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Osaka J. Math.
38 (2001), 251–269

LACES: A GENERALISATION OF BRAIDS

ROGER FENN, GYO TAEK JIN and RICHÁRD RIMÁNYI
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1. Introduction

The subject of this paper is a previously little studied object which we call alace.
A lace of components is represented by a disjoint union of arcs in the plane
which join fixed points to other fixed points. We take as the initial points of the
arcs the points (1 1) (2 1). . . ( 1) and the final points of the arcs are (1 0) (2 0),
. . . ( 0) in some order.

There are several notions of equivalence of laces. Apart from the obvious notion
of isotopy in the plane there is a notion of 3-isotopy in which the interiors of the arcs
are allowed to move in the upper half space. There is also a notion of cobordism and
to each of the previous equivalences can be added a similar equivalence where the arcs
are allowed to lie in the extended Riemannian plane or sphere. Clearly isotopy implies
cobordism and, because the 3-isotopy has one extra dimensional freedom, it is weaker
than the cobordism.

Lemma 8. Cobordant laces are 3-isotopic.

Laces are a very natural generalisation of braids. Given an -lace we can con-
struct an -braid as follows: Consider the -plane in which the lace lies as being the
horizontal plane = 0 in space with the -axis vertical1. In the upper half space add
vertical half lines with end points ( 1 0) and in the lower half space add vertical half
lines with end points ( 0 0). After a small isotopy the result is a braid with strings.
Conversely given an -braid we can construct an -lace. Consider the braid as usual
with the strings running from top to bottom with the coordinate monotonic. Rotate
the braid about the -axis so that the -axis becomes the -axis (and the -axis be-
comes the (− )-axis). A projection gives a picture of a braid lying in the ( ) plane.
Starting from (one of) the bottom crossings push the over crossing string down the un-
dercrossing string to the bottom. Now repeat till all the crossings are eliminated. The
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1Although a lace will normally lie inR2 = R2 × {0}, we allow laces at other levels, typically inR2 × {1} when considering cobordism of laces.
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result is a special type of lace called alower lace2, that is none of the arcs venture
into the region > 1. There is a bijection between braids and lower laces consisting
of the two above constructions.

Our initial interest in laces was due to the following group action. Let be the
group of automorphisms of the free group with free generators1 . . . , map-
ping each to a conjugate−1 . The group has the following finite presenta-
tion:

〈α 6= 1≤ ≤ | α α = α α α α α = α α α

α α = α α for distinct 〉

whereα is defined byα ( ) = −1 andα ( ) = , for 6= . Elements of
are calledbasis-conjugating automorphisms[4].

The action ofα±1 on an -laceℓ is to replace the -th componentℓ by a con-
nected sum ofℓ with the boundary of a regular neighborhood of the -th component
ℓ along a path not intersectingℓ in its interior.

One can easily see that this action respects the relations in the presentation of ,
provided the paths are well chosen. This action is well defined only up to the choice
of the paths. But the path choices are related by a cobordism involving two saddle
points. Therefore acts on cobordism classes of laces in the plane and on the sphere.
There are also actions of the braid group and of the framed braid group on pure laces.

Like braids, laces have closures which result in knots or links. The standard clo-
sure is to adjoin to a lace, semi-circular arcs in the lower half space from ( 0) to
( 1). The result is a link with bridges3. The plat closure, or simply the plat, of a
2 -lace also results in a link with bridges. Take a 2 -lace and adjoin semi-circular
arcs in the upper half space from (2− 1 1) to (2 1) and semi-circular arcs in the
lower half space from (2−1 0) to (2 0). The link so obtained is the same as the plat
of the 2 -braid obtained by raising the endpoints ( 1) = 1 2. . . 2 vertically.

Theorem 7. A pure -lace has trivial closure if and only if it is in the orbit of
the trivial -lace under the representative actions of .

Finally we prove the following theorem which is a variation of results due to
Otal [5, 6].

Theorem 16. Let ℓ be an -lace whose closurêℓ is a trivial -component link.
There is an isotopy deforminĝℓ to the plat of the trivial2 -braid such that the num-
ber of bridges is unchanged during the isotopy.

