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Abstract. Let X be a space of homogeneous type in the sense of Coifman
and Weiss, and let D be a collection of balls in X . The authors introduce the

localized atomic Hardy space Hp,q
D (X ) with p ∈ (0,1] and q ∈ [1, ∞] ∩ (p, ∞],

the localized Morrey-Campanato space E α,p
D (X ), and the localized Morrey-

Campanato-BLO (bounded lower oscillation) space Ẽ α,p
D (X ) with α ∈ R and

p ∈ (0, ∞), and they establish their basic properties, including Hp,q
D (X ) =

Hp,∞
D (X ) and several equivalent characterizations for E α,p

D (X ) and Ẽ α,p
D (X ). In

particular, the authors prove that when α > 0 and p ∈ [1, ∞), then Ẽ α,p
D (X ) =

E α,p
D (X ) = LipD(α; X ), and when p ∈ (0,1], then the dual space of Hp,∞

D (X ) is

E 1/p−1,1
D (X ). Let ρ be an admissible function modeled on the known auxiliary

function determined by the Schrödinger operator. Denote the spaces E α,p
D (X )

and Ẽ α,p
D (X ), respectively, by E α,p

ρ (X ) and Ẽ α,p
ρ (X ), when D is determined by

ρ. The authors then obtain the boundedness from E α,p
ρ (X ) to Ẽ α,p

ρ (X ) of the

radial and the Poisson semigroup maximal functions and the Littlewood-Paley

g-function, which are defined via kernels modeled on the semigroup generated

by the Schrödinger operator. These results apply in a wide range of settings,

for instance, the Schrödinger operator or the degenerate Schrödinger opera-
tor on R

d, or the sub-Laplace Schrödinger operator on Heisenberg groups or
connected and simply connected nilpotent Lie groups.

§1. Introduction

The theory of Morrey-Campanato spaces plays an important role in har-
monic analysis and partial differential equations (see, e.g., [1], [24], [28], [29],
[26], [17], [22], [23], [5] and their references). It is well known that the dual
space of the Hardy space Hp(Rd) with p ∈ (0,1) is the Morrey-Campanato
space E 1/p−1,1(Rd). Notice that Morrey-Campanato spaces on R

d are essen-
tially related to the Laplacian Δ, where Δ ≡

∑d
j=1

∂2

∂x2
j
.

Received September 1, 2008. Revised October 31, 2009. Accepted November 3, 2009.
First author partially supported by National Natural Science Foundation of China

grant 10871025.

© 2010 by The Editorial Board of the Nagoya Mathematical Journal

http://dx.doi.org/10.1215/00277630-2009-008


78 D. YANG, D. YANG, AND Y. ZHOU

On the other hand, there exists an increasing interest in the study of
Schrödinger operators on R

d and the sub-Laplace Schrödinger operators
on connected and simply connected nilpotent Lie groups with nonnegative
potentials satisfying the reverse Hölder inequality (see, e.g., [10], [34], [25],
[18], [8], [7], [19], [33], [16]). Let L ≡ −Δ + V be the Schrödinger opera-
tor on R

d, where the potential V is a nonnegative locally integrable func-
tion. Denote by Bq(Rd) the class of functions satisfying the reverse Hölder
inequality of order q. For V ∈ Bd/2(Rd) with d ≥ 3, Dziubański et al. ([8],
[9], [7]) studied the BMO (bounded mean oscillation)-type space BMOL(Rd)
and the Hardy space Hp

L(Rd) with p ∈ (d/(d + 1),1] and, especially, proved
that the dual space of H1

L(Rd) is BMOL(Rd). Moreover, they obtained the
boundedness on these spaces of the variants of several classical operators,
including the radial maximal function and the Littlewood-Paley g-function
associated to L. Recently, Huang and Liu [16] further proved that the dual
space of Hp

L(Rd) is certain Morrey-Campanato space. Let X be an RD
(reverse doubling)-space in [12], which means that X is a space of homo-
geneous type in the sense of Coifman and Weiss ([3], [4]) with the addi-
tional property that a reverse doubling condition holds. Let ρ be a given
admissible function modeled on the known auxiliary function determined
by V ∈ Bd/2(Rd) (see [33] or (2.3) below). Then the localized Hardy space
H1

ρ (X ), the BMO-type space BMOρ(X ), and the BLO-type space BLOρ(X )
were introduced and studied by the authors of this article in [33] and [32].
Moreover, the boundedness from BMOρ(X ) to BLOρ(X ) of several maxi-
mal operators and the Littlewood-Paley g-function, which are defined via
kernels modeled on the semigroup generated by the Schrödinger operator,
was obtained in [32].

The first purpose of this article is to investigate behaviors of these oper-
ators on localized Morrey-Campanato spaces on metric measure spaces. To
be precise, let X be a space of homogeneous type, which is not neces-
sary to be an RD-space, and let D be a collection of balls in X . In Sec-
tion 2, we first introduce the localized atomic Hardy space Hp,q

D (X ) with
p ∈ (0,1] and q ∈ [1, ∞] ∩ (p, ∞], the localized Morrey-Campanato space
E α,p

D (X ), and the localized Morrey-Campanato-BLO space Ẽ α,p
D (X ) with

α ∈ R and p ∈ (0, ∞), and we establish their basic properties, including
Hp,q

D (X ) = Hp,∞
D (X ) and several equivalent characterizations for E α,p

D (X )
and Ẽ α,p

D (X ). Especially, we prove that when α > 0 and p ∈ [1, ∞), then
Ẽ α,p

D (X ) = E α,p
D (X ) = LipD(α; X ), and when p ∈ (0,1], then the dual space of
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Hp,∞
D (X ) is E 1/p−1,1

