. We prove a more precise statemen§2nlLemma 4.

In general, the infimum of all discrepancy coefficients is called th&alj discrep-
ancy of Y, notation: discref ). Thus discrap( )=co if Y is not log-canonical; if
Y is log-canonical, then-1 < discrepy )< 1, and discref{ ) can be calculated by
examining a single resolution of singularitigs X:— Y as in the proposition.

We may also define the total discrepancy at a given peint : disErep( ) is the
infimum of all discrepancy coefficients of exceptional divisor whose centeY on  con-
tainsy .

3. If @« > 0, the proof shows that every -exceptional discrete valuatior©@f),
other than those associated to the exceptional divisors of , has discrepancy coefficient
> 1.

1.7. Let (Y, y) be an algebraic germ, as before, and [EBt"(y ) be the corre-
sponding analytic germ; note that  normal and irreducible=- Y normal and
irreducible. Also,Y Q-Gorenstein—- Y** (Q-Gorenstein. The theory of discrepancy
divisors, discrepancy coefficients, terminal singularities, etc., can be developed in par-
allel in the category of germs of Moishezon analytic spaces; the results discussed so
far are identical in the two categories.

An interesting question arises when we try to compare the discrepancy coefficients
for (Y,y) and ", y). For example, is it true that,(y ) is terminal if and only if
(Yer,y) is terminal? (If this is true, then “terminal” depends only on the analytic
equivalence class of an algebraic germ.) In general, the field of meromorphic func-
tions of Y**, M(Y*"), has many divisorial discrete valuations which vanish identically
on the rational function fieldC(Y); therefore the question is non-trivial.

The answer is given by the following observation:

Proposition 3. Let f : X — (Y,y) be a proper birational morphism withk
smooth andeExc(f) a divisor with normal crossings. L€tF;} <, be the f -exceptional
divisors onX , and letA =) a; F;.

Then the set ofll discrepancy coefficients d¢t, y) is completely determined by
the following combinatorial data
(1) The finite set/;

(2) The rational numbers:; (one for eachj € J); and
(3) For each subsef C J, the logical value of ;. F; # () (TRUE or FALSE).
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This observation (and its proof below) is valid in the algebraic as well as in the
analytic case. In particular, the set of all “algebraic” and the set of all “analytic” dis-
crepancy coefficients ofY( y ) coincide: we may start with the same algebraic resolu-
tion f : X — (Y, y) in the analytic category, ag®* X — (Y*",y); then the initial
combinatorial data forf*" is the same as ffr

Proof. Letv be aY -exceptional discrete valuation ©fY) with center con-
taining y. By [3, Main Theorem lI], there exists a finite succession of blowing-ups
fi + Xi+1 — X; along Z; C X;, where 0< i < N and Xo = X, with the following
properties:

(i) v corresponds to a divisor 0Ny

(i) Z; is smooth and irreducible; and

(iii) If Eoq = Exc(f), andEi+1 = £ H(Ei)redU £ (Zi)resy 0<i < N, then E; has only
normal crossings witlZ;

(Recall what this means, from [3, Definition 2]: at each poirg Z; there is a regular
system of parameters @y, ., say €, ..., z,), such that each component 8f  which
passes through has ideal (D, , generated by one of thg; , and the idealZf in
Ox, « is generated by some of thg )

Let f1: X; — X be the blowing-up along a smooth irreducible subvarigty X,
of codimensionr > 2, such that Exc ) ®;c,F; has only normal crossings witd
Sayz C F; if and only if j € {j1,..., js}; s <.

Consideringg =fo f1 : X1 — Y, we get a new element’ added toJ ,J; =
JU{j’}, wherej’ corresponds to the exceptional divisBf of f1. The corresponding
number isa; = (r — 1)+ (aj +---+a;). Since theF; have only normal crossings with
Z, the “intersection data” for/; is completely determined by the data fér , plus the
following combinatorial data foz
(4) For eachl C J, the non-negative integef; = ditd(n [ﬂjel F;]).

(Note that this collection of data contains, in particular, the codimension Z of , in
the formdy = n —r, and also the information about whidh, 's contén , in the form
ZCF;&dy =n-—r.)