2Equivalent to thenormal dissectionsof [1, p. 143].
3A 5-lace and its closure are shown in [1, Fig. 2.11b]
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Fig. 1.

2. Definition of laces and their various equivalences

2.1. Laces and their closures A lace ℓ is an -tuple (ℓ1 . . . ℓ ) of disjoint
simple arcs in the -planeR2 = R2 × {0} ⊂ R3 such that∂ℓ = {( 1) (πℓ( ) 0)} for

= 1 . . . , whereπℓ is a permutation of the set{1 . . . }, for some positive integer
. Each arcℓ will be called acomponentor, more precisely, the -th componentof ℓ.

A lace with components will be called an-lace. The permutationπℓ will be called
the permutation typeof ℓ. A lace whose permutation type is the identity permutation
will be called apure lace. A lace which lies in the region≤ 1 will be called alower
lace. An oriented laceis a lace with each of its components oriented. Thepreferred
orientation on ℓ is the one which directs from ( 1) to (πℓ( ) 0) for each component.
The -th spineof a lace is the segment{ } × [0 1] and thespine of an -lace is the
union of the -th spine for = 1. . . . The closure of an -laceℓ, denotedℓ̂, is the
union of simple closed curves in space obtained fromℓ by adding the semi-circles

{( ) | 2 + 2 = 1 ≤ 0} = 1 . . .

Fig. 1 shows a pure 3-lace. The broken curves indicate the three semi-circles added for
the closure. Theplat closures, or simply plats of a 2 -laceℓ and a 2 -braid will be
denotedℓ̄ and ,̄ respectively.

2.2. Equivalences
2.2.1. Isotopy and∗-isotopy Two -laces areisotopic if they are isotopic in

R2 relative to the endpoints. Atrivial lace is a lace which is isotopic to its spine.
For a ∗-isotopy, we allow arcs to pass through the point at infinity. This is the same
as considering laces on2, the one-point compactification of the -plane. We will
denote the set of isotopy classes and the set of∗-isotopy classes of -laces as and
∗, respectively. Provided no confusion can result we will also call laces the elements

of and ∗ which they represent. We denote the subset of whose elements are
represented by lower laces by .

2.2.2. 3-isotopy Two -laces are3-isotopic if they are isotopic inR3
+ = R2 ×

[0 ∞) relative to their endpoints. We will denote the set of 3-isotopy classes of -
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Fig. 2.

(a) (b) (c) (d)

Fig. 3.

laces as 3. Pushing the interior of each component of a laceℓ off the -plane into
R3

+, we can represent the 3-isotopy class ofℓ by a “string link”, again denoted by
ℓ = (ℓ1 . . . ℓ ), satisfying the following conditions:
(1) ∂ℓ = {( 1 0) (πℓ( ) 0 0)}, for = 1 . . . .
(2) The coordinate ofℓ has only one critical point, a local maximum.

2.2.3. Cobordism and∗-cobordism Two -lacesℓ and of the same permu-
tation type arecobordant if there exists a surface whose connected components are

disjointly embedded locally-flat orientable surfaces1 . . . in R2 × [0 1] such
that, for each ,
(1) ℓ × {0} = ∩ R2× {0},
(2) × {1} = ∩ R2× {1},
(3) ∂ = ℓ × {0} ∪ × {1} ∪ {( 1) (πℓ( ) 0)} × [0 1].
The word cobordismwill be used either to indicate the manifold , or the equiva-
lence relation “is cobordant to”. We will denote the set of cobordism classes of -
laces as . Allowing passages over the point at infinity, as in the∗-isotopy, we de-
fine ∗-cobordism. We can interpret∗-cobordism as cobordism of laces in2. The set
of ∗-cobordism classes of -laces is denoted by∗.

EXAMPLE. In Fig. 3, (a)↔(b) is an isotopy, (b)↔(c) a cobordism, (c)↔(d) a ∗-
isotopy and (a)↔(d) a ∗-cobordism.
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Theorem 1. The obvious natural maps in the diagram below are all well defined
and surjective and the diagram is commutative.

