PROJECTIVITY OF MOMENT MAP QUOTIENTS

PETER HEINZNER and LUCA MIGLIORINI

(Received April 16, 1999)

Let G be a complex reductive group acting algebraically on a complex projective variety X. Given a polarization of X, i.e., an ample G-line bundle L over X, Mumford (see [16]) defined the notion of stability: A point $x \in X$ is said to be semistable with respect to L if and only if there exists $m \in \mathbb{N}$ and an invariant section $s : X \to L^m$ such that $s(x) \neq 0$. Let X(L) denote the set of semistable points in X, then there is a projective variety X(L)//G and a G-invariant surjective algebraic map $\pi : X(L) \to X(L)//G$ such that

(i) π is an affine map and

(ii) $\mathcal{O}_{X(L)/\!/G} = (\pi_* \mathcal{O}_{X(L)})^G$.

In particular, for an open affine subset U of X(L)//G, it follows that $\pi^{-1}(U) =$ Spec $\mathbb{C}[U]^G$ where $\mathbb{C}[U]$ denotes the coordinate ring of $\pi^{-1}(U)$ and $\mathbb{C}[U]^G$ is the algebra of invariant functions.

There is a completely analogous picture for a holomorphic action of a complex reductive group *G* on a Kählerian space *X*. The role of a polarization is taken over by a Hamiltonian action of a maximal compact subgroup *K* of *G*. Here one considers a maximal compact subgroup *K* of *G*, assumes the Kähler structure to be *K*-invariant and that there is an equivariant moment map $\mu : X \to \mathfrak{k}^*$ with respect to ω . In this situation $X(\mu) = \{x \in X; \overline{G \cdot x} \cap \mu^{-1}(0) \neq \emptyset\}$ is called the set of semistable points of *X* with respect to μ . Here $\overline{G \cdot x}$ denotes the topological closure of the *G*-orbit through *x*. The following result has been proved in [11] (c.f. [18]).

The set $X(\mu)$ is open in X and there is a complex space $X(\mu)//G$ and a G-invariant surjective holomorphic map $\pi : X(\mu) \to X(\mu)//G$ such that

- (i) π is a Stein map and
- (ii) $\mathcal{O}_{X(\mu)/\!/G} = (\pi_* \mathcal{O}_{X(\mu)})^G$.

In fact there is one more analogy between these two constructions. In the case where X is projective, the line bundle L induces a line bundle \bar{L} on X(L)//G which turns out to be ample. In the Kähler case ω induces a Kählerian structure $\bar{\omega}$ on $X(\mu)//G$.

A very ample *G*-line bundle *L* over *X* induces a *G*-equivariant holomorphic embedding of *X* into $\mathbb{P}(V)$ where *V* is the dual vector space of the space of sections $\Gamma(X, L)$ and the *G*-action on $\mathbb{P}(V)$ is induced by the natural linear *G*-action on $\Gamma(X, L)$. Now one may assume the *K*-representation to be unitary and therefore the

pull back of the Fubini-Study form $\omega_{\mathbb{P}(V)}$ to X is a K-invariant Kähler form ω and the pull back of the natural moment map $\mu_{\mathbb{P}(V)}$ to X gives a moment map $\mu : X \to \mathfrak{k}^*$. In this case, using a result of Kempf-Ness (see [12]), one checks that $X(\mu) = X(L)$, i.e., the set of Mumford-semistable subsets of X is a subset of the set of momentum-semistable sets (see [13], [17] or Sec. 3.).

Of course in general a given invariant Kähler form ω on a projective *G*-manifold *X* may not be integral. Therefore associated moment maps are not in an obvious way related to *G*-line bundles. Nevertheless, our goal here is to prove the following

Semistability Theorem. Let X be a smooth projective variety endowed with a holomorphic action of a complex reductive group $G = K^{\mathbb{C}}$, ω a K-invariant Kähler form and $\mu : X \to \mathfrak{k}^*$ a K-equivariant moment map. Then there is a very ample G-line bundle L over X such that

$$X(\mu) = X(L).$$

Recently there has been some interest in the question of how X(L) and X(L)//G vary in dependence of L (see e.g. [4], [19]). The above obviously implies that these results extend to the case where μ is moving.

1. Mumford quotients

Let G be a complex reductive group and V a G-representation, i.e., there is given a holomorphic homomorphism $\rho : G \to GL(V)$. Since G is reductive, it is in fact a linear algebraic group and ρ is an algebraic map (see e.g. [3]). Moreover the algebra $\mathbb{C}[V]^G$ of G-invariant polynomials is finitely generated. The corresponding affine variety is denoted by V//G. The inclusion $\mathbb{C}[V]^G \hookrightarrow \mathbb{C}[V]$ induces a polynomial map $\pi : V \to V//G$ which turns out to be surjective. Explicitly $\pi : V \to V//G$ can be realized as follows. Let q_1, \ldots, q_k be a set of generators of the algebra $\mathbb{C}[V]^G$ and $q := (q_1, \ldots, q_k)$. Then Y := q(V) is a Zariski-closed subset of \mathbb{C}^k which is isomorphic with V//G. Under this isomorphism $\pi : V \to V//G$ is given by q.

Since the group G and the action $G \times V \to V$, $(g, v) \to g \cdot v$, are algebraic, every G-orbit is Zariski-open in its closure. In particular, for every $x \in \overline{G \cdot v} \setminus \overline{G \cdot v}$ we have dim $G \cdot x < \dim G \cdot v$. This implies that the closure of every G-orbit contains a closed G-orbit which may be defined as a G-orbit of smallest dimension in $\overline{G \cdot v}$. Now G-invariant polynomials separate G-invariant Zariski-closed subsets. This can be seen by using integration over a maximal compact subgroup K of G. Thus the closed G-orbit in $\overline{G \cdot v}$ is unique. Moreover for $v, w \in V$ we have $\pi(v) = \pi(w)$ if and only if $\overline{G \cdot v} \cap \overline{G \cdot w} \neq \emptyset$ and this is the case if and only if $\overline{G \cdot v}$ and $\overline{G \cdot w}$ contain the same closed orbit. Consequently, if $G \cdot v_0$ is the closed orbit in $\overline{G \cdot v}$, then $\pi^{-1}(\pi(v)) =$ $\{w \in V; G \cdot v_0 \subset \overline{G \cdot w}\}$. This is often expressed by the phrase that the quotient V//Gparametrises the closed G-orbits in V.

Assume now that X is a projective G-variety which is realized as a G-stable Zariski-closed subset of $\mathbb{P}(V)$. In general there is no way to associate to X a quotient X//G which has reasonable properties. For example if V is irreducible, then $\mathbb{P}(V)$ contains a unique G-orbit which is compact. This orbit is the image of a G-orbit through a maximal weight-vector in V. Since every G-orbit in $\mathbb{P}(V)$ contains a closed G-orbit in its closure, the unique compact orbit is contained in the closure of every other G-orbit in $\mathbb{P}(V)$. If one were to try to define a Hausdorff quotient, then every point would have to be identified with the points in the unique compact orbit. The resulting quotient would be a point.