Finally, which such functiongd;},;-, are possible is completely determined by
the “intersection data” fov . Since every discrepancy coefficient of is obtained after
a finite number of such elementary operations on the combinatorial data (correspond-
ing to a succession of blowing-ups along smooth centers), the result follows by induc-
tion. Il

2. Minimal discrepancies and Shokurov’s conjecture

2.1. Definition. Let (Y, y) be an algebraic or analytic germ (as always, we as-
sume it is normalQ-Gorensteiny -dimensional). Thainimal discrepancy ot  ab,
md, ('), is the infimum of all discrepancy coefficients of divisorial discrete valuations
of C(Y), resp. M(Y*"), whose center ofY is
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Lemma 4. |If (Y, y) is not log-canonical aty , themd, (Y') = —oo.

Proof. Letf :X — (Y, y) be a resolution of singularities with Ex€( ) a divisor
with normal crossings. We may also assume that(y) is a union of (f -exceptional)
divisors. Let F; C X be an f -exceptional divisor witly € f(F;) and discrepancy
coefficienta; < —1. Since f~%(y) is a union of f -exceptional divisors, an, ~ meets
f7X(y), there is at least one exceptional divisBr  withF; ( Y5} and F; N F; #

0. We may assume thak; anB; are distinct fif C f~!(y) and it is the only
component of the fiber, we may blow up  at a pointlf ; then take the exceptional
divisor of this blowing-up in place of; , and the proper transformrof in place of
F;). SetZ =F; N F;, then Z is a smooth subvariety of codimension 2Xn , and is
not contained in any other exceptional divisor. legt  be the discrepancy coefficient of
F,'.

Let g : X — X be the blowing-up ofX alon@ . LeF’ be its exceptional divi-
sor, with discrepancy coefficient' relative toY . Thera’ = 1 +a; +qa; (see the proof
of Proposition 2 in§1). Moreover, F’ has centef{y} on Y, and intersects the proper
transformF; of F; on X (which has discrepancy coefficieat = a; relative toY ).

Note thata; < -1 == d’ < g;. In fact, since all the discrepancy coefficients
of (¥, y) are integer multiples of & (if r is the index of Ky aty ), we see that <
a; — 1/r. Therefore the proof may be completed by induction. U

2.2. Recall the statement of Shokurov’s conjecture from the Introduction. The
lemma we have just proved shows that the conjecture is true for non-log-canonical sin-
gularities.

Shokurov’s conjecture is vacuously true for curves (there are no singular normal
points in dimension 1). It is also true in dimension 2: {f, § ) is a normal singularity
and f :X — (Y, y) is the minimal desingularization, themll the coefficients ofA =
Kx — f*Ky are <O0.

In dimensionn > 3, let (¥, y) be anisolated singularity. Then there exists a
resolution of singularitiesf X — (Y, y) with Exc(f) a divisor with normal cross-
ings and such that Ex¢( ) ¥ 1(y); see [3, Main Theorem | in the strong form, p.
132]. If a = discrepl,y )< 1 (see 1.6, Remark 2), then Proposition 2 shows that
some divisorF; in Excf ) has discrepancy coefficient equalvtdThen md ¢ ) =a,
for f(F;) = {y}, and in particular Shokurov’s conjecture is true in this case. In
other words, forisolated singularities (in any dimension) there only remains to prove
Shokurov’s conjecture when discrép(y ) = 1. (For singularities with index one, the
last condition is equivalent to “terminal”.)

2.3. The following lemma shows that the conjecture can be reduced to the case
of singularities of index one:
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Lemma 5. Let ¢ : Y — Y be a finite morphism of normalQ-Gorenstein
varieties. Assume thap is étale in codimension one. Let be a point ofY’, and
y = o).

Thenmd, (V') < md,/(Y’).

In particular, if (¥, y) has index- , then there existsga: ¥/ — Y as in the
lemma, withY’ having index one (the “index-one cover”, cf. [1, Definition 6.8]). Thus
it would suffice to prove Shokurov’s conjecture for singularities of index one.