→ ∗ → 3

↓ ↓ ր

→ ∗

The proof of Theorem 1 will be delayed until after Lemma 8. Notice that laces
which are equivalent under any of the above relations have the same permutation type.
Therefore we can define the sets , ∗, 3, , ∗ of equivalence classes
of pure -laces and hence the same statement of Theorem 1 holds for the following
diagram.

→ ∗ → 3

↓ ↓ ր

→ ∗

3. Laces and braids

We regard braids as placed vertically with respect to the -plane. More precisely,
an -braid is properly embedded inR2 × [0 1] with ∂ = {( 0 0) ( 0 1) | =
1 . . . }. Let denote the group of -braids in which the multiplication is de-
fined by stacking over with respect to the -coordinate and scaling the result to
be fitted inR2 × [0 1]. Given an -laceℓ, we construct an -braidβ(ℓ) by attaching
to ℓ the line segment joining ( 1 0) to ( 0 1) and pushing the interior of the new
arc into the half spaceR3

+, for = 1 . . . . Note thatβ(ℓ) is uniquely determined by
ℓ. This is essentially the same as adding vertical half lines as described in Section 1.
The braidβ(ℓ) will be called the braid type ofℓ. This functionβ : → has a
right inverseι : → whose image is . We will describeι using path braids.
A path -braid is defined to be a simple pathb : [0 + 1] → [0 + 1] × (−1 1)
such thatb(0) = (0 0), b( + 1) = ( + 1 0) andb( ) = (π( ) 0) for some permuta-
tion π = πb of the set{1 . . . }. See Fig. 4 for an example when = 4. The two
path -braids are said to be equivalent if they are isotopic relative to the points, ( 0),

= 0 . . . + 1. The trivial path -braidt is defined byt( ) = ( 0) for ∈ [0 + 1].
Let denote the set of equivalence classes of path -braids. First we establish a bi-
jection λ : → . Given a path -braidb, let b be the disc with boundary
{0} × [0 1]∪ [0 + 1]× {1} ∪ { + 1} × [0 1]∪ b([0 + 1]). For an example see the
shaded region in Fig. 4. Given a path -braid we can define a lower laceλ(b) by join-
ing the points ( 1) tob( ) by a collection of disjoint simple paths properly embedded
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(0 0) ( + 1 0)

Fig. 4.

(a)

λ
−→

(b)

Fig. 5.

1

3

2

Fig. 6.

in b, see Fig. 5(a). The construction ofλ−1 : → should be clear from Fig. 5.
Now we construct a bijectionµ : → . Given a path -braidb, there is an

isotopy : [0 + 1]× R → [0 + 1] × R such that (0 0) = (0 0), ( + 1 0) =
( + 1 0), for all 0≤ ≤ 1, and 1(b) = t where t is the trivial path braid. Letµ(b) be
the braid represented by{( ( 0) ) | = 1 . . . 0 ≤ ≤ 1}. Conversely, suppose
an -braid is given. We may assume that is contained in (0 +1)×R×[0 1]. Then
there is a 2-disc which is properly embedded in [0 +1]×R×[0 1], which contains

and whose boundary is the union of1 = {0}×{0}×[0 1], 2 = { +1}×{0}×[0 1],

3 = [0 1]×{0}×{1} and a curve in the -plane. This curve represents the path braid
µ−1( ). Fig. 6 shows a path 4-braid together with the corresponding 4-braid.

We defineι to be the compositionλµ−1. Given a braid ,ι( ) can be obtained
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Fig. 7.