In order to resolve this difficulty Mumford introduced the following procedure (see [16]). Let *N* be the Null-cone in *V*, i.e., the fiber through the origin of the quotient map $\pi : V \to V//G$ and let $p : V \setminus \{0\} \to \mathbb{P}(V)$ denote the \mathbb{C}^* -principal bundle which defines the projective space $\mathbb{P}(V)$. For a subset *Y* of $\mathbb{P}(V)$ let $\hat{Y} := p^{-1}(Y)$. A point $x \in X$ is said to be semistable with respect to *V* if $\hat{x} = p^{-1}(x) \subset \hat{X} \setminus N$. Let $X(V) := p(\hat{X} \setminus N)$ denote the set of semistable points in *X* with respect to the representation *V*. Thus X(V) is obtained by removing the image of the Null-cone from *X*.

The cone $C(X) := \hat{X} \cup \{0\}$ in V over X is a G-stable closed affine subset of Vand N is saturated with respect to $\pi_V : V \to V/\!/G$. Thus $\hat{X}(V) := \hat{X} \setminus N = C(X) \setminus N$ is saturated with respect to $\pi_{\hat{X}} : \hat{X} \to \hat{X}/\!/G$. In particular there is a quotient $\hat{\pi}$: $\hat{X}(V) \to \hat{X}(V)/\!/G$ which is given by restricting $\pi_V : V \to V/\!/G$ to $\hat{X}(V)$. The \mathbb{C}^* -action on V defined by multiplication commutes with the G-action and stabilizes $\hat{X}(V)$. Thus there is an induced \mathbb{C}^* -action on $\hat{X}(V)/\!/G$ which can be described explicitly as follows. Let q_1, \ldots, q_k be a set of homogeneous generators of $\mathbb{C}[V]^G$ with deg $q_j = d_j$. The map $q : V \to \mathbb{C}^k$ is equivariant with respect to \mathbb{C}^* . More precisely we have $q(t \cdot v) = (t^{d_1}q_1(v), \ldots, t^{d_k}q_k(v))$. Moreover $q(V \setminus N) = q(V) \setminus \{0\} \subset$ $\mathbb{C}^k \setminus \{0\}$. Note that \mathbb{C}^* acts properly on $\mathbb{C}^k \setminus \{0\}$. In particular there is a geometrical quotient $\mathbb{C}^k \setminus \{0\}/\mathbb{C}^* =: \mathbb{P}(d_1, \ldots, d_k)$ which is a projective variety. This implies that $X(V)/\!/G := (\hat{X}(V)/\!/G)/\mathbb{C}^*$ is also a projective variety, since it is a Zariski-closed subspace of $\mathbb{P}(d_1, \ldots, d_k)$. The map $\hat{X}(V) \to X(V)/\!/G$ which is the quotient map for the G-action on X(V).

There is a standard procedure to realize a given *G*-variety *X* as a *G*-stable subvariety of some projective space $\mathbb{P}(V)$ where *V* is a *G*-representation. For this assume that *L* is a very ample line bundle over *X* and let $\Gamma(X, L)$ denote the space of holomorphic sections of *L*. Thus the natural map $\iota_L : X \to \mathbb{P}(V)$ which is given by evaluation where $V := \Gamma(X, L)^*$ is the dual of $\Gamma(X, L)$ is an embedding. Now if the *G*-action on *X* lifts to a *G*-action on *L*, then *V* is a *G*-representation in a natural way and ι_L is *G*-equivariant. The set $X(L) := \{x \in X; s(x) \neq 0$ for some invariant section $s \in \Gamma(X, L^m), m \in \mathbb{N}\}$ coincides with X(V) after identifying *X* with $\iota_L(X) \subset \mathbb{P}(V)$ and is called the set of semistable points of *X* with respect to the *G*-line bundle *L*. Note that X(L) depends on *L* and on the lifting of the *G*-action to *L*. The following two elementary facts concerning *G*-actions on line bundles are often useful (see [16]).

Lemma. Let X be a smooth projective G-variety. (i) If L is ample, then there is a lifting of the G-action to some positive power L^m of L.

(ii) Two liftings of the G-action to L differ by a character of G.

Proof. The last statement follows since X is compact and therefore a G-action on the trivial bundle $X \times \mathbb{C} = L \otimes L^{-1}$ is given by $g \cdot (x, z) = (g \cdot x, \chi(g)z)$ where $\chi : G \to \mathbb{C}^*$ is a character of G.

For the first statement one may assume that G acts effectively. Since G is connected the induced action on Pic(X) is trivial. This implies that there is a subgroup \tilde{G} of the automorphism group of L and an exact sequence of the form

$$1 \to \mathbb{C}^* \to \tilde{G} \to G \stackrel{\alpha}{\to} 1$$

where α is given by restricting $\tilde{g} \in \tilde{G}$ to the zero section $X \hookrightarrow L$. This sequence splits after replacing G by a finite covering. Hence the G-action on X lifts to L^m for some positive m.

2. Moment map quotients

Let G be a complex reductive group which acts holomorphically on a complex manifold X. Now choose a maximal compact subgroup K of G and let ω be a K-invariant Kähler form on X. By definition the K-action on X is said to be Hamiltonian with moment map μ if there is given an equivariant smooth map μ from X into the dual \mathfrak{k}^* of the Lie algebra \mathfrak{k} of K such that

(*) $d\mu_{\xi} = \iota_{\xi_{X}}\omega$

for all $\xi \in \mathfrak{k}$. Here ξ_X denotes the vector field on *X* associated with ξ , $\mu_{\xi} = \mu(\xi)$ and $\iota_{\xi_X}\omega$ is the one form $\eta \to \omega(\xi_X, \eta)$. Note that for a connected manifold *X* an equivariant moment map is uniquely defined by (*) up to a constant in \mathfrak{k}^* which lies in the set of fixed points. In particular, if the group *K* is semisimple then an equivariant moment map is unique. Moreover in the semisimple case it can be shown that μ exists for a given *K*-invariant Kähler form ω (see e.g. [6])

EXAMPLE. Let $\rho : X \to \mathbb{R}$ be a smooth *K*-invariant function, $\omega := 2i \partial \overline{\partial} \rho$ and let $\mu : X \to \mathfrak{k}^*$ be the associated *K*-equivariant map which is defined by $\mu_{\xi} = d\rho(J\xi_X)$. Here *J* denotes the complex structure tensor on *X*. A direct calculation shows that $d\mu_{\xi} = \iota_{\xi_X} \omega$ holds for every $\xi \in \mathfrak{k}$. In particular, if ρ is strictly plurisubharmonic, i.e.,

 ω is Kähler, then μ is a moment map. We refer to $\mu =: \mu^{\rho}$ as the moment map given by ρ .

Similar to the case of an ample *G*-line bundle there is a notion of semistability with respect to μ . A point $x \in X$ is said to be semistable with respect to μ if $\overline{G \cdot x} \cap \mu^{-1}(0) \neq \emptyset$. Let $X(\mu)$ denote the set of semistable points with respect to μ .

The following is proved in [11] (see also [18]).

Theorem 1. The set of semistable points $X(\mu)$ is open in X and the semistable quotient $\pi : X(\mu) \to X(\mu)//G$ exists. The inclusion $\mu^{-1}(0) \hookrightarrow X(\mu)$ induces a homeomorphism $\mu^{-1}(0)/K \cong X(\mu)//G$.