D (X ) (see Theorem 2.1 below). Let ρ be a given admis-
sible function. Modeled on the semigroup generated by the Schrödinger
operator, in Sections 3 and 4 we introduced the radial maximal operators
T+ and P+ and Littlewood-Paley g-function g(·). Then we establish the
boundedness of T+ and P+ from E α,p

ρ (X ) to Ẽ α,p
ρ (X ) (see Theorems 3.1

and 3.2 below). Here, for the set D determined by ρ, we denote E α,p
D (X )

and Ẽ α,p
D (X ), respectively, by E α,p

ρ (X ) and Ẽ α,p
ρ (X ). Moreover, under the

assumption that g-function g(·) is bounded on Lp(X ) with p ∈ (1, ∞), we
prove that for every f ∈ E α,p

ρ (X ), [g(f)]2 ∈ Ẽ 2α,p/2
ρ (X ) with norm no more

than C‖f ‖2
E α,p

ρ (X )
, where C is a positive constant independent of f (see The-

orem 4.1 below). As a simple corollary of this, we obtain the boundedness
of g(·) from E α,p

ρ (X ) to Ẽ α,p
ρ (X ). Notice that E 0,p

ρ (X ) = BMOρ(X ) and that
Ẽ 0,p

ρ (X ) = BLOρ(X ) when p ∈ [1, ∞). Thus, the results in Sections 3 and 4
when α = 0 and X is an RD-space were already obtained in [32].

Finally, as the second purpose of this article, in Section 5 we apply results
obtained in Sections 3 and 4, respectively, to the Schrödinger operator or the
degenerate Schrödinger operator on R

d and to the sub-Laplace Schrödinger
operator on Heisenberg groups or on connected and simply connected nilpo-
tent Lie groups (see Propositions 5.1–5.5 below). The nonnegative potentials
of these Schrödinger operators are assumed to satisfy the reverse Hölder
inequality.

We now state some conventions. Throughout this article, we always use
C to denote a positive constant that is independent of the main parame-
ters involved but whose value may differ from line to line. Constants with
subscripts, such as C1 and A1, do not change in different occurrences. If
f ≤ Cg, we then write f � g or g � f , and if f � g � f , we then write f ∼ g.

For any given “normed” spaces A and B, the symbol A ⊂ B means that,
for all f ∈ A, f ∈ B and ‖f ‖B � ‖f ‖A. We also use B to denote a ball of X ,
and for λ > 0, λB denotes the ball with the same center as B but radius λ

times the radius of B. Moreover, set B� ≡ X \ B. Also, for any set E ⊂ X ,
χE denotes its characteristic function. For all f ∈ L1

loc(X ) and balls B, we
always set fB ≡ 1/(μ(B))

∫
B f(y)dμ(y).

§2. Localized Morrey-Campanato and Hardy spaces

This section is divided into two subsections. In Section 2.1, we introduce
the localized spaces E α,p

D (X ) and Ẽ α,p
D (X ) with α ∈ R and p ∈ (0, ∞); we then

establish the relations of these localized spaces with their corresponding
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global versions and prove that, for all α ∈ [0, ∞) and p ∈ (1, ∞), E α,p
D (X ) =

E α,1
D (X ) and Ẽ α,p

D (X ) = Ẽ α,1
D (X ). In Section 2.2, we introduce the localized

space Hp,q
D (X ) with p ∈ (0,1] and q ∈ [1, ∞] ∩ (p, ∞], and we show that

Hp,q
D (X ) = Hp,∞

D (X ) and that the dual space of Hp,∞
D (X ) is E 1/p−1,1

D (X ).

2.1. Localized Morrey-Campanato spaces
We first recall the notion of spaces of homogeneous type in [3] and [4].

Definition 2.1. Let (X , d) be a metric space endowed with a regular
Borel measure μ such that all balls defined by d have finite and positive
measure. For any x ∈ X and r ∈ (0, ∞), set the ball B(x, r) ≡ {y ∈ X :
d(x, y) < r}. The triple (X , d,μ) is called a space of homogeneous type if
there exists a constant A1 ∈ [1, ∞) such that for all x ∈ X and r ∈ (0, ∞),

(2.1) μ
(
B(x,2r)

)
≤ A1μ

(
B(x, r)

)
(doubling property).

From (2.1), it is not difficult to see that there exist positive constants A2

and n such that for all x ∈ X , r ∈ (0, ∞), and λ ∈ [1, ∞),

μ
(
B(x,λr)

)
≤ A2λ

nμ
(
B(x, r)

)
.

In what follows, we always set Vr(x) ≡ μ(B(x, r)) and V (x, y) ≡ μ
(
B(x,

d(x, y))
)

for all x, y ∈ X and r ∈ (0, ∞).

Definition 2.2. ([33]) A positive function ρ on X is said to be admissible
if there exist positive constants C0 and k0 such that for all x, y ∈ X ,

(2.2)
1

ρ(x)
≤ C0

1
ρ(y)

(
1 +

d(x, y)
ρ(y)

)k0

.