σ̄−→

Fig. 8.

by the process described in Section 1. See Fig. 6.
The functionµ can also be seen by the action of the braid generatorsσ , =

1 . . . − 1, as an isotopy of the plane described below. Let ¯σ be a homeomorphism
of R2 which is fixed outside the open rectangle (− 1/2 + 3/2) × (−1 1) and is,
as indicated in Fig. 8, the result of rotating the segment [ + 1]× {0} through 180◦

clockwise. We define right actions ofσǫ, on a path braidb and a laceℓ by the for-
mulae

b · σǫ = σ̄ǫ(b)

ℓ · σǫ = σ̄ǫ(ℓ)

for = 1 . . . − 1, ǫ = ±1. These actions extend to an action of the braid group .
Let = σ

ǫ 1

1
σ
ǫ 2

2
· · ·σǫ . Then

µ−1( ) = t · = t · σǫ 1

1
· σǫ 2

2
· · ·σǫ = σ̄

ǫ · · · σ̄ǫ 1

1
(t)

ι( ) = 1 · = 1 · σǫ 1

1
· σǫ 2

2
. . . σ

ǫ
= σ̄

ǫ · · · σ̄ǫ 1

1
(1)

where t is the trivial path braid and 1 the trivial -lace.
Now we define a binary operation on laces by (ℓ ) 7→ ℓ := ℓ · β( ), which

makes the following diagram commutative.
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× −→

β × β ↓ ↓ β

× −→

Then together with the trivial -lace becomes a monoid containing as a
direct product factor by the following theorem. Let denote the subsetβ−1(1) of

. Elements of have a trivial associated braid and we call thempseudo trivial
laces.

Theorem 2. The sequence

1→ → β−→ → 1

is a split exact sequence of monoids.

Proof. The result follows from the existence of a right inverseι of β as de-
scribed above.

Corollary 3. = × ∼= × where the product is

( 1 1)( 2 2) = ( 1 1 2)

If 1 and 2 are pseudo trivial -laces, their product is1 2 = 1. So the monoid
structure collapses the pseudo trivial laces by a projection. Finding more about
seems an interesting problem.

4. Actions on laces by automorphism groups of free groups

is the group of basis-conjugating automorphisms of the free group with
free generators 1 . . . , mapping each to a conjugate−1 . has the fol-
lowing finite presentation:

〈α 6= 1≤ ≤ | α α = α α α α α = α α α

α α = α α for distinct 〉

whereα is defined byα ( ) = −1 and α ( ) = , for 6= . For a proof
see [4].

The action ofα±1 on an -laceℓ is to replaceℓ by a connected sum of the
boundary of a regular neighborhood ofℓ and ℓ along a simple path. To be more pre-
cise, we start by choosing a path which satisfies:
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ℓ1 ℓ3 (ℓ · α31)1

31

⇒

Fig. 9. ℓ · α31

(1) is a smooth simple path from an interior point of the componentℓ to an
interior point of the componentℓ not intersecting any other part ofℓ.
(2) is attached to the right hand side ofℓ with respect to the preferred ori-
entation.
Also choose a regular neighbourhood ofℓ containing the interior of in its

interior such thatδ = ∩ ℓ = ∂ ∩ ℓ is a connected arc. Define

(ℓ · α ) =

{
∂ ∪ ℓ \ δ if =

ℓ if 6=

The condition (2) makes the preferred orientation of (ℓ · α ) coherent with the anti-
clockwise orientation of∂ . To defineℓ · α−1, we replace the condition (2) by

(3) is attached to the left hand side ofℓ with respect to the preferred orien-
tation,

and use the same formula for (ℓ · α−1) ’s. The condition (3) makes the preferred ori-

entation of (ℓ · α−1) opposite to the anticlockwise orientation of∂ .
One can easily see that this action respects the relations in the presentation of ,

provided the paths are well chosen. This action is well defined only up the choice
of the paths but the path choices are related by a cobordism involving two sad-
dle points. Therefore acts on , and hence on∗. This fact is an interesting
geometric interpretation of the Yang-Baxter equation — because the relations of
are (not taking into consideration the evident commutativity relations) the Yang-Baxter
equations. The induced action of is trivial on3, because one can lift the interior
of the disc off the -plane intoR3

+ and shrink the arc∂ \ δ to δ in the disc.
Later we will need to distinguish the actions on cobordism classes of laces from
the repetitions of the construction above along a specific choice of the paths . We
will call the latter arepresentative actionof .