By a semistable quotient of a complex space Z (see [10] for more details) endowed with a holomorphic action of G we mean a complex space Z//G together with a G-invariant surjective map $\pi : Z \to Z//G$ such that:

(i) The structure sheaf $\mathcal{O}_{Z/\!/G}$ is given by $(\pi_*\mathcal{O}_Z)^G$, i.e., the holomorphic functions on an open subset of $Z/\!/G$ are exactly the invariant holomorphic functions on its inverse image in Z.

(ii) The map $\pi : Z \to Z//G$ is a Stein map, i.e., the inverse image of a Stein subspace of Z//G is a Stein subspace of Z.

In [9] it is shown that each point $q \in X(\mu)//G$ has an open neighborhood Q such that $\omega = 2i \partial \bar{\partial} \rho$ on $\pi^{-1}(Q)$ for some K-invariant smooth function ρ . Furthermore, the moment map μ restricted to $\pi^{-1}(Q)$ is given by ρ , i.e., $\mu = \mu^{\rho}$. A result of Azad and Loeb (see [2]) asserts that, if $x \in \mu^{-1}(0)$, then ρ is an exhaustion on $G \cdot x$ i.e., is bounded from below and proper. In particular $G \cdot x$ is closed in $X(\mu)$ for every $x \in \mu^{-1}(0)$. The converse is also true in the following sense. If $G \cdot x$ is closed in $X(\mu)$, then $\mu(g \cdot x) = 0$ for some $g \in G$. Furthermore in [8] it is shown that the restriction of ρ to each fiber over Q is an exhaustion, i.e., is bounded from below and proper. This Exhaustion Lemma and also a refinement of it (see Sec. 6) will be used several times in the remainder of this paper. For example, it implies the following (see [8]).

Theorem 2. Let X be a compact complex manifold with a holomorphic G-action and let $\mu : X \to \mathfrak{k}^*$ be a moment map with respect to a K-invariant Kähler form ω . Let $\tilde{\omega}$ be a K-invariant Kähler form on X which lies in the cohomology class of ω . Then there exists a moment map $\tilde{\mu} : X \to \mathfrak{k}^*$ with respect to $\tilde{\omega}$ such that

$$X(\mu) = X(\tilde{\mu}).$$

Proof. We recall the argument given in [8]. Since $\tilde{\omega}$ is cohomologous to ω and X is a compact Kähler manifold, there exists a differentiable K-invariant function f: $X \to \mathbb{R}$ so that $\tilde{\omega} = \omega + 2i\partial \bar{\partial} f$. Define $\mu^f : X \to \mathfrak{k}^*$ by $\mu_k^f = J\xi_X(f)$ for $\xi \in \text{Lie } K$

and set $\tilde{\mu} = \mu + \mu^f$. Then $\tilde{\mu}$ is a moment map with respect to $\tilde{\omega}$. For every $x \in X(\mu)$ there exists a strictly plurisubharmonic *K*-invariant function $\rho : Z \to \mathbb{R}$, where $Z := \overline{G \cdot x} \cap X(\mu)$, so that $\mu | Z = \mu^{\rho}$, where μ^{ρ} is the moment map associated to ρ (see [9]). Since $Z \cap \mu^{-1}(0) \neq \emptyset$, the above mentioned Exhaustion Lemma implies that $\rho : Z \to \mathbb{R}$ is an exhaustion. Now *f* attains its minimum and maximum on *X* and ρ is an exhaustion. Hence the strictly plurisubharmonic *K*-invariant function $\tilde{\rho} := \rho + f$ is also an exhaustion on *Z*. This shows that $Z \subset X(\tilde{\mu})$, i.e., $X(\mu) \subset X(\tilde{\mu})$. By symmetry we have $X(\mu) = X(\tilde{\mu})$.

If G is a connected semisimple Lie group, then a moment map with respect to a K-invariant Kähler form ω always exists and is unique. Thus in this case Theorem 2 shows that $X(\mu)$ depends only on the cohomology class of ω .

3. Moment maps associated to representations

Let V be a G-representation whose restriction to the maximal compact subgroup K of G is unitary with Hermitian inner product \langle , \rangle . Then $\rho : V \to \mathbb{R}$, $\rho(z) = (1/2)||z||^2 = (1/2)\langle z, z \rangle$, is a K-invariant strictly plurisubharmonic exhaustion function on V and consequently $V = V(\mu)$ where the moment map $\mu : V \to \mathfrak{k}^*$ is given by $\mu_{\xi}(z) = d\rho(J\xi z) = (1/2)(\langle J\xi z, z \rangle + \langle z, J\xi z \rangle) = (1/i)\langle \xi z, z \rangle$. The Kähler form $\omega_V = 2i\partial\bar{\partial}\rho$ is given by $\omega_V(v, w) = -\operatorname{Im}\langle v, w \rangle$. Since in this case the restriction of ρ to every π -fibre is an exhaustion, we have $V(\mu) = V$ and the inclusion $\mu^{-1}(0) \hookrightarrow V$ induces a homeomorphism $\mu^{-1}(0) \cong V//G$ (see Sec. 2 Theorem 1). The essential part of this statement has already been proved in [12].

Let $S := S(V) := \{z \in V; ||z|| = 1\}$ denote the unit sphere in V. Note that S is a coisotropic submanifold of V with respect to ω_V , i.e., $(T_z S)^{\perp_{\omega_V}} = T_z(S^1 \cdot z) \subset T_z S$ where the circle group $S^1 = \{\lambda \in \mathbb{C}; |\lambda| = 1\}$ acts on V by multiplication. This is easily seen by using the orthogonal decomposition $T_z V = T_z(\mathbb{C}^*z) \oplus W$ where $W := T_z S \cap iT_z S$ denotes the complex tangent space of S at z. The complex structure on W induces the standard complex structure on $\mathbb{P}(V) = S(V)/S^1$. Moreover since S is co-isotropic, there is a unique symplectic structure $\omega_{\mathbb{P}(V)}$ on $\mathbb{P}(V)$ such that $\iota_S^* p^* \omega_{\mathbb{P}(V)} = \iota_S^* \omega_V$. Here $p : (V \setminus \{0\}) \to (V \setminus \{0\})/\mathbb{C}^* = \mathbb{P}(V)$ denotes the quotient map and $\iota_S : S \hookrightarrow V$ is the inclusion. Furthermore, the definition of the complex structure and of $\omega_{\mathbb{P}(V)}$ are compatible so that $\omega_{\mathbb{P}(V)}$ is in fact a Kähler form on $\mathbb{P}(V)$. Up to a positive constant it is the unique Kähler form on $\mathbb{P}(V)$ which is invariant with respect to the unitary group U(V). Note that $\omega_{\mathbb{P}(V)}$ is determined by

$$p^*\omega_{\mathbb{P}(V)} = 2i\,\partial\bar{\partial}\log\rho = 2i\left(-\frac{1}{\rho^2}\partial\rho\wedge\bar{\partial}\rho + \frac{1}{\rho}\partial\bar{\partial}\rho\right).$$

The induced *K*-action on $\mathbb{P}(V)$ is again Hamiltonian. The moment map is given by $(\mu_{\mathbb{P}(V)})_{\xi}([z]) = (2/i)(\langle \xi z, z \rangle / ||z||^2) = d \log \rho(z)(J\xi z)$. In particular we have $\overline{G \cdot [z]} \cap \mu_{\mathbb{P}(V)}^{-1}(0) \neq \emptyset$ if and only if $\overline{G \cdot z} \cap \mu^{-1}(0) \neq \emptyset$ and this is the case if and only if $f(z) \neq 0$ for some G-invariant homogeneous polynomial f on V.