Obviously, if ρ is a constant function, then ρ is admissible. Moreover,
let x0 ∈ X be fixed. The function ρ(y) ≡ (1 + d(x0, y))s for all y ∈ X with
s ∈ (−∞,1) also satisfies Definition 2.2 with k0 = s/(1 − s) when s ∈ [0,1)
and with k0 = −s when s ∈ (−∞,0). Another nontrivial class of admissible
functions is given by the well-known reverse Hölder class Bq(X , d,μ), which
is written as Bq(X ) for simplicity. Recall that a nonnegative potential V is
said to be in Bq(X ) with q ∈ (1, ∞] if there exists a positive constant C such
that for all balls B of X ,( 1

|B|

∫
B

[V (y)]q dμ(y)
)1/q

≤ C

|B|

∫
B

V (y)dμ(y),
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with the usual modification made when q = ∞. It is known that, if V ∈
Bq(X ) for certain q ∈ (1, ∞] and V (y)dμ(y) is doubling then, V is an A∞(X )
weight in the sense of Muckenhoupt, and also V ∈ Bq+ε(X ) for some ε ∈
(0, ∞) (see, e.g., [26], [27]). Thus Bq(X ) =

⋃
q1>q Bq1(X ). For all V ∈ Bq(X )

with certain q ∈ (1, ∞] and for all x ∈ X , set

(2.3) ρ(x) ≡ [m(x,V )]−1 ≡ sup
{
r > 0 :

r2

μ(B(x, r))

∫
B(x,r)

V (y)dμ(y) ≤ 1
}

(see, e.g., [25], [33]). It was also proved in [33] that ρ in (2.3) is an admissible
function if q > max{1, n/2}, V ∈ Bq(X ) and V (y)dμ(y) is doubling.

We now recall the notion of Morrey-Campanato spaces and introduce the
definitions of Morrey-Campanato-BLO spaces and their localized versions.

Definition 2.3. Let α ∈ R, and let p ∈ (0, ∞).
(i) A function f ∈ Lp

loc(X ) is said to be in the Morrey-Campanato space
E α,p(X ) if

‖f ‖E α,p(X ) ≡ sup
B⊂ X

{ 1
[μ(B)]1+pα

∫
B

|f(y) − fB |p dμ(y)
}1/p

< ∞,

where the supremum is taken over all balls B ⊂ X and fB = 1/(μ(B)) ×∫
B f(z)dμ(z).

(ii) A function f ∈ Lp
loc(X ) is said to be in the Morrey-Campanato-BLO

space Ẽ α,p(X ) if

‖f ‖Ẽ α,p(X )
≡ sup

B⊂ X

{ 1
[μ(B)]1+pα

∫
B

[f(y) − essinf
B

f ]p dμ(y)
}1/p

< ∞,

where the supremum is taken over all balls B ⊂ X .
(iii) Let α ∈ (0, ∞). A function f on X is said to be in the Lipschitz space

Lip(α; X ) if there exists a nonnegative constant C such that for all x, y ∈ X
and balls B containing x and y,

|f(x) − f(y)| ≤ C[μ(B)]α.

The minimal nonnegative constant C as above is called the norm of f in
Lip(α; X ) and is denoted by ‖f ‖Lip(α;X ).

Remark 2.1. (i) The space E α,p(X ) was first introduced by Campanato
[1] when X is a bounded subset of R

d and μ is the d-dimensional Lebesgue



82 D. YANG, D. YANG, AND Y. ZHOU

measure. When α = 0, E 0,p(X ) is just the space BMOp(X ), and E 0,p(X )
with p ∈ [1, ∞) coincides with BMO1(X ) (see [4]). For simplicity, we denote
BMO1(X ) by BMO(X ).

(ii) The space Ẽ 0,p(X ) is just the space BLOp(X ). By (i) of this remark
and the fact that BLO1(X ) ⊂ BMO(X ), it is easy to see that Ẽ 0,p(X ) with
p ∈ [1, ∞) coincides with BLO1(X ). For simplicity, we denote BLO1(X ) by
BLO(X ). Recall that BLO(X ) and Ẽ α,p(X ) are not linear spaces. The space
BLO(Rd) was first introduced by Coifman and Rochberg [2], and Ẽ α,p(Rd)
was introduced in [14].

(iii) When α ∈ R and p ∈ [1, ∞), Ẽ α,p(X ) ⊂ E α,p(X ). Moreover, when α ∈
(0, ∞) and p ∈ [1, ∞), we have Ẽ α,p(X ) = E α,p(X ) = Lip(α; X ) with equiv-
alent norms. In fact, Maćıas and Segovia [20] proved that when α ∈ (0, ∞)
and p ∈ [1, ∞), E α,p(X ) = Lip(α; X ). On the other hand, for all f ∈ E α,p(X )
and balls B,∫

B
[f(y) − essinf

B
f ]p dμ(y) ≤

∫
B

esssup
x∈B

|f(y) − f(x)|p dμ(y)

� ‖f ‖p
Lip(α;X )[μ(B)]1+pα,

which implies that ‖f ‖Ẽ α,p(X )
� ‖f ‖Lip(α;X ) ∼ ‖f ‖E α,p(X ). Thus, E α,p(X ) ⊂

Ẽ α,p(X ), and the claim holds.

Definition 2.4. Let D be a collection of balls in X , let p ∈ (0, ∞), and
let α ∈ R. Denote by B any ball of X .