Proof (cf. [2, proof of Lemma 2.2]). Lef’: X’ — Y’ be a resolution of singu-
larities of Y’ such that mg (Y’) = ords/(A’) > —1, whereA’ = Ky, — f'* Ky, and F’
is a divisor onX’ with f/(F’) = {y'}. (If md,/(¥Y’) = —c0, let @ < —1 be a rational
number, and choos¢’, F’ such thatf’(F’) = {y'} and org~(A’) < a.)

Let f : X — Y be a resolution of singularities df . By blowing up , théf,
if necessary, we may assume that f~opo f/: X’ — X is a morphism and that
Y(F’) is a divisorF C X. Let A =Kx — f*Ky anda =org Q).

Let ¢ be the ramification index of along F’. Then:

Ky = v*Kx +(t — 1)F’ + other terms
= Y*(f*Ky +aF + other terms ) +1(— 1)F’' + other terms
= * f*Ky + (ta +1 — 1)F’ + other terms
= f"o*Ky + (ta +t — 1)F' + other terms
= f""Ky +(ta+t — 1)F' + other terms

(note thatp*Ky = Ky, becausey is étale in codimension one). Therefore pid\’) =
ta+t— 1.

If ordp/(A”) > —1, we get org A ) =a < ordp/(A’) = mdy/(Y’); indeed,r > 1,
and thereforea < ta + (r — 1)(1 + orde/(A')) = ¢ ordr/ (A).

If ordr/(A') < a < —1, then ord A ) =a < (1/r)ordr (A’) < (1/f)a, with
1 <t < degfp) and « an arbitrarily negative rational number.

Since f ¢ ) ={y}, the lemma is proved. U

2.4. Now we show that mdX ) is an analytic invariant. In fact, we show that
the set of all discrepancy coefficients for divisors with certef on Y is the same in
the algebraic and in the analytic category.

Proposition 6. Let f: X — (Y, y) be a resolution of singularities, as iRropo-
sition 3 Then the set of all discrepancy coefficients for divisors with cefitéron Y
is completely determined by the combinatorial détg, (2), (3)in Proposition 3 plus
(3+) For each j € J, the logical value of ‘f(F;) = {y}" (TRUE oOr FALSE).
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Proof. Let f1: X; — X be the blowing-up of a smooth subvariefyC X, as in
the proof of Proposition 3. Py #o f1, and letF’ be the exceptional divisor of;.
Then g F") = {y}] & [f(F;) = {y} for at least one of thg’; ’s containing ]. Indeed,
if Zc F;and f ;) ={y}, theng F') = f(Z) C {y}, so that in factg £’) = {y}.
Conversely,g F')={y} = Z C f~(y). As Z is irreducible andf~1(y) is a union
of divisors F; with f (F; ) ={y}, Z must be contained in at least one such

Therefore the “extended” combinatorial data for  (including the information in
(3+)) can be obtained from the “extended” combinatorial data ffor . The conclusion
follows by induction. ]

2.5. Finally, we show that Shokurov’s conjecture is true for non-terminal three-
fold singularities.

Theorem 7. Let (Y, y) be a non-terminal three-dimensional singularifgormal
and Q-Gorenstein as always Thenmd,(Y) < 1.

Proof (S. Ishii). By [8, Theorem (0.3.12), (i)], there exists a projective birational
morphism f :X — Y such thatX has only(§-factorial) terminal singularities and x
is f-semiample. X , orf , is called @-factorial terminal modificatiorof Y.)

Write Kx — f*Ky = ) a;Fj; thena; < 0, Vj, sinceKx isf -nef. SinceX(y )
is not terminal, f is not an isomorphism aboye . And since is normal And is
birational, this means thaf —(y) contains at least one integral curge

Let g : X’ — X be the blowing-up ofX alon@ , with exceptional divisbr , and
puth = fog: X’ — Y. Note thatX’ may be non-normal; but even then, since terminal
threefold singularities are isolated adtl  is integral, b&ith ~&nd are smooth at the
generic point ofC . Therefor&’ and F are smooth at the generic point®f , and the
discrepancy coefficient off with respect 0 is 1.

Then Ky, — h*Ky = F + ) a;g*F;; sincea; < 0 for all j and the coefficient
of F in eachg*F; is non-negative, we see that the discrepancy coefficienf of  with
respect toY is< 1. Ash(F)=f(C)={y}, we get md ¥ )< 1, as stated. ]

RemARk. Putting together Theorem 7 and the main theorem in [7] (or our com-
putations in§4), we see that Shokurov’s conjecture is true in dimension 3.