Now let *X* be a *G*-stable subvariety of $\mathbb{P}(V)$. The pull back of $\omega_{\mathbb{P}(V)}$ to *X* induces a Kählerian structure ω on *X* and the *K*-action is Hamiltonian with moment map μ : $X \to \mathfrak{k}^*$, $\mu = \mu_{\mathbb{P}(V)}|X$. We call μ the standard moment map induced by the embedding into $\mathbb{P}(V)$. The above construction shows the following well known

Lemma. Let L be a very ample G-line bundle over X and consider X as a G-stable subvariety on $\mathbb{P}(V)$ where the embedding is given by $\Gamma(X, L)$ and $V = \Gamma(X, L)^*$. Then

$$X(\mu) = X(L),$$

i.e., the semistable points with respect to the standard moment map on $\mathbb{P}(V)$ *are the semistable points with respect to L.*

4. The main result

Let G be a connected complex reductive group and K a maximal compact subgroup of G, i.e., $G = K^{\mathbb{C}}$. By a G-variety we mean in the following an algebraic variety together with an algebraic action of G.

Let *X* be a smooth projective *G*-variety and ω a *K*-invariant Kähler form on *X*. Assume that the *K*-action is Hamiltonian with respect to ω , i.e., there is a *K*-equivariant moment map $\mu : X \to \mathfrak{k}^*$, and denote by $X(\mu) := \{x \in X; \overline{G \cdot x} \cap \mu^{-1}(0) \neq \emptyset\}$ the set of semistable points with respect to μ .

Semistability Theorem. There is a very ample G-line bundle L over X such that

$$X(\mu) = X(L).$$

Here X(L) denotes the set of semistable points in X in the sense of Mumford, i.e., $X(L) = \{x \in X; s(x) \neq 0 \text{ for some } G\text{-invariant holomorphic section } s \text{ of } L^m, m \in \mathbb{N}\}.$

The case where ω is assumed to be integral is well known and follows rather directly from the definitions using standard Kempf-Ness type arguments. In fact it is a consequence of Theorem 2 of Sec. 2 and the Lemma in Sec. 3.

The proof in the general case is divided into two steps. In the first part we consider forms ω whose cohomology class $[\omega]$ is contained in the \mathbb{R} -linear span of the ample cone in $H^{1,1}(X)$. The second part of the proof is more involved. It is a reduction procedure to the first case.

At least implicitly (see e.g. [4], [13], [17]) the ample cone case seems to be known. In order to be complete we include a proof in the next paragraph.

P. HEINZNER AND L. MIGLIORINI

5. The ample cone case

In this section G is a connected complex reductive group with a fixed maximal compact subgroup K and X is a smooth projective G-variety. Let ω be a K-invariant Kähler form and let $\mu : X \to \mathfrak{k}^*$ be a K-equivariant moment map. In this section we prove the following

Proposition. Assume that the cohomology class of ω lies in the real linear span of the ample cone in $H^{1,1}(X)$. Then there exists a very ample G-line bundle L over X such that

$$X(\mu) = X(L).$$

Proof. Since $X(\mu)$ essentially depends only on the cohomology class of ω (see Sec. 2 Theorem 2), we may assume that there are equivariant holomorphic embeddings $\iota_k : X \to \mathbb{P}(V_k), \ k = 1, ..., m$, so that

$$\omega = \sum a_k \iota_k^* \omega_{\mathbb{P}(V_k)}$$

where a_k are positive real numbers.

Let $\iota: X \to \mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m)$ be the diagonal embedding. Then

$$\omega = \iota^* \left(\sum a_k \pi_k^* \omega_{\mathbb{P}(V_k)} \right),$$

where $\pi_k : \mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m) \to \mathbb{P}(V_k)$ denotes the projection. Hence the moment map μ is the restriction of a moment map on $\mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m)$ with respect to $\sum a_k \pi_k^* \omega_{\mathbb{P}(V_k)}$ which also will be denoted by μ . Since X is closed in $\mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m)$, we have

$$X(\mu) = (\mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m))(\mu) \cap X.$$

Thus for the proof of the proposition we may assume that $X = \mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m)$, $\omega = \sum a_k \pi_k^* \omega_{\mathbb{P}(V_k)}$ and the *G*-action is given by a representation $G \to \operatorname{GL}(V_1) \times \cdots \times \operatorname{GL}(V_m)$.

Let T be a maximal compact torus in K. Then $T^{\mathbb{C}}$ is a maximal algebraic torus in G. We now reduce the proof of the proposition to the case where $G = T^{\mathbb{C}}$ as follows.

Let $\mu_T : X \to \mathfrak{t}^*$ be the moment map for the *T*-action which is induced by μ and the embedding $\mathfrak{t} \hookrightarrow \mathfrak{k}$. Then it follows that

$$X(\mu) = \bigcap_{k \in K} k \cdot X(\mu_T)$$

by the Hilbert Lemma version in [13] (Sec. 8.8.). Thus it is sufficient to show the following

CLAIM. There exists a very ample *G*-line bundle *L* over $X = \mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m)$ such that

$$X(\mu_T) = X(L_T)$$

where $X(L_T)$ denotes the set of semistable points with respect to L if one considers L as a $T^{\mathbb{C}}$ -bundle.

The proposition follows from the above claim, since

$$X(\mu) = \bigcap_{k \in K} k \cdot X(\mu_T) = \bigcap_{k \in K} k \cdot X(L_T) = X(L).$$

In order to prove the claim one may proceed as follows.

Let $S = S_1 \times \cdots \times S_m$ be the maximal torus in $GL(V_1) \times \cdots \times GL(V_m)$ which contains the image of T and $\mu_k : \mathbb{P}(V_k) \to \mathfrak{s}_k^*$ the standard moment map on $\mathbb{P}(V_k)$. We will consider μ_k as a moment map with respect to $S = S_1 \times \cdots \times S_m$ where the factors of S different from S_k act trivially on $X = \mathbb{P}(V_1) \times \cdots \times \mathbb{P}(V_m)$. Since $\omega = \sum a_k \omega_{\mathbb{P}(V_k)}$, the moment map $\mu : X \to \mathfrak{t}^*$ is given by

$$\mu = a_1\mu_1 + \cdots + a_m\mu_m + c$$

where $c \in \mathfrak{t}^*$ and μ_k now denotes the map from X to \mathfrak{t}^* which is given by $\mu_k : X \to \mathfrak{s}^*$ composed with the dual of $\mathfrak{t} \to \mathfrak{s}$. Now if \tilde{a}_k are positive rational numbers and \tilde{c} is rational, then $\tilde{\mu} := \tilde{a}_1 \mu_1 + \cdots + \tilde{a}_m \mu_k + \tilde{c}$ is a moment map with respect to $\tilde{\omega} := \sum \tilde{a}_k \pi_k^* \omega_{\mathbb{P}(V_k)}$. Since \tilde{a}_k and \tilde{c} are rational, it follows that there is a very ample *G*-line bundle *L* over *X* such that $X(L) = X(\tilde{\mu})$. Thus we have to show the following

There exists \tilde{a}_k and \tilde{c} such that $X(\mu) = X(\tilde{\mu})$.