(i) A function f ∈ Lp
loc(X ) is said to be in the localized Morrey-Campanato

space E α,p
D (X ) if

‖f ‖E α,p
D (X ) ≡ sup

B /∈D

{ 1
[μ(B)]1+pα

∫
B

|f(y) − fB |p dμ(y)
}1/p

+ sup
B∈ D

{ 1
[μ(B)]1+pα

∫
B

|f(y)|p dμ(y)
}1/p

< ∞,

where fB = 1/(μ(B))
∫
B f(z)dμ(z).

(ii) A function f ∈ Lp
loc(X ) is said to be in the localized Morrey-Campanato-

BLO space Ẽ α,p
D (X ) if

‖f ‖Ẽ α,p
D (X )

≡ sup
B /∈ D

{ 1
[μ(B)]1+pα

∫
B

[f(y) − essinf
B

f ]p dμ(y)
}1/p
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+ sup
B∈ D

{ 1
[μ(B)]1+pα

∫
B

|f(y)|p dμ(y)
}1/p

< ∞.

(iii) Let α ∈ (0, ∞). A function f on X is said to be in the localized
Lipschitz space LipD(α; X ) if there exists a nonnegative constant C such
that for all x, y ∈ X and balls B containing x and y with B /∈ D,

|f(x) − f(y)| ≤ C[μ(B)]α,

and that, for all balls B ∈ D, ‖f ‖L∞(B) ≤ C[μ(B)]α. The minimal nonneg-
ative constant C as above is called the norm of f in LipD(α; X ) and is
denoted by ‖f ‖LipD(α;X ).

Remark 2.2. (i) When α = 0 and p ∈ [1, ∞), we denote E 0,p
D (X ) by

BMOp
D(X ), and we denote BMO1

D(X ) by BMOD(X ). We also denote Ẽ 0,p
D (X )

by BLOp
D(X ), and we denote Ẽ 0,1

D (X ) by BLOD(X ). The localized BLO
space was first introduced in [15] in the setting of R

d endowed with a non-
doubling measure.

(ii) If X is the Euclidean space R
d and D ≡ {B(x, r) : r ≥ 1, x ∈ R

d}, then
BMOD(X ) is just the localized BMO space of Goldberg [11], and LipD(α; X )
with α ∈ (0,1) is just the inhomogeneous Lipschitz space (see also [11]).

(iii) For all α ∈ R and p ∈ (0, ∞), Ẽ α,p
D (X ) ⊂ E α,p

D (X ) ⊂ E α,p(X ). For α ∈
(0, ∞), LipD(α; X ) ⊂ Lip(α; X ).

(iv) Let ρ be an admissible function, and let Dρ ≡ {B(x, r) : x ∈ X , r ≥
ρ(x)}. In this case, we denote E α,p

Dρ
(X ), Ẽ α,p

Dρ
(X ), LipDρ

(α; X ), BMODρ(X ),

and BLODρ(X ), respectively, by E α,p
ρ (X ), Ẽ α,p

ρ (X ), Lipρ(α; X ), BMOρ(X ),
and BLOρ(X ). In [32], the spaces BMOρ(X ) and BLOρ(X ) when X is an
RD-space were introduced.

The following results follow from Definitions 2.3 and 2.4.

Lemma 2.1. Let D be a collection of balls in X , p ∈ [1, ∞) and α ∈ R.
(i) Then f ∈ E α,p

D (X ) if and only if f ∈ E α,p(X ) and supB∈ D |fB | ×
[μ(B)]−α < ∞; moreover,

‖f ‖E α,p
D (X ) ∼ ‖f ‖E α,p(X ) + sup

B∈ D
|fB |[μ(B)]−α.

(ii) Then f ∈ Ẽ α,p
D (X ) if and only if f ∈ Ẽ α,p(X ) and supB∈ D |fB | ×

[μ(B)]−α < ∞; moreover,

‖f ‖Ẽ α,p
D (X )

∼ ‖f ‖Ẽ α,p(X )
+ sup

B∈ D
|fB |[μ(B)]−α.
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(iii) Let α ∈ (0, ∞). Then f ∈ LipD(α; X ) if and only if f ∈ Lip(α; X ) and
supB∈ D[μ(B)]−α ‖f ‖L∞(B) < ∞ or supB∈ D |fB |[μ(B)]−α < ∞; moreover,

‖f ‖LipD(α;X ) ∼ ‖f ‖Lip(α;X ) + sup
B∈ D

‖f ‖L∞(B)[μ(B)]−α

∼ ‖f ‖Lip(α;X ) + sup
B∈ D

|fB |[μ(B)]−α.

Proof. We first prove (i). If f ∈ E α,p(X ) and supB∈ D |fB |[μ(B)]−α < ∞,
from Definitions 2.3 and 2.4, it follows that

(2.4) ‖f ‖E α,p
D (X ) ≤ 2‖f ‖E α,p(X ) + sup

B∈ D
|fB |[μ(B)]−α.

Conversely, if f ∈ E α,p
D (X ), then by the Hölder inequality we have

‖f ‖E α,p(X ) + sup
B∈ D

|fB |[μ(B)]−α ≤ ‖f ‖E α,p
D (X ) + 2 sup

B∈ D
|fB |[μ(B)]−α

≤ 3‖f ‖E α,p
D (X ),

which together with (2.4) gives (i).
The proofs of (ii) and (iii) are similar. We omit the details, which com-

pletes the proof of Lemma 2.1.

Lemma 2.2. Let D be a collection of balls in X , and let p ∈ [1, ∞).
(i) Then BMOD(X ) = BMOp

D(X ) and BLOD(X ) = BLOp
D(X ) with equiv-

alent norms.
(ii) When α ∈ (0, ∞), Ẽ α,p

D (X ) = E α,p
D (X ) = LipD(α; X ) with equivalent

norms.