RemaArk. In several conference and seminar talks | gave on the results contained
in this paper, | was repeatedly asked to comment on the following passage from the
Utah seminar [6, Remark 17.1.3] (slightly modified and simplified):

... Assume that [Shokurov’s] conjecture [any dimension] fails fory € Y. Then

Y is terminal. Thus if a list of terminal singularities is known, the conjecture can

be verified. [..] For dimY = 3 it was checked by MarkushevichThen an in-

correct bibliographical reference is given. The correct onddl which was pub-
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lished several yearafter the Utah seminal.

These same claims have been circulated among the experts for some time. For ex-
ample, J. Kolar repeated them at the Santa Cruz Summer Institute in 1995.

Here is my take on these claims. First, if the conjecture failsyfar Y, | don't
see whyY must be terminal — unless the existence of a terminal modificatioh of
is known, as is the case in dimension 3. (And even then, if the conjecture is false
for terminal singularities, then it may be false for non-terminal singularities as well;
in that case the existence of a terminal modification wouldn’t solve the problem.) |
believe that any questions related to this point should be addressed to the author of
that passage, not to me.

And second, even if a list of terminal singularities were known, | don't know how
Shokurov’s conjecture could be verified — even, say, for hypersurface singularities in
dimension at least 4, and even if explicit equations were known. | am not aware of
any general method for calculating the minimal discrepancy even when the equation is
given. The computations in dimension 3, both in this paper and in [7], are ad hoc — in
a sense, we just got lucky here. Again, | believe that any further questions should be
addressed to the author of the passage quoted above, who certainly knows much more
about these things than me.

3. Proof of Theorem 1

3.1. Recall the statement of Theorem 1 from the Introduction. By 2.4, we may
assume that is the hypersurfaGe = OAifi*!, with y = 0. For convenience, denote
A1 by V; thusY C V. Let U = A", write the coordinates iV asyf, ..., yu+1),
and the coordinates iy  asi( ..., u,,1).

Let f : U — V be the birational morphism defined by+1 = t;y; = t%u;,i =
1,...,n. Let E C U be the hyperplaner ( = 0); then Ext( )& . (Of courge, is
just one affine patch in a weighted blowing-up Wf  at the origin, but this observation
plays no role in the proof.)

3.2. LetY C U be the proper transform aof by f_ Y — Y the restriction
of fto Y, andE = E|; (as a Cartier divisor). By hypothesi§Y =Y + AE, and E
has equationp(uy, ..., u,) = 0 in E = A", Since¢ has at least one irreducible fac-
tor with exponent 1,E has at least one irreducible component with multiplicity one:
E=Fy+---. As explained in 1.5, sinc& is smooth in a neighborhood of the generic
point of F;, and F; is the exceptional divisor which will display the desired discrep-
ancy coefficient, we need not worry about the normalityfof

3.3. Takew =dyy; A--- Adyy+1 On V; then f*w = 192" *dyy A - Adu, N dt
onU, so thatky — f*Ky =(a1+---+a,)E. B
The adjunction formula giveXy &, ¥|y and Ky = Ky +7Y|;. Therefore we
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have:

Ky — f*Ky = (Ku +Y)|y — f*(Ky +Y]y)
= (Ky — f*Ky+Y — f*Y)|7
= ((@+---+a,)E— AE)|y
=dE=dFy+---.

(Recall thatd =g, +---+a,)— A.) _
_ Thus the discrepancy coefficient 6§ C Y with respect toY' is equal td . Since
f(F1) ={y}, Theorem 1 is proved. [l

3.4. Example. Let (Y, y) be a singular germ of multiplicity 2; that i, is a
hypersurface inA"*! given by an equatiorG =0y = 06 and all its first-order
partial derivatives at 0 are equal to zero, and some second-order partial derivative of
G at 0 is non-zero.