5. Lace links

A link in R3 or in 3 will be called alace link if it is the closure of a pure lace.
In fact, a lace link is a link whose bridge index is equal to the number of components.
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ℓℓ

( 1)( 1)

( 0)( 0)
sign =−1sign = +1 Fig. 10.

Let ℓ be a pure -lace. Suppose that the -th spine intersectsℓ with the compo-
nents ℓ 1 . . . ℓ , in this order from ( 0) to ( 1) with signsǫ 1 . . . ǫ , determined
as indicated in Fig. 10 where the arrows indicate the preferred orientation. Letλ

denote the unreduced word
ǫ 1

1
· · · ǫ

in the letters 1 . . . . Then the link group

ℓ = π1(R3 \ ℓ̂) has Wirtinger presentation

〈 1 . . . | = λ−1 λ = 1 . . . 〉

where each corresponds to the meridian ofℓ .
∗-isotopies may change the unreduced wordsλ , but the presentation is unchanged

because the only possible changes inλ by ∗-isotopies are insertions of −1 or
−1 and left or right multiplications by or −1. Notice thatλ is a longitude of

the componentℓ .

Proposition 4. A lace link which is a homology boundary link is a trivial link.

Proof. Let ℓ be a pure -lace whose closurêℓ is a homology boundary link.
Then there is an epimorphism ofℓ onto a rank free group [8]. If̂ℓ is not a
trivial link, then the group ℓ is a proper factor group of . Since a free group of
finite rank is Hopfian, this is impossible.

Corollary 5. Let be a cobordism or a∗-cobordism between two laces. Then
∂ is a trivial link.

Proof. Notice that by an isotopy∂ can be made into a link with one maximum
for each component and so is a lace link and also a boundary link. By Proposition 4,
it is a trivial link.

Corollary 6. The closure of a(pure) lace which is cobordant or∗-cobordant to
a trivial lace is the trivial link.

Proof. The boundary of a cobordism between a pure laceℓ and a trivial lace is
the same as the closurêℓ. Therefore by Corollary 5,̂ℓ is trivial.
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Fig. 11.

Theorem 7. A pure -lace has trivial closure if and only if it is in the orbit of
the trivial -lace under the representative actions of .

Proof. The sufficiency is obvious since the representative action does not change
the link type of the closures.

Let ℓ be a pure -lace whose closure is the trivial link. By isotopies and by rep-
resentative actions of , we will deformℓ to its spine, component by component.

Supposeℓ is the first component which is not deformed to its spine. Since the
group ℓ must be a free group, the wordλ is constructed from a power of by
inserting the words −1 or −1 , for some = 1. . . , repeatedly. For each sub-

word of the form −1 or −1 , there corresponds a pair of intersections of the -th
spine andℓ . Let δ be the segment of the -th spine cut by the pair. Then there are no
other intersections onδ. Let δ′ be the arc onℓ which is cut by the same points. Then
δ ∪ δ′ is a simple closed curve bounding a disc . Letℓ′ be obtained by replacingℓ
by ℓ′ = (ℓ \ δ′)∪ δ which is pushed off the -th spine. If the disc contains no com-
ponent ofℓ′, then the changeℓ 7→ ℓ′ is an isotopy. Ifℓ 1 . . . ℓ are the components
of ℓ contained in , thenℓ′ = ℓ · (α 1 · · ·α )ǫ whereǫ is −1 if the anticlockwise ori-
entation onδ∪δ′ is coherent with the preferred orientation ofℓ and 1 otherwise. This
representative action can be performed along any disjoint paths inside . Now we re-
place ℓ by ℓ′ and continue this process until the wordλ becomes a word in and
−1. By an isotopy as indicated in Fig. 11, we can make the sum of the powers of

in λ into zero. By similar processes as above, we can deformℓ so thatλ becomes
the empty word. If the disc ′ bounded byℓ and the -th spine contains no compo-
nents ofℓ then we use isotopy to deformℓ into its spine and proceed to the ( + 1)-st
component. If there are any components inside′, we can perform a representative
action of as above to replaceℓ by its spine and proceed to the next component.
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ℓ ℓ′

Fig. 12.