Proof. To prove (i), we first assume that f ∈ BMOp
D(X ). Then by the

Hölder inequality, we have f ∈ BMOD(X ) and ‖f ‖BMOD(X ) ≤ ‖f ‖BMOp
D(X ).

Conversely, if f ∈ BMOD(X ), then from Lemma 2.1(i), with α = 0, and
Remarks 2.1(i) and 2.2(iii), it follows that

‖f ‖BMOp
D(X ) � ‖f ‖BMOp(X ) + sup

B∈ D
|fB | � ‖f ‖BMOD(X ),

which implies that f ∈ BMOp
D(X ) and ‖f ‖BMOp

D(X ) � ‖f ‖BMOD(X ). Thus
BMOD(X ) = BMOp

D(X ) with equivalent norms. The proof for BLOD(X ) =
BLOp

D(X ) is similar, and we omit the details.
To prove (ii), by Lemma 2.1 and Remark 2.1(iii), we obtain

‖f ‖E α,p
D (X ) ∼ ‖f ‖E α,p(X ) + sup

B∈ D
|fB |[μ(B)]−α
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∼ ‖f ‖Ẽ α,p(X )
+ sup

B∈ D
|fB |[μ(B)]−α ∼ ‖f ‖Ẽ α,p

D (X )

∼ ‖f ‖Lip(α;X ) + sup
B∈ D

|fB |[μ(B)]−α ∼ ‖f ‖LipD(α;X ),

which implies (ii). This finishes the proof of Lemma 2.2.

The space X is said to have the reverse doubling property if there exist
constants κ ∈ (0, n] and A3 ∈ (0,1] such that, for all x ∈ X , r ∈ (0,diam(X )/2],
and λ ∈ [1,diam(X )/(2r)],

(2.5) A3λ
κμ

(
B(x, r)

)
≤ μ

(
B(x,λr)

)
.

If (X , d,μ) satisfies conditions (2.1) and (2.5), then (X , d,μ) is called an
RD-space (see [12]).

Lemma 2.3. Let X be an RD-space, let ρ be an admissible function on
X , and let Dρ be as in Remark 2.2(iv). If α ∈ (−∞,0) and p ∈ [1, ∞), then

‖f ‖E α,p
ρ (X ) ∼ sup

B⊂ X

{ 1
[μ(B)]1+αp

∫
B

|f(x)|p dμ(x)
}1/p

.

Proof. An application of the Hölder inequality leads to

‖f ‖E α,p
ρ (X ) � sup

B⊂ X

{ 1
[μ(B)]1+αp

∫
B

|f(x)|p dμ(x)
}1/p

.

Conversely, if B ∈ Dρ, then by Definition 2.4(i) we have{ 1
[μ(B)]1+αp

∫
B

|f(x)|p dμ(x)
}1/p

≤ ‖f ‖E α,p
ρ (X ).

Now we assume that B ≡ B(x0, r) /∈ Dρ. Let J0 ∈ N such that 2J0−1r <

ρ(x0) ≤ 2J0r. From α ∈ (−∞,0), (2.1), (2.5), and the Hölder inequality, it
follows that { 1

[μ(B)]1+αp

∫
B

|f(x)|p dμ(x)
}1/p

≤ 1
[μ(B)]α

{[ 1
μ(B)

∫
B

|f(x) − fB |p dμ(x)
]1/p

+
J0∑

j=1

|f2j−1B − f2jB | + |f2J0B |
}
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�
(
1 +

J0∑
j=1

2jκα
)

‖f ‖E α,p
ρ (X ) � ‖f ‖E α,p

ρ (X ),

which completes the proof of Lemma 2.3.

Remark 2.3. Let X be an RD-space, and let p ∈ [1, ∞).
(i) Then Lemma 2.3 implies that E α,p

ρ (X ) with α ∈ (−1/p,0) coincides
with the so-called Morrey space (see, e.g., [24], [29] for the case X = R

d).
(ii) Let α < 0. For all f ≥ 0, f ∈ E α,p

D (X ) if and only if f ∈ Ẽ α,p
D (X ) and,

moreover, ‖f ‖Ẽ α,p
D (X )

∼ ‖f ‖E α,p
D (X ). In fact, by Remark 2.2(iii), we need to

show only that for all f ≥ 0, f ∈ E α,p
D (X ) implies that f ∈ Ẽ α,p

D (X ) and that
‖f ‖Ẽ α,p

D (X )
� ‖f ‖E α,p

D (X ). By Lemma 2.3, α < 0, and f ≥ 0, we see that, for
all balls B /∈ D,∫

B
[f(x) − essinf

B
f ]p dμ(x) ≤

∫
B

[f(x)]p dμ(x) � [μ(B)]1+αp‖f ‖p
E α,p

D (X )
,

which implies the claim.
(iii) If X is not an RD-space, it is not clear if Lemma 2.3 still holds.

We also have the following conclusions, which are used in Sections 3 and 4.