If (Y,0) has rank at least 2, then md ( J n — 2 (as predicted by Shokurov’s
conjecture). Indeed, consider the usual blowing-upVof  at 0; that is, dake- - - =
a, = 1. The hypothesis means that =2, and — after a linear change of coordinates,
if necessary —¢(us, . .., u,) =us+---+u?, wherer > 2 is the rank of the singularity.
Thusd =@ +---+a,) — A =n— 2 in this case, and is irreducible (ifr > 3), resp.

a product of two distinct irreducible factors, Af = 2.

4. Minimal discrepancies of log-terminal threefold singularities

Let (Y, y) be a three-dimensional log-terminal singularity. In this section we will
show that mg ¥ )< 1, without using the existence of a terminal modification.

4.1. As shown in 2.3, we may assume that ¢ ) has index one. Thiep ( ) is
canonical (the index-one cover of a log-terminal singularity is again log-terminal, by
Proposition 2, and therefore canonical).

In this case, M. Reid [9, Theorem 2.2] proved that eithBry( ) isD¥ point
(see below), or there exists a proper birational morphfgmY’ — ¥ with f*Ky =
Ky, and f~1(y) containing at least one prime divisor &f. Of course, in the latter
case we have mdy( ) = 0. There only remains to consider the case Wwhen () is a
compound Du Val ¢DV) point; that is, ¥, y ) is analytically equivalent to a hypersur-
face singularity at the origin @ A%, with equationG =0,

Gy, y2, y3, 1) = f(y1, y2, y3) +1g(y1, y2, ya. 1),

where f (1, y2, y3) = 0 defines a Du Val singularity (rational double point) of a surface
at 0c A3,
To simplify notation, we writey for yq, y,, yz andu for uq, up, us.
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By 2.4, we may assume that,(y i9 the hypersurface@d = Q) A% with y = 0.
By Theorem 1, it suffices to findy, az, a3 > 1 such that

G(t"uz, t“uz, tug, t) = t*¢(u) + "1y (u, 1)

with ¢(u) #0, (@1 +azx+a3) — A =1, and¢ having at least one irreducible factor with
exponent one in its prime decomposition.

4.2. We will do a case-by-case analysis, according to the type of singularity;
(v,0) is of typecA, ,cD, , orcE, , if the surface singularity y)(= 0 ¢ A3 is of
type A,, D, , OrE, .

In each case, y) is completely known.g \(,7), on the other hand, is not. Of
course, we haveg (0,0,0 0) = 0O, or elsg, ( 0) would be a smooth point. We will
not make any other assumptions abgut

Write g =g1+g>+---, whereg, is a homogeneous form of degiee , apg ()=
gkt gt (k>1).

A note on terminology: we distinguish betwe&rm and polynomiaj for instance,

a quadratic polynomial is the sum of a quadratic form, a linear form, and a constant
term. We say that a polynomial (or a formpntainsa certain monomial if the coef-
ficient of the monomial in that polynomial is non-zero. We say that a monocoia}

tains y; if that monomial is divisible byy;.

4.3. Case ch: f(y)=yZ+ys+ys™ (n>1).

Then 7, 0) is a singularity of multiplicity 2 and rank at least 2. This case is there-
fore covered by Example 3.4.

4.4. Case ch: f(y)=y3+y3yz+y5 !t (n>4).

If gi(y,t) # O, then the quadratic part af ¥ 5 is? + rgi(y, ). If this
quadratic part has rank at least 2, then the conclusion follows from Example 3.4. If it
has rank 1, i.e. ify? +tg1(y, t) is the square of a linear form, then a linear change of
variable, y; = y1 + ayz + fys + ¢, transforms the equatio@ = O into a similar one
with g1(y, t) = 0.

So we need to consider only the cage= 0. Note that a similar argument applies
to singularities of typecE, .

Assume thatg; = 0. Then puta; = 2, a» = az = 1; that is, puty; = t2us, y» =
tuy, y3 = tuz. We have:

G(tPu. tuz, tus, 1) = t3¢(u) + t*(u, 1),
where ¢(U) = u3uz + &, 4u3 + [terms of degree< 2 in theu; ]; 0,4 = 1 if n = 4, oth-

erwise d, 4 = 0. (The terms of lower degree come framwp(t2us, tus, tus, t), with go
— the quadratic component @f y,(t). Note that notall the terms inzg, contribute to
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#(u): as y; = t?u1, the monomials ingx(y, t) which containy; give rise to monomials
containings to the fourth or higher power.)