Lemma 8. Cobordant laces are3-isotopic.

Proof. Let be a cobordism between two -lacesℓ and . There is an orien-
tation preserving homeomorphismφ : R2 → R2 such thatφ(ℓ ) is the -th spine and
φ( 1) = ( 1), for = 1 . . . . Thenφ( ) is a lace which is cobordant to the trivial
laceφ(ℓ) with cobordismφ× [0 1]( ). According to Corollary 6,φ( ) has the trivial
closure. As in the proof of Theorem 7, we can perform a series of representative ac-
tions of onφ( ) with a suitable choice of paths to deform it into the trivial lace.
Performing the same sequence of these representative actions on , using the preim-
ages of the paths underφ, we get a lace which is isotopic toℓ.

To see that the converse of Lemma 8 is false, we consider the 2-lacesℓ and ℓ′ of
Fig. 12. Suppose there is a cobordism1 of the first components ofℓ and ℓ′. Then
∂ 1 has linking number 1 with the relative 1-cell{(1 0)} × [0 1] which is a part of
any cobordism 2 of the second components ofℓ and ℓ′. Therefore 1 and 2 cannot
be disjoint and henceℓ and ℓ′ are not cobordant.

Proof of Theorem 1. The only difficult fact to check is the commutativity of the
triangle. By Lemma 8, we know that there is a well-defined surjection→ 3.
Since passages of arcs through the point at infinity can be realized by 3-isotopies, the
above map factors though ∗.

DEFINITION. Let ℓ and be two -laces. We defineℓ − as the link obtained
by taking the union of and the string link obtained by pushing the interior ofℓ into
R3

+. So for exampleℓ− 1 is ℓ̂, the closure ofℓ.

Theorem 9. Let ℓ and be two -laces with the same permutation type. The
following are equivalent:
(1) ℓ and are3-isotopic.
(2) ℓ− is the trivial -component link.
(3) ℓ and are in the same orbit of the representative actions.
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Proof. (1)⇒(2) Since ℓ and are 3-isotopic, the linksℓ − and − are
equivalent. Obviously the latter is the -component trivial link.
(2)⇒(3) Let φ be a homeomorphism ofR2 which is isotopic to the identity map and
which maps the -th component of into the -th spine. Thenℓ− , φ(ℓ)−φ( ) and
φ̂(ℓ) are all equivalent4 links. Sinceℓ− is the trivial -component link,φ(ℓ) is in the
orbit of the trivial laceφ( ) under representative actions, according to Theorem 7.
If we apply toℓ the same representative actions to makeφ(ℓ) into the trivial lace along
the preimages of the arcs used forφ(ℓ), underφ, then we must get the lace .
(3)⇒(1) This is clear.

Corollary 10. / ∼= 3 and / ∼= 3.

Corollary 11. A pure -lace is3-isotopic to the trivial -lace if and only if its
closure is the trivial -component link.

Theorem 12. A strongly slice5 lace link is a trivial link.

Proof. Let ℓ be a pure -lace whose closure is concordant to the trivial link.
Since the lower central series quotients are invariants of link concordance,ℓ/( ℓ)
is isomorphic to /( ) , for all [9]. Having generators, ℓ is isomorphic to

[3, p. 346]. Since only trivial links have fundamental group of their complement
free, ℓ is trivial.

6. Braid actions and plats

6.1. More group actions We introduce two more group actions on pure laces.
These actions permute and rotate the spines. Now consider the following example.

EXAMPLE. The two 3-laces given in Fig. 13 as string links have the same clo-
sures. But they are not 3-isotopic. For each case, consider the loop obtained by the
third component together with the third spine in the complement of the first and sec-
ond components. In the case (b), the loop is not contractible. In fact, this loop is the
commutator of the two meridians, which are free generators of the fundamental group
of the exterior of the first and second components.

One can deform the lace in Fig. 13(a) to the one in (b) by these actions. These
actions give one more step toward the classification of lace links by laces.