Lemma 2.4. Let α ∈ R, let p ∈ [1, ∞), and let ρ be an admissible function
on X and Dρ as in Remark 2.2(iv). Then there exists a positive constant C

such that for all f ∈ E α,p
ρ (X ),

(i) for all balls B ≡ B(x0, r) /∈ Dρ,

1
μ(B)

∫
B

|f(z)| dμ(z) ≤
{

C
(ρ(x0)

r

)αn[μ(B)]α‖f ‖E α,p
ρ (X ), α > 0,

C
(
1 + log ρ(x0)

r

)
[μ(B)]α‖f ‖E α,p

ρ (X ), α ≤ 0;

(ii) for all x ∈ X and 0 < r1 < r2,

|fB(x,r1) − fB(x,r2)| ≤
{

C
(

r2
r1

)αn[μ(B(x, r1))]α‖f ‖E α,p
ρ (X ), α > 0,

C
(
1 + log r2

r1

)
[μ(B(x, r1))]α‖f ‖E α,p

ρ (X ), α ≤ 0.

Proof. If (ii) holds, then by the Hölder inequality, we see that for all
f ∈ E α,p

ρ (X ) and B /∈ Dρ,

1
μ(B)

∫
B

|f(x)| dμ(x) ≤ 1
μ(B)

∫
B

|f(x) − fB | dμ(x) + |fB − fB(x0,ρ(x0))|
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+
1

μ(B(x0, ρ(x0)))

∫
B(x0,ρ(x0))

|f(x)| dμ(x)

�
{
[μ(B)]α + [μ(B(x0, ρ(x0)))]α

}
‖f ‖E α,p

ρ (X )

+ |fB − fB(x0,ρ(x0))|.

Then (i) follows from this fact together with (2.1), r < ρ(x0) (because B /∈
Dρ), and (ii).

To prove (ii), let j0 be the smallest integer such that 2j0r1 ≥ r2. Another
application of (2.1) leads to

|fB(x,2j0r1) − fB(x,r2)| � 1
μ(B(x,2j0r1))

∫
B(x,2j0r1)

|f − fB(x,2j0r1)| dμ(z)

�
[
μ
(
B(x,2j0r1)

)]α‖f ‖E α,p
ρ (X ).

Similarly, we see that for all j ∈ N ∪ {0},

|fB(x,2jr1) − fB(x,2j+1r1)| �
[
μ
(
B(x,2j+1r1)

)]α‖f ‖E α,p
ρ (X ).

Then we have

|fB(x,r1) − fB(x,r2)| �
j0−1∑
j=0

|fB(x,2jr1) − fB(x,2j+1r1)| + |fB(x,2j0r1) − fB(x,r2)|

�
j0−1∑
j=0

[
μ
(
B(x,2j+1r1)

)]α‖f ‖E α,p
ρ (X ).

If α ∈ (−∞,0], from the choice of j0, we deduce that

|fB(x,r1) − fB(x,r2)| �
(
1 + log

r2

r1

)[
μ
(
B(x, r1)

)]α‖f ‖E α,p
ρ (X );

if α ∈ (0, ∞), by (2.1), we obtain

|fB(x,r1) − fB(x,r2)| �
(r2

r1

)αn[
μ
(
B(x, r1)

)]α‖f ‖E α,p
ρ (X ).

This finishes the proof of Lemma 2.4.
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2.2. Localized Hardy spaces
We begin with the notion of atoms.

Definition 2.5. Let D be a collection of balls in X , let p ∈ (0,1], and
let q ∈ [1, ∞] ∩ (p, ∞].

(i) A function a supported in a ball B ⊂ X is called a (p, q)-atom if∫
X a(x)dμ(x) = 0 and ‖a‖Lq(X ) ≤ [μ(B)]1/q−1/p (see [4]).
(ii) A function b supported in a ball B ∈ D is called a (p, q)D-atom if

‖b‖Lq(X ) ≤ [μ(B)]1/q−1/p.

Remark 2.4. (i) Every (1, q)-atom or (1, q)D-atom a belongs to L1(X )
with ‖a‖L1(X ) ≤ 1.

(ii) Let p ∈ (0,1). If a is a (p, q)-atom, then a ∈ (Lip(1/p − 1; X ))∗ ⊂
(LipD(1/p − 1; X ))∗ and ‖a‖(LipD(1/p−1;X ))∗ ≤ ‖a‖(Lip(1/p−1;X ))∗ ≤ 1; if b is a
(p, q)D-atom, then b ∈ (LipD(1/p − 1; X ))∗ and ‖b‖(LipD(1/p−1;X ))∗ ≤ 1.

Definition 2.6. ([4]) Let p ∈ (0,1], and let q ∈ [1, ∞] ∩ (p, ∞]. A function
f ∈ L1(X ) or a linear functional f ∈ (Lip(1/p − 1; X ))∗ when p ∈ (0,1) is said
to be in the Hardy space H1,q(X ) when p = 1 or Hp,q(X ) when p ∈ (0,1) if
there exist (p, q)-atoms {aj }∞

j=1 and {λj }∞
j=1 ⊂ C such that f =

∑
j∈N

λjaj ,

which converges in L1(X ) when p = 1 or in (Lip(1/p − 1; X ))∗ when p ∈
(0,1), and

∑
j∈N

|λj |p < ∞. Moreover, the norm of f in Hp,q(X ) with p ∈
(0,1] is defined by

‖f ‖Hp,q(X ) ≡ inf
{(∑

j∈N

|λj |p
)1/p}

,

where the infimum is taken over all the above decompositions of f .