This statement follows from convexity properties of μ as follows. Since T is compact, the set X^T of T-fixed points in X is smooth. Let $X^T = \bigcup_{j \in J} F_j$ be the decomposition into connected components. Note that μ is constant on every F_j , $j \in J$. For the set J let $\mathcal{P}(J)$ be the set of subsets of J. We say that $\mathcal{L} \in \mathcal{P}(J)$ is μ -semistable if $0 \in \text{Conv}\{\mu(F_j); j \in \mathcal{L}\}$ where Conv denotes the convex hull operation in \mathfrak{t}^* . Let $X_{\mathcal{L}} := \{x \in X; \overline{T^{\mathbb{C}} \cdot x} \cap F_j \neq \emptyset$ for all $j \in \mathcal{L}\}$. Since $\mu(\overline{T^{\mathbb{C}} \cdot x}) = \text{Conv}\{\mu(F_j); \overline{T^{\mathbb{C}} \cdot x} \cap F_j \neq \emptyset\}$ (see [1]), it follows that

$$X(\mu) = \bigcup X_{\mathcal{L}}.$$

Here the union is taken over the elements \mathcal{L} of $\mathcal{P}(J)$ which are μ -semistable. For a given μ denote by $I(\mu)$ the set of μ -semistable subsets of J. We show now that if a collection of subsets is of the form $I(\mu)$, then $I(\mu) = I(\tilde{\mu})$ for some positive rational \tilde{a}_k and rational \tilde{c} .

In order to see this, let $\Lambda_{kj} := \mu_k(F_j) \in \mathfrak{t}^*$. Note that Λ_{kj} are integral points in \mathfrak{t}^* . A subset $I \subset \mathcal{P}(J)$ is of the form $I(\mu)$ if and only if there exist positive real numbers a_k and $c \in \mathfrak{t}^*$ such that for all $\mathcal{L} \in \mathcal{P}(J)$ the following holds.

$$0 \in \operatorname{Conv}\left\{\sum_{k} a_k \Lambda_{kj} + c; j \in \mathcal{L}\right\} \text{ if and only if } \mathcal{L} \in I.$$

This condition is equivalent to a collection of linear inequalities with integral coefficients in the unknowns a_k 's and c which have a real solution if and only if they have a rational one.

6. Cohomologous Kähler forms on orbits

In this section let G be a connected complex reductive group with maximal compact subgroup K and let $X = G \cdot x_0$ be a G-homogeneous manifold. We assume that there are given K-invariant Kähler forms ω^j , j = 0, 1, on X which are cohomologous and set

$$\omega^{t} = (1-t)\omega^{0} + t\omega^{1}, t \in [0, 1].$$

Moreover, assume that there are K-equivariant moment maps

$$\mu^t: X \to \mathfrak{k}^*, t \in [0, 1]$$

with respect to ω^t such that the dependence on t is continuous.

REMARK. We have $\mu^t = (1 - t)\mu^0 + t\mu^1 + c^t$ where $c^t \in \mathfrak{z}^*$. Here \mathfrak{z} is the Lie algebra of the center of K. The goal of this section is to obtain some control about the semistable set $M_K^t := (\mu^t)^{-1}(0)$ if t varies.

Lemma. If $M_K^{i_0} \neq \emptyset$ for some $t_0 \in [0, 1]$, then $\omega^t = 2i \partial \overline{\partial} \rho^t$ where $\rho^t = (1-t)\rho^0 + t\rho^1$ and $\rho^j : X \to \mathbb{R}$, j = 0, 1, are K-invariant smooth functions.

Proof. Since $M_K^{t_0} \neq \emptyset$, the orbit $X = G \cdot x_0$ is a Stein manifold (see e.g. [7] or [9]). Now ω^0 and ω^1 are assumed to be cohomologous. Thus there is a *K*-invariant smooth function $u : X \to \mathbb{R}$ such that $\omega^1 - \omega^0 = 2i\partial\bar{\partial}u$. On the other hand $\omega^{t_0} = 2i\partial\bar{\partial}f$ for some *K*-invariant smooth function $f : X \to \mathbb{R}$ (see Sec. 2 and [9]). Thus $\omega^t = 2i\partial\bar{\partial}\rho^t$ where $\rho^0 := f - t_0u$ and $\rho^1 := f + (1 - t_0)u$.

Now let Z denote the connected component of the identity of the center of K and let S be a semisimple factor of K. Thus $K = S \cdot Z$ and $\mathfrak{k} = \mathfrak{s} \oplus \mathfrak{z}$ on the level of Lie algebras. Let μ_S^t (resp. μ_Z^t) be the moment map with respect to the S-action (resp. Zaction), i.e., the composition of μ^t with the dual of the inclusion $\mathfrak{s} \hookrightarrow \mathfrak{k}$ (resp. $\mathfrak{z} \hookrightarrow \mathfrak{k}$). We also set $M_K^t := (\mu_1^t)^{-1}(0), M_S^t := (\mu_S^t)^{-1}(0)$ and $M_Z^t = (\mu_Z^t)^{-1}(0)$. **Proposition 3.** If $M_K^{i_0} \neq \emptyset$ and if the set $X(\mu_Z^i)$ of $Z^{\mathbb{C}}$ -semistable points is independent of t, then there are pluriharmonic K-invariant functions $h^i : X \to \mathbb{R}$ which depend continuously on t such that

$$\mu^t = \mu^{\rho^t + h^t}.$$

Proof. It follows from the definition of a moment map that it is unique up to a constant. Thus $\mu^{\rho'} = \mu^t + c^t$ where c^t is a *K*-invariant constant, i.e., $c^t \in \mathfrak{z}^*$.

The proof of the Proposition will be reduced to the case of a compact Abelian group $T \cong (S^1)^k$. In this situation we have $T^{\mathbb{C}} \cong (\mathbb{C}^*)^k$ and $\mathfrak{t} = \text{Lie } T \cong \mathbb{R}^k$. Moreover, for any $c' \in \mathfrak{t}^*$, $c' = (c'_1, \ldots, c'_k)$, the function $\tilde{h}'(z_1, \ldots, z_k) = c'_1 \log |z_1| + \cdots + c'_k \log |z_k|$ is pluriharmonic on $T^{\mathbb{C}}$ and satisfies $\mu^{\tilde{h}'} = c'$.

Let $x_0 \in M_K^{t_0}$ and set $L := K_{x_0}$. Then we have the following orthogonal decomposition of the Lie algebra \mathfrak{k} .

$$\mathfrak{k} = \mathfrak{t} \oplus \mathfrak{z}_L \oplus \mathfrak{s}$$

where $\mathfrak{z}_L := \mathfrak{z} \cap (\mathfrak{s} + \mathfrak{l}), \mathfrak{z} = \mathfrak{t} \oplus \mathfrak{z}_L$ and $\mathfrak{s} + \mathfrak{l} = \mathfrak{s} \oplus \mathfrak{z}_L$.

Note that \mathfrak{z} is the Lie algebra of the group K/S and $\mathfrak{s}+\mathfrak{l}$ is the Lie algebra of the subgroup $S \cdot L$ of K. Since K is connected K/SL = (K/S)/(SL/S) =: T is a compact connected Abelian group. Hence we have $T \cong (S^1)^k$ and Lie $T \cong (\mathfrak{k}/\mathfrak{s})/((\mathfrak{s}+\mathfrak{l})/\mathfrak{s}) \cong \mathfrak{z}/\mathfrak{z}_L = \mathfrak{t}$. Now identify $\mathfrak{k} \cong \mathfrak{k}^*$, i.e., we have the orthogonal splitting

$$\mathfrak{k}^* = \mathfrak{t}^* \oplus \mathfrak{z}_L^* \oplus \mathfrak{s}^*.$$

CLAIM. $c^t \in \mathfrak{t}^*$.