6.1.1. The action of the groupBn of n-braids This action permutes the initial
and end points of the lace components. Letσ be one of the standard generators of

. Then ℓ ⊖ σ is the result of the isotopy ofR2 which rotates the segments [ +

4In the strong sense, i.e., as ordered oriented links. This is true without the condition (2).
5concordant to a trivial link.
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(a) (b)

Fig. 13.

ℓ

ℓ⊖ σ

Fig. 14.

1] × {0 1} through 180◦ and which is fixed outside a regular neighborhood of the
segments. The rotation is anticlockwise on [ + 1]×{1} and clockwise on [ + 1]×
{0}. So the action is a combination of the lower actionℓ · σ considered in Section
3 and a similar but opposite action at the top. In Fig. 14, the change on the region
between the horizontal lines = 0 = 1 is shown together with the endpoints of
laces.

6.1.2. The action of the groupFBn of the framed n-braids The group
of the framed -braids is the semi-direct product ⋉ Z with the action of on
Z given by · ( 1 . . . ) = ( π (1) . . . π ( )) where π is the permutation of
{1 . . . } determined by in the usual way.

Now we look at the action of on laces. The action of the standard basis el-
ement = (0 . . . 0 1 0 . . . 0) of Z is the result of an isotopy ofR2 rotating the
-th spine through 180◦ clockwise with the outside of a regular neighborhood of the
-th spine fixed. This action results in reversing the preferred orientation on the -th

component.
The action of the framed braid generatorσ permutes the components of the laces

in a way slightly different from the action of the braid group described above. This
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ℓ

ℓ ◦ ( )

Fig. 15.

ℓ

ℓ ◦ (σ Z )

Fig. 16.

action is the result of an isotopy ofR2 which switches around the -th and ( + 1)-st
spines as in Fig. 16 keeping them upright throughout the isotopy and fixing the outside
of an open disc containing the two spines.

6.2. Plats of trivial braids Otal’s results in [5, 6] imply that given any two
bridge presentations of a trivial knot or a rational link, one can be isotoped to the

other without changing the number of bridges during the isotopy. We show the same
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for trivial links.

Lemma 13. Let be a2 -braid whose plat¯ is the trivial -component link.
Then there exist embedded discs ,= 1 . . . , with the following properties:
(1) ∪∂ = .̄
(2) Each has no critical points with respect to the -coordinate function.
(3) For 6= , ∩ consists of finitely many disjoint ribbon intersections which are
located in distinct horizontal levels of the -coordinate function.

Proof. Letb be the path 2 -braid inR2×{0} corresponding to . Consider the
2-disc which gives the correspondence between andb in Section 3. See Fig. 6.
Inside , there exist 2-discs , = 1. . . , disjointly embedded in = [0 2 +
1]× R× [0 1] with

∂ = 2 −1 ∪ 2 ∪ b ∪ [2 − 1 2 ]× {(0 1)}

where is the -th string of andb is the subarc ofb joining the bottom end
points of 2 −1 and 2 . We may choose so that it does not have critical points in
the -coordinate. Then the ’s also do not have critical points in the -coordinate.

Let φ = φ′× [0 1] whereφ′ is a homeomorphism ofR2 isotopic to R2 mapping
[2 − 1 2 ]× {0} into the -th spine and outside a regular neighborhood of

⋃
=1[2 −

1 2 ]×{0} by an affine map. By hypothesis the laceφ( ∪⋃ =1([2 −1 2 ]×{(0 1)}))
is a string link representing the 3-isotopy class of the -laceφ(∪b ). It must be no-
ticed that the laceφ(∪b ) has a trivial closure. Therefore by Theorem 7, there is a
sequence of -lacesℓ0 . . . ℓ from φ(∪b ) to a trivial lace such thatℓ is obtained
from ℓ −1 by a representative action of±1 along a path . To perform a represen-

tative action of ±1
1 1

, we need to take a regular neighbourhood1 of ℓ0
1

containing the
interior of the path 1 1 in its interior such thatδ1 = 1∩ℓ0

1
= ∂ 1∩ℓ0

1
is a connected

arc. Thenℓ1
1

= ∂ 1 ∪ ℓ0
1
\ δ1 and ℓ1 = ℓ0 for 6= 1. We will replace 1 by the disc,

again denoted 1, obtained from 1∪ 1 by pushing int( 1)∪ int(δ1) into R3
+. We may

choose the new 1 so that it has no critical points in the -coordinate and such that