Remark 2.5. Coifman and Weiss [4] proved that Hp,q(X ) and Hp,∞(X )
coincide with equivalent norms for all p ∈ (0,1] and q ∈ [1, ∞) ∩ (p, ∞). Thus,
for all p, q in this range, we denote Hp,q(X ) simply by Hp(X ). We remark
that Coifman and Weiss [4] also proved that the dual space of Hp(X ) is
BMO(X ) when p = 1 or Lip(1/p − 1; X ) when p ∈ (0,1).

Definition 2.7. Let D be a collection of balls in X , let p ∈ (0,1], and
let q ∈ [1, ∞] ∩ (p, ∞]. A function f ∈ L1(X ) or a linear functional f ∈
(LipD(1/p − 1; X ))∗ when p ∈ (0,1) is said to be in H1,q

D (X ) when p = 1
or Hp,q

D (X ) when p ∈ (0,1) if there exist {λj }j∈N, {νk }k∈N ⊂ C, (p, q)-atoms
{aj }j∈N, and (p, q)D-atoms {bk }k∈N such that

f =
∑
j∈N

λjaj +
∑
k∈N

νkbk,
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which converges in L1(X ) when p = 1 or in (LipD(1/p − 1; X ))∗ when p ∈
(0,1], and

∑
j∈N

|λj |p +
∑∞

k=1 |νk |p < ∞. Moreover, the norm of f in Hp,q
D (X )

is defined by

‖f ‖Hp,q
D (X ) ≡ inf

{(∑
j∈N

|λj |p +
∑
k∈N

|νk |p
)1/p}

,

where the infimum is taken over all the above decompositions of f .

Remark 2.6. Let p ∈ (0,1], and let q ∈ [1, ∞] ∩ (p, ∞]. It is easy to see
that Hp,q(X ) ⊂ Hp,q

D (X ).

Using Remark 2.6, we have the following conclusion.

Lemma 2.5. Let D be a collection of balls in X , let p ∈ (0,1], and let
q ∈ [1, ∞) ∩ (p, ∞). Then Hp,q

D (X ) = Hp,∞
D (X ) with equivalent norms.

Proof. Notice that (p, ∞)-atoms and (p, ∞)D-atoms are (p, q)-atoms and
(p, q)D-atoms, respectively. Then from Definition 2.7, it follows that
Hp,∞

D (X ) ⊂ Hp,q
D (X ).

Conversely, let f ∈ Hp,q
D (X ). Then by Definition 2.7, there exist {λj }j∈N,

{νk }k∈N ⊂ C, (p, q)-atoms {aj }j∈N, and (p, q)D-atoms {bk }k∈N such that

f =
∑
j∈N

λjaj +
∑
k∈N

νkbk,

which converges in L1(X ) when p = 1 or in (LipD(1/p − 1; X ))∗ when p ∈
(0,1], and

(2.6)
∑
j∈N

|λj |p +
∑
k∈N

|νk |p � ‖f ‖p
Hp,q

D (X )
.

For k ∈ N, assume that supp bk ⊂ Bk ∈ D, and let ck ≡ [bk − (bk)Bk
χBk

]/2.
Then it follows from Definition 2.5 that there exists a positive constant C̃

such that {C̃ck }k∈N are (p, q)-atoms, {(bk)Bk
χBk

}k∈N are (p, ∞)D-atoms,
and bk = 2ck + (bk)Bk

χBk
. Moreover,

f =
∑
j∈N

λjaj +
∑
k∈N

2νkck +
∑
k∈N

νk(bk)Bk
χBk

,

which converges in L1(X ) when p = 1 or in (LipD(1/p − 1; X ))∗ when p ∈
(0,1). By Remark 2.4(ii) and (2.6), we see that

∑
j∈N

λjaj +2
∑

k∈N
νkck also
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converges in L1(X ) when p = 1 or in (Lip(1/p − 1; X ))∗ when p ∈ (0,1). Let
g ≡

∑
j∈N

λjaj +2
∑

k∈N
νkck. Then Definition 2.6 together with Remark 2.5

implies that g ∈ Hp,q(X ) = Hp,∞(X ). From this, Remark 2.6, and (2.6), we
deduce that g ∈ Hp,∞(X ) ⊂ Hp,∞

D (X ) and that

‖g‖Hp,∞
D (X ) � ‖g‖Hp,∞(X ) � ‖g‖Hp,q(X ) � ‖f ‖Hp,q

D (X ),

which further implies that f ∈ Hp,∞
D (X ) and, by (2.6), that

‖f ‖Hp,∞
D (X ) � ‖g‖Hp,∞

D (X ) +
∥∥∥∑

k∈N

νk(bk)Bk
χBk

∥∥∥
Hp,∞

D (X )

� ‖f ‖Hp,q
D (X ) +

{∑
k∈N

|νk |p
}1/p

� ‖f ‖Hp,q
D (X ).

This finishes the proof of Lemma 2.5.

Remark 2.7. (i) Let D be a collection of balls in X , let p ∈ (0,1], and let
q ∈ [1, ∞] ∩ (p, ∞]. In what follows, based on Lemma 2.5, we denote Hp,q

D (X )
simply by Hp

D(X ).
(ii) Let L∞

b (X ) be the set of all functions of L∞(X ) with bounded sup-
port. Then from Definitions 2.6 and 2.7, it follows that L∞

b (X ) ∩ Hp
D(X ) is

dense in Hp
D(X ) and that L∞

b (X ) ∩ Hp(X ) is dense in Hp(X ).

Theorem 2.1. Let D be a collection of balls in X , and let p ∈ (0,1]. Then
E 1/p−1,1

D (X ) = (Hp
D(X ))∗.