For the proof let $x_0 \in M_K^{t_0}$ be given and note that $Z^{\mathbb{C}} \cdot x_0$ is closed in $X(\mu_Z^{t_0}) = X(\mu_Z^t)$. Thus there are $x_t \in Z^{\mathbb{C}} \cdot x_0$ such that $\mu_Z^t(x_t) = 0$. In particular we have $c^t = \mu^{\rho'}(x_t)$. Now let $\xi = \tau + \lambda + \sigma$, where $\tau \in \mathfrak{t}, \lambda \in \mathfrak{z}_L$ and $\sigma \in \mathfrak{s}$. Then, since the moment map is unique for a semisimple Lie group, it follows that

$$0 = \mu_{\sigma}^{t}(x_{t}) = \mu_{\sigma}^{\rho}(x_{t}).$$

For $\lambda \in \mathfrak{z}_L$ we have $\lambda = \lambda_S + \lambda_L$ for some $\lambda_S \in \mathfrak{s}$ and $\lambda_L \in \mathfrak{l}$ and $[\lambda, \lambda_L] = 0$. Thus, using the fact that x_l is an $L^{\mathbb{C}}$ -fixed point, we have

$$\exp is\lambda \cdot x_t = \exp is\lambda_S \cdot \exp is\lambda_L \cdot x_t = \exp is\lambda_S \cdot x_t.$$

This implies

$$0 = \mu_{\lambda_s}^t(x_t)$$
$$= \mu_{\lambda_s}^{\rho^t}(x_t)$$

P. HEINZNER AND L. MIGLIORINI

$$= \left(\frac{d}{ds}\right)_{s=0} \rho^{t}(\exp is\lambda_{s} \cdot x_{t})$$
$$= \left(\frac{d}{ds}\right)_{s=0} \rho^{t}(\exp is\lambda \cdot x_{t})$$
$$= \mu_{\lambda}^{\rho^{t}}(x_{t}).$$

Since

$$\mu_{\xi}^{\rho'}(x_{t}) = \mu_{\tau}^{\rho'}(x_{t}) + \mu_{\lambda}^{\rho'}(x_{t}) + \mu_{\sigma}^{\rho'}(x_{t}) = \mu_{\tau}^{\rho'}(x_{t}),$$

this implies the claim.

Now, as we already observed, on $T^{\mathbb{C}}$ there exists a pluriharmonic function \tilde{h}^t : $T^{\mathbb{C}} \to \mathbb{R}$ such that $\mu^{\tilde{h}'} = c^t := \mu^{\rho'}(x_t) \in \mathfrak{t}^*$. Since $T^{\mathbb{C}} = (K^{\mathbb{C}}/S^{\mathbb{C}})/(S^{\mathbb{C}}L^{\mathbb{C}}/S^{\mathbb{C}}) = K^{\mathbb{C}}/S^{\mathbb{C}}L^{\mathbb{C}}$, the natural map $q : K^{\mathbb{C}}/L^{\mathbb{C}} \to T^{\mathbb{C}}$ is $K^{\mathbb{C}}$ -equivariant. Thus $h^t := \tilde{h}^t \circ q$ is a *K*-invariant pluriharmonic function on $X = K^{\mathbb{C}}/L^{\mathbb{C}}$ such that $\mu^{h'}(x_t) = c^t$. Therefore $\rho^t - h^t$ is a smooth *K*-invariant function such that $\omega^t = 2i\partial\bar{\partial}(\rho^t - h^t)$ and, since $\mu^t(x_t) = \mu^{\rho^t - h^t}(x_t) = 0$ and *X* is connected, $\mu^t = \mu^{\rho^t - h^t}$.

7. Action of a torus

Let $T \cong (S^1)^m$ be a torus and X a complex projective manifold with an algebraic action of the complexified torus $T^{\mathbb{C}} \cong (\mathbb{C}^*)^m$. Let ω^j be T-invariant Kähler forms on X with moment maps $\mu^j : X \to \mathfrak{t}$.

We say that ω^0 and ω^1 are cohomologous on the closure Y of a $T^{\mathbb{C}}$ -orbit in X if there is a $T^{\mathbb{C}}$ -equivariant projective desingularization $p: \tilde{Y} \to Y$ such that the pull back of the forms to \tilde{Y} are cohomologous, i.e., such that $p^*\omega^1 - p^*\omega^0 = 2i\partial\bar{\partial}f$ for some T-invariant smooth function $f: X \to \mathbb{R}$.

For $t \in [0, 1]$ we set $\omega^t := (1 - t)\omega^0 + t\omega^1$ and $\mu^t := (1 - t)\mu^0 + t\mu^1$. Note that μ^t is a moment map with respect to ω^t and that ω^t and ω^0 are cohomologous on the closure of every $T^{\mathbb{C}}$ -orbit in X if this is the case for ω^0 and ω^1 .

Proposition. If ω^0 and ω^1 are cohomologous on the closure of every $T^{\mathbb{C}}$ -orbit in X, then there is a constant $c^t \in \mathfrak{t}^*$ depending continuously on t such that

$$X(\mu^0) = X(\mu^t + c^t).$$

For the proof of the Proposition we consider first the case where $T \cong S^1$, i.e., we fix a one dimensional subtorus $S^1 = \{\exp z\xi; z \in \mathbb{R}\}$ where ξ is chosen to be a generator of the kernel of the one-parameter group $z \to \exp z\xi$. With respect to this S^1 -action let $X^{S^1} = \bigcup F_{\alpha}$ be the decomposition of the set of S^1 -fixed points of X into connected components. The set of these components is endowed with a partial order relation which is generated by $F_{\alpha} < F_{\beta}$. Here we set $F_{\alpha} < F_{\beta}$ if and only there is a

point $x \in X$ such that $\lim_{z\to 0} z \cdot x \in F_{\alpha}$ and $\lim_{z\to\infty} z \cdot x \in F_{\beta}$ where $z \in \mathbb{C}^* = (S^1)^{\mathbb{C}}$.

Let $\mu_{\xi}^{t}: X \to \mathbb{R}$ where $\mu_{\xi}^{t} = \langle \mu^{t}, \xi \rangle$ denote the moment map with respect to the given S^{1} -action. Since $d\mu_{\xi}^{t} = \iota_{\xi_{X}}\omega^{t}$, the moment map μ_{ξ}^{t} is constant on every F_{α} .

Lemma. If $F_{\alpha} < F_{\beta}$, then $\mu_{\xi}^{0}(F_{\alpha}) - \mu_{\xi}^{0}(F_{\beta}) = \mu_{\xi}^{t}(F_{\alpha}) - \mu_{\xi}^{t}(F_{\beta})$.

Proof. Let $x_0 \in X$ be such that $\lim_{z\to 0} z \cdot x_0 \in F_{\alpha}$ and $\lim_{z\to\infty} z \cdot x_0 \in F_{\beta}$. We may assume that the map $\mathbb{C}^* \to \mathbb{C}^* \cdot x_0$, $z \to z \cdot x_0$ is an isomorphism and extends to a holomorphic map $b : \mathbb{P}_1(\mathbb{C}) \to X$ with $b(0) = x_{\alpha}$ and $b(\infty) = x_{\beta}$.