The proof in this case is complete, fat;(+az +a3) —A=(2+1+1)-3 =1, and
¢ has at least one irreducible factor with exponent one (othergiseuld have to be
the cube of a linear polynomial in; that linear polynomial would have to contaif,
becausep containsuus, and theng, being the cube of that linear polynomial, would
containu3, which is not the case).

4.5. Case cl f(y) =yZ+y3 +vj.

As in 4.4, we may assume that the linear paty, t) of g(y, t) is equal to zero.

In g» (the quadratic part of ), separate the monomials which congaifrom
those that don’tigo(y, t) = y1L(y,t) + Q(y2, ys3, t), where L is a linear form and
is a quadratic form.

Put y1 = t2u1, Y2 =tup, y3 = 1us, then

G(t%uy, tua, tus, t) = £2¢(u) + r*(u, 1),

with ¢(u) = u3 + Q(uz, us, 1).

If ¢ is not the cube of a linear polynomial, then we complete the proof just as
in 4.4. However, in this case it might be thatis a perfect cube. If this is so, then
y3+10(y2, y3, 1) is the cube of a linear form iy, y3, 7. A linear change of variable,
y5 = y2+ayz + t, reduces the proof to the cagg = 0. This argument is valid also in
the cases E7 and cEg, discussed below.

There only remains to consider the cagdy, r) = y1L(y, t), whereL is a linear
form (possibly zero). In this case put =ap = 2,a3 =1, i.€. y1 = t2u1, y» = t2uz, y3 =
tuz. Then:

G(y, 1) = y2+y3 +y3 +1[y1L(y, 1) +03(g)], and
G(r%u1, t2uz, tus, 1) = t*¢(u) + 159(u, 1),

where ¢(u) = u? +uj + [terms of degree< 3 in theu; ], and the expression in brackets
does not contaim? (so thatu? doesn’t cancel out frong).

Note that degf) = 4, and¢ cannot be the square of a quadratic polynomial in the
u; (if it were, then¢ would contain the mixed produet;u3, because it contains?
and u3 but nox%; the monomialu;u3 could only arise from a monomial y{y3t*) of
tg(y,t), k > 0; but ¢ ¢%u1)(tuz)’t* = t>*uu3, souu? cannot be a monomial af).
Therefore¢ has an irreducible factor with exponent one, and the conclusion follows
— note that ¢; tax +ta3z) —A=(2+2+1)—4=1.
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4.6. Case cit f(y) =y +y3+yays.

We may again assume thgt = 0, as in 4.4, and thag, = y;L(y, ) with L a
linear form (possibly zero), as in 4.5.

Write L(y,t) = L1(y1, y2) + L2(ys, t), and gs(y, t) = C1(y, t) + Ca(ys, t), where Cy
and C, are cubic forms such that every monomial ©f containsy; or ys.

Puta; =a, =2,a3=1; then

G(y, 1) = y§+y3 + y2y3 +t[y1L1(y1, y2) + y1La(ys, 1)
+C1(y, 1) + Ca(ys, 1) + 04(g)], and
G(t?ur, tPuz, tus, 1) = t*(u) + 1°9(u, 1),

where ¢(u) = u% +u1Lo(uz, 1) + Co(us, 1).

Note that 1 +ax+taz) —A=2+2+1)—4=1.

If ¢ has degree 3 (i.e. i€5(ys, ) containsy3), then ¢ has an irreducible factor
with exponent one, because cannot be a perfect cube (it containg but no u3); in
this case the proof is complete.

Otherwise ¢ has degree 2 (for it containg). Then either¢ has an irreducible
factor with exponent one (and then the proof is complete), or ¢lée the square of
a linear polynomial. In the latter casg? +ty;Lo(ys, ) +tCa(ys, t) is a perfect square.
The (non-linear) change of variablg = y; + (1/2)rL2(ys, ¢) transforms the equation
G =0 into a similar one withL, = C, = 0. Therefore we may assume th@t has the
form:

G(Y, 1) = y2+y3 + yoy3 + t[y1L1(y1, y2) + Ca(Y, t) + 0a(g)],

where L, is a linear form, andC; is a cubic form such that every monomial 6%
containsy; or y,. (The same argument carries over unchanged to the last cBgé,
Now puta; = 3,a, = 2, a3z = 1; that is, y1 = 13u, y» = t2u», y3 = tus. We have:

G(t3uy, Puz, tus, 1) = 1°p(u) + 1%(u, 1),

where ¢(U) = upud+uzp(uz) +q(us); u2p(us) corresponds to the monomials 6f(y, )

of the form y,y&t2=*,k = 0, 1, 2 (all other monomials o€’; produce at least a sixth
power of ¢ ; recall that all monomials of the cubic fory contain y; or y,), and
¢q(u3) corresponds to the monomials @f of the form yA#*=* k = 0,..., 4. Note that

¢ has degree exactly one as a polynomiakin and thereforep cannot be the square
of another polynomial in the:; . Since has (total) degree 4, it must have an irre-
ducible factor with exponent one. Agj(+az+az) — A =(3+2+1)—5=1, the proof

is complete in this case.
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4.7. Case clg f(y) =y2+y3+y3.
As in the previous case, we may assume that

G(y, 1) = y2 +y3 +y3 +t[y1L1(y1, y2) + Ca(Y, t) + 04(g)],

where Ly is a linear form andC; is a cubic form such that every monomial 6%
containsy; or y.
If we takea1 = 3,a0 =2, a3 =1, i.€. y1 = t3us, y» = t2uo, y3 = tus, we get

G(tPu1. tPuz, tus, t) = t°p(u) + t°¢(u, 1)

with ¢(u) = u3 +uzp(us) +q(us), wherep i3) andg @3) are exactly as in the previous
case.

(ap+ax+a3z) — A =@B3+2+1)—5 = 1; so the proof is complete b has an
irreducible factor with exponent one.

Since degf) = 5, if ¢ does not have an irreducible factor with exponent one then
¢ = M?N?® for two linear polynomialsM =M U, uz) and N =N {2, us) (possibly
equal). In particular, if this is the case th@ncannot have degree exactly one as a
polynomial inu,, and thereforep uz) = 0; i.e., C1(y, t) contains no monomials of the
form yzy’th*k (k = 0,1 2). As every monomial of’; containsy; or y,, this means
that every monomial of"; actually containsy; or y2.

Now ¢(u) = u3 + q(us) (¢ of degree at most four) M%(uz)N3(us). If we write
g4y, t) = Fa(y, t) + Fo(ys, t), with Fy, F, forms of degree 4 such that every monomial
of F; containsy; or yy, theng @s) = Fa(us, 1). u3+q(us) = M*(usz)N3(us) means that
¥3+ Fa(y3, 1) = M?(ys, t)N3(ys, 1), with M, N linear forms inys, r (M (u3) = M(us, 1),
etc.) A linear change of variablg, = y3 + ar reducesG to the form

Gy, 1) = y2+y3 +y3(ya+at)? + t[y1L(y1, y2) + Ca(Y, t) + Fa(y, t) + 05(g)],

wherea € C (possiblya = 0), every monomial of the cubic for@, containsy; or
y2, and every monomial of the quartic for# containsy; or y,.
Puta; = 3,a, = a3 = 2; that iS,y]_ = t3u1, y2 = tzl/lz, y3 = t2u3. Then

G(t3uy, Puz, t?us, t) = t%p(u) + 1"y (u, 1)

with ¢(u) = u? + u3 + [terms of degree at most 2 in the ], and is not among the
terms inside the brackets. Therefasehas an irreducible factor with exponent one; as
(a1 +azx+a3) — A=(3+2+2)—6=1, the proof is complete in all cases. ]

4.8. Remarks. 1. If (Y,y) is a terminal threefold singularity of index one,
then md ¢ ) = 1. On the other hand, Kawamata [4] proved that the minimal discrep-
ancy of a terminal threefold singularity of index> 2 is 1/r.

2. Our computations irg4 seem related to those in [7], except for the fact that
Markushevich uses the toric language. At first glance, it looks like his proof works



450 V. MASEK

only if the singularity is isolated; however, this is needed only to reduce the equation
G = 0 to various standard forms, and — as our elementary computations in 4.3-4.7
show — this can be done without assuming the singularity is isolated.
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