1 ∩ 1 is a ribbon intersection contained in the level =ǫ1 for some 0< ǫ1 < 1.
We repeat this process so that the -th ribbon intersection lies in the level =ǫ with
0 < ǫ < ǫ −1 for = 2 . . . . Then we obtain discs , = 1. . . satisfying
conditions similar to (1)–(3). Now let =φ−1( ). Then we are done.

Theorem 14. A 2 -plat presentation of an -component trivial link can be made
into the plat of the trivial2 -braid by the following three local moves together with
the 2 -braid relations.
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⇐⇒ ⇐⇒ ⇐⇒
1 2 3

Proof. Let be a 2 -braid whose plat̄is a trivial -component link. Then there
exist discs , = 1. . . , satisfying (1)–(3) in Lemma 13. Suppose that the ribbon
intersections lie in the levels =ǫ , where 0< ǫ1 < · · · < ǫ < 1. Then∪ is
isotopic in R2 × [0 1] relative to R2 × [0 1] to a braid of bands with horizontal
ribbon intersections. Then the moves1, 2 and 3 can be applied on the top of
the braid to obtain a trivial braid of bands.

REMARKS. 1. Consider the moves ′
1, ′

2, ′
3, ′′

2 and ′′′
2 shown below. We

observe that the moves 1 and ′
1 are equivalent up to braid relations. Likewise2

and ′
2, ′′

2 and ′′′
2 , 3 and ′

3 are pairwise equivalent. But the moves2 and
′′
2 are not equivalent unless the move1 is allowed.

⇐⇒ ⇐⇒ ⇐⇒
′
1

′
2

′
3

⇐⇒
′′
2

⇐⇒
′′′
2

2. The moves 1 and 3 on trivial 2 -braids give rise to braids of bands, which
are the same as framed -braids. Therefore these moves correspond to framed braid
actions on laces. On the other hand the2-moves corresponds to the braid group ac-
tions on laces.

Looking at the changes on braids corresponding the moves1, 2 and 3, we
easily have

Corollary 15. The plat of a2 -braid represents the trivial -component link if
and only if the2 -braid is an element of the subgroup of2 generated by the fol-
lowing elements.
(1) σ2 −1 = 1 . . .

(2) σ2 σ2 −1σ
ε
2 +1σ

ε
2 = 1 . . . − 1 ε = ±1
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The subgroup of 2 mentioned in Corollary 15 can be seen as the braid group of
-bands with horizontal ribbon intersections as described in the proof of Theorem 14.

Theorem 16. Let ℓ be an -lace whose closurêℓ is a trivial -component link.
There is an isotopy deforminĝℓ to the plat of the trivial2 -braid such that the num-
ber of bridges is unchanged during the isotopy.

Proof. Letℓ be a pure -lace whose closure is a trivial link. Then we can choose
a string link ℓ′ = ∪ℓ′ representing the 3-isotopy class ofℓ such thatℓ′ is the union of
two arcs with no critical points in the -coordinate joining (±1 0) to ( ±1 1) and
the segment{ }× [−1 1]×{1}. Let φ be as in the proof of Lemma 13. Thenφ−1(ℓ′)
is a 2 -plat with the bottom segments missing. As in the proof of Theorem 14, we can
find an -braid of bands with horizontal ribbon intersections bounding this 2 -plat. To
make the -braid of bands into straight bands, we consider the upside-down version
of the moves 1, 2 and 3 on its bottom. Applyingφ, these moves correspond to
the actions and the actions. The number of bridges is unchanged under these
moves.

Corollary 17. A pure -lace whose closure is the trivial link can be transformed
into the trivial -lace by the actions and the actions.
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