Now since by assumption the pull back of $\eta := \omega^t - \omega^0$ to the desingularization $\mathbb{P}_1(\mathbb{C})$ of $\overline{\mathbb{C}^* \cdot x_0}$ is cohomologous to zero we have

$$0 = \int_{\overline{\mathbb{C}^* \cdot x_0}} \eta$$

= $\int_{\mathbb{C}^* \cdot x_0} \eta$
= $\int_{\mathbb{R}^+ \cdot x_0} \iota_{\xi_X} \eta$
= $\int_{\mathbb{R}^+ \cdot x_0} d(\mu_{\xi}^t - \mu_{\xi}^0)$
= $\mu_{\xi}^t(x_{\beta}) - \mu_{\xi}^0(x_{\beta}) - (\mu_{\xi}^t(x_{\alpha}) - \mu_{\xi}^0(x_{\alpha}))$

Here $\mathbb{R}^+ \cdot x_0$ denotes the $\mathbb{R}^+ := \{z \in \mathbb{R}; z > 0\}$ -orbit through x_0 .

REMARK. Implicitly we used that under the above assumption ω^0 and ω^1 are cohomologous on the normalization of $\overline{\mathbb{C}^* \cdot x_0}$.

Proof of the Proposition. The above Lemma implies that there is a constant $c^{t} \in \mathfrak{t}^{*}$ depending continuously on t such that μ^{0} and $\tilde{\mu}^{t} := \mu^{t} + c^{t}$ assume the same values on every component of the set X^{T} of T-fixed points in X. Since $\tilde{\mu}^{t}(\overline{T^{\mathbb{C}} \cdot x})$ is the convex hull of the images of $\tilde{\mu}^{t}(F_{\alpha})$ where $F_{\alpha} \cap \overline{T^{\mathbb{C}} \cdot x} \neq \emptyset$ (see [1]) it follows that $X(\mu^{0}) = \{x \in X; 0 \in \mu^{0}(\overline{T^{\mathbb{C}} \cdot x})\} = \{x \in X; 0 \in \tilde{\mu}^{t}(\overline{T^{\mathbb{C}} \cdot x})\} = X(\tilde{\mu}^{t})$.

8. Action of a semisimple group

Let *G* be a connected complex semisimple Lie group with maximal compact subgroup *K* and *X* a projective manifold with an algebraic *G*-action. As in the last section we say that two given closed forms ω^0 and ω^1 are cohomologous on the closure *Y* of a *G*-orbit in *X* if there is a *G*-equivariant desingularization $p: \tilde{Y} \to Y$ such that $p^*\omega^0 - p^*\omega^1 = 2i\partial\bar{\partial}f$ for some smooth function $f: \tilde{Y} \to \mathbb{R}$.

Proposition. Let $\omega^j : X \to \mathfrak{k}^*$, j = 0, 1, be two K-invariant Kähler forms on X which are cohomologous on every G-orbit closure and let μ^j be the unique moment map with respect to ω^j . Then

$$X(\mu^0) = X(\mu^1).$$

Proof. For $x \in (\mu^0)^{-1}(0)$ set $Y := \overline{G \cdot x}$ and let $p : \tilde{Y} \to Y$ an equivariant resolution of singularities such that $p^*\omega^1 - p^*\omega^0 = 2i\partial\bar{\partial}f$ for a smooth *K*-invariant function *f*. In particular *f* is bounded on $G \cdot x$.

Since $G \cdot x$ is closed in $X(\mu^0)$ it follows from the Exhaustion Lemma that $\mu^0 | G \cdot x = \mu^{\rho}$ for some *K*-invariant plurisubharmonic exhaustion function $\rho : G \cdot x \to \mathbb{R}$.

Therefore $\rho + f$ is likewise an exhaustion and in particular has a minimum on $G \cdot x$. Since μ^1 is unique, we have $\mu^1 = \mu^0 + \mu^f = \mu^{\rho+f}$. Thus $X(\mu^0) \subset X(\mu^1)$ and the reverse inclusion follows by symmetry.

9. Reduction to Levi factors

Let *G* be a connected complex reductive group with maximal compact subgroup *K* and let *X* be a compact connected manifold endowed with a holomorphic action of *G*. We assume that there are given *K*-invariant Kähler forms ω^j , j = 0, 1, on *X* which are cohomologous on any *G*-orbit and set

$$\omega^{t} = (1-t)\omega^{0} + t\omega^{1}, \quad t \in [0, 1].$$

Moreover, assume that there are K-equivariant moment maps

$$\mu^t: X \to \mathfrak{k}^*, \quad t \in [0, 1]$$

with respect to ω^t which depend continuously on t. We set $M_K^t := (\mu^t)^{-1}(0)$.

Let Z be the center of K and S the semisimple part of K, i.e., $K = Z \cdot S$ where $Z \cap S$ is a finite group and assume the following condition:

(*)
$$X(\mu_Z^t)$$
 is independent of $t \in [0, 1]$.

Lemma 4. Assume the condition (*) and for $x_0 \in X$ let $\Omega := G \cdot x_0$. Then, for $t \in [0, 1]$,

$$M_K^t \cap \Omega \neq \emptyset$$

is an open condition.

Proof. Let $t_0 \in [0, 1]$ be such that $M_K^{t_0} \cap \Omega \neq \emptyset$. It follows that there exists a smooth curve ρ^t of *K*-invariant smooth functions so that $\omega^t = 2i\partial \bar{\partial}\rho^t$ and $\mu^t = \mu^{\rho^t}$ on

Ω. Furthermore, since $M_K^{t_0} ∩ Ω ≠ ∅$, it follows that $ρ^{t_0}$ is an exhaustion of Ω. For *t* near t_0 the function $ρ^t$ has the same convexity properties as $ρ^{t_0}$ and is therefore likewise an exhaustion (see [8], proof of Lemma 2 in Sec. 2). The points where it has its minimum are those in $M_K^t ∩ Ω$. □

Lemma 5. Assume the condition (*) and for $x_0 \in X$ let $\Omega := G \cdot x_0$. Then, for $t \in [0, 1]$,

$$M_K^t \cap \Omega \neq \emptyset$$

is a closed condition.

Proof. We have to show that $M_K^t \cap \Omega \neq \emptyset$ for $t < t_0$ implies $M_K^{t_0} \cap \Omega \neq \emptyset$.

Since μ_K^t depends continuously on t and X is compact, it follows that $M_K^{t_0} \cap \overline{G \cdot x_0} \neq \emptyset$. Let $y_0 \in M_K^{t_0} \cap \overline{G \cdot x_0}$. If $G \cdot y_0 \neq \Omega$, then by Lemma 1 for t near t_0 we have that $M_K^t \cap \overline{G \cdot x_0} \subset G \cdot y_0$. However the intersection of M_k^t with $\overline{G \cdot x_0}$ consist of precisely one K-orbit, which would be contrary to $M_K^t \cap \Omega$ also being non-empty.

Proposition. Assume that condition (*) is fulfilled. Then $X(\mu_K^t)$ does not depend on $t \in [0, 1]$.

Proof. Let $x \in M_K^{t_0}$ and $\Omega := G \cdot x$. From the above two Lemma it follows that $M_K^t \cap \Omega \neq \emptyset$ for all t. Thus, the condition that Ω is a closed G-orbit in $X(\mu_K^t)$ is satisfied for some t if and only if this is the case for all t.

10. Proof of the Semistability Theorem

For the proof of the Semistability Theorem we need to associate to a given Kähler form one whose cohomology class lies in the real span of the ample cone. (see [15], §3). Let X be a smooth projective variety and denote by $H \in H^2(X, \mathbb{R})$ the cohomology class of a hyperplane section.

Let C_1 be the subspace of the second homology group $H_2(X, \mathbb{R})$ which is spanned by the images of closed analytic curves and C_{n-1} the subspace of $H^2(X, \mathbb{R})$ spanned by divisors, or, what is the same, Chern classes of holomorphic line bundles.

The following lemma is well known (see e.g. [15]).

Lemma 1. The pairing $C_1 \times C_{n-1} \longrightarrow \mathbb{R}$ which is induced by associating to a line bundle L and a curve C the intersection number $L \cdot C := \deg L_C$ is perfect.

Lemma 2. Let ω be a Kähler form on X. Then there exist a Kähler form $\widetilde{\omega}$ whose cohomology class $[\widetilde{\omega}]$ lies in the span of the ample cone such that

$$\int_C \widetilde{\omega} = \int_C \omega$$

holds for all one-dimensional analytic cycles C.

Proof. Consider the linear map $\lambda : C_1 \to \mathbb{R}$, $\lambda(C) = \int_C \omega$, given by $\lambda(C) = \int_C \omega$. By Lemma 1 there is a class \tilde{D} in C_{n-1} such that $\lambda(C) = \tilde{D} \cdot C$ for all 1-cycles C. Since \tilde{D} is a divisor, the cohomology class of \tilde{D} lies in the span of the ample cone. Moreover, it follows that the cohomology class of \tilde{D} contains a Kähler form $\tilde{\omega}$ ([15] §3, see also [14]).

We need the following elementary observation.

Lemma 3. Let Y be a connected smooth projective variety and assume that G has an open orbit on Y. Then there are no non-zero holomorphic p-forms on Y for $p \ge 1$.

As a consequence we obtain the following

Corollary. If α is a smooth closed (1, 1)-form on Y such that $\int_C \alpha = 0$ for every one-dimensional analytic cycle C, then $\alpha = 2i\partial\bar{\partial}f$ for some smooth function $f: Y \rightarrow \mathbb{R}$.

For the proof of the semistability Theorem we also need

Lemma 4. If the K-action on X is Hamiltonian with respect to the K-invariant Kähler form ω , then it is also Hamiltonian with respect to any other K-invariant Kähler form $\tilde{\omega}$.

Proof of the Semistability Theorem. Given a smooth *K*-invariant Kähler form ω on a smooth projective *G*-variety *X* we already know from Lemma 2 that there is a Kähler form $\tilde{\omega}$ on *X* which lies in the \mathbb{R} -span of the ample cone of *X* such that

(*)
$$\int_C \omega = \int_C \tilde{\omega}$$

on every analytic curve C in X. Since K is assumed to be connected the cohomology class of $\tilde{\omega}$ is K-invariant. Hence, after integration over the compact group K, we may assume that $\tilde{\omega}$ is K invariant and still satisfies (*).

Now it follows from Lemma 4 just above, the Proposition in Sec. 7 and the existence of a moment map in the semisimple case that there is a moment map $\mu^t : X \rightarrow \mu^t$

 \mathfrak{k}^* with respect to ω^t where $\omega^t = (1 - t)\tilde{\omega} + t\omega$ such that the μ^t depends continuously on t and such that $X(\mu_Z^t) = X(\mu_Z^0)$ for all $t \in [0, 1]$. Here Z denotes the connected component of the center of K.

Moreover (*) implies

$$(**) \qquad \qquad \int_C \omega^t = \int_C \omega.$$

Since the closure of every *G*-orbit in *X* has an equivariant algebraic desingularization, it follows from the above Corollary that the forms are cohomologous on the closure of every *G*-orbit. The statement of the theorem now follows from the Proposition in Sec. 9 and the Proposition in Sec. 5.

References

- [1] M.F. Atiyah: Convexity and commuting Hamiltonians, Bull. London Math. Soc. 14 (1982), 1– 15.
- [2] H. Azad and J.J. Loeb: *Pluri-subharmonic functions and the Kempf-Ness theorem*, Bull. London Math. Soc. 25 (1993), 162–168.
- [3] C. Chevalley: Theory of Lie groups, I, Princeton Univ. Press, Princeton, 1946.
- [4] I. Dolgachev and Y. Hu: Variation of geometric invariant theory quotients, With an appendix by Nicolas Ressayre. Inst. Hautes tudes Sci. Publ. Math. 87 (1998), 5–56.
- [5] T.T. Frankel: Fixed points and torsions on Kähler manifolds, Ann. Math. 70 (1959), 1-8.
- [6] V. Guillemin and S. Sternberg: Symplectic techniques in physics, Cambridge Univ. Press, 1984.
- [7] P. Heinzner: Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662.
- [8] P. Heinzner and A.T. Huckleberry: Kählerian potentials and convexity properties of the moment map, Invent. Math. 126 (1996), 65–84.
- P. Heinzner, A.T. Huckleberry and F. Loose: Kählerian extensions of the symplectic reduction, J. Reine Angew. Math. 455 (1994), 123–140.
- [10] P. Heinzner, L. Migliorini and M. Polito: Semistable quotients, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 233–248.
- [11] P. Heinzner and F. Loose: *Reductions of complex Hamiltonian G-spaces*, Geom. Func. Anal. 4 (1994), 288–297.
- [12] G. Kempf and L. Ness: The length of vectors in representation spaces, Lect. Notes Math. 732, Springer-Verlag, Berlin-Heidelberg-New York, 233–243, 1979.
- [13] F. Kirwan: Cohomology of quotients in symplectic and algebraic geometry, Math. Notes, 31, Princeton Univ. Press, Princeton New Jersey, 1984.
- [14] Kleiman: Toward a numerical theory of ampleness, Ann. Math. 84 (1966), 293–344.
- [15] B.G. Moishezon: On n-dimensional compact complex varieties with n algebraically independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967), 51–177.
- [16] D. Mumford, and J. Fogarty and F. Kirwan: Geometric Invariant Theory, Lecture Notes in Math. Springer 3rd. ed. Ergeb. Math. Berlin-Heidelberg-New York, 1994.
- [17] L. Ness: A stratification of the null cone via the moment map, Amer. J. Math. 106 (1983), 1326–1329.
- [18] R. Sjamaar: Holomorphic slices, symplectic reduction and multiplicities of representations, Ann. Math. 141 (1995), 87–129.
- [19] M. Thaddeus: Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), 691–723.

P. HEINZNER AND L. MIGLIORINI

P. Heinzner Fakultät für Mathematik NA 4/74 Ruhr-Universität Bochum Postfach 102148 D-44721 Bochum Germany e-mail: heinzner@cplx.ruhr-uni-bochum.de

Luca Migliorini Dipartimento di Matematica Universita' di Trento 38050 POVO(TN) ITALY e-mail: luca@alpha.science.unitn.it