Proof. We first prove E 1/p−1,1
D (X ) ⊂ (Hp,∞

D (X ))∗ for p ∈ (0,1]. Let f ∈
E 1/p−1,1

D (X ). For all (p, ∞)-atoms a supported in B /∈ D, by Definition 2.5(i)
we have∣∣∣∫

X
f(x)a(x)dμ(x)

∣∣∣ =
∣∣∣∫

X
[f(x) − fB]a(x)dμ(x)

∣∣∣
≤ 1

[μ(B)]1/p

∫
B

|f(x) − fB | dμ(x) ≤ ‖f ‖E 1/p−1,1
D (X )

.

For all (p, ∞)D-atoms b supported in B ∈ D, we also obtain∣∣∣∫
X

f(x)b(x)dμ(x)
∣∣∣ ≤ 1

[μ(B)]1/p

∫
B

|f(x)| dμ(x) ≤ ‖f ‖E 1/p−1,1
D (X )

.
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Let N ∈ N, and let fN ≡ max{min{f,N }, −N }. We claim that fN ∈
E 1/p−1,1

D (X ) and that

(2.7) ‖fN ‖E 1/p−1,1
D (X )

≤ 9
4

‖f ‖E 1/p−1,1
D (X )

.

In fact, if B ∈ D, then

1
[μ(B)]1/p

∫
B

|fN (x)| dμ(x) ≤ 1
[μ(B)]1/p

∫
B

|f(x)| dμ(x) ≤ ‖f ‖E 1/p−1,1
D (X )

.

Let B /∈ D. For all f , h ∈ E 1/p−1,1
D (X ) and g ≡ max{f,h}, we have g =

(f + h + |f − h|)/2 and

1
[μ(B)]1/p

∫
B

|g(x) − gB | dμ(x)

≤ 1
2[μ(B)]1/p

∫
B

|f(x) − fB | dμ(x) +
1

2[μ(B)]1/p

∫
B

|h(x) − hB | dμ(x)

+
1

[μ(B)]1/p

∫
B

|(f − h)(x) − (f − h)B | dμ(x)

≤ 3
2
(‖f ‖E 1/p−1,1(X ) + ‖h‖E 1/p−1,1(X )).

Similarly, for all B /∈ D, f , h ∈ E 1/p−1,1
D (X ), and g̃ ≡ min{f,h}, we have

1
[μ(B)]1/p

∫
B

|g̃(x) − g̃B | dμ(x) ≤ 3
2
(‖f ‖E 1/p−1,1(X ) + ‖h‖E 1/p−1,1(X )).

If h ≡ N or h ≡ −N , then ‖h‖E 1/p−1,1(X ) = 0. By these facts and the defini-
tion of fN , we have that for all B /∈ D,

1
[μ(B)]1/p

∫
B

|fN (x) − (fN )B | dμ(x) ≤ 9
4

‖f ‖E 1/p−1,1
D (X )

,

which implies the claim.
For all g ∈ L∞

b (X ) ∩ Hp,∞
D (X ), since fg ∈ L1(X ), we define 	(g) ≡∫

X f(x)g(x)dμ(x) and 	N (g) ≡
∫

X fN (x)g(x)dμ(x). Moreover, there exist
{λj }, {νk }k∈N ⊂ C, (p, ∞)-atoms {aj }j∈N, and (p, ∞)D-atoms {bk }k∈N such
that

g =
∑
j∈N

λjaj +
∑
k∈N

νkbk,
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which converges in L1(X ) when p = 1 or in (LipD(1/p − 1; X ))∗ when p ∈
(0,1), and

(2.8)
∑
j∈N

|λj |p +
∑
k∈N

|νk |p ≤ 2‖g‖p
Hp,∞

D (X )
.

By fN ∈ E 1/p−1,1
D (X ) and g ∈ Hp,∞

D (X ), we have

	N (g) =
∑
j∈N

∫
X

fN (x)λjaj(x)dμ(x) +
∑
k∈N

∫
X

fN (x)νkbk(x)dμ(x),

from which, together with (2.7), (2.8), and Remark 2.4(ii), it follows that

|	N (g)| � ‖fN ‖E 1/p−1,1
D (X )

{∑
j∈N

|λj | +
∑
k∈N

|νk |
}

� ‖f ‖E 1/p−1,1
D (X )

‖g‖Hp,∞
D (X ).

By this and the Lebesgue dominated theorem, we have

|	(g)| = lim
N →∞

∣∣∣∫
X

fN (x)g(x)dμ(x)
∣∣∣ � ‖f ‖E 1/p−1,1

D (X )
‖g‖Hp,∞

D (X ),

which together with the density of L∞
b (X ) ∩ Hp,∞

D (X ) in Hp,∞
D (X ) (see

Remark 2.7(ii)) implies that 	 ∈ (Hp,∞
D (X ))∗ and that ‖	‖(Hp,∞

D (X ))∗ �
‖f ‖E 1/p−1,1

D (X )
. Thus,

(2.9) E 1/p−1,1
D (X ) ⊂

(
Hp

D(X )
)∗

.

We now prove that (Hp,2
D (X ))∗ ⊂ E 1/p−1,2

D (X ). Let 	 ∈ (Hp,2
D (X ))∗. Since

Hp,2(X ) ⊂ Hp,2
D (X ), then 	 ∈ (Hp,2(X ))∗ = E 1/p−1,2(X ) (see Remarks 2.5,

2.1(i), and 2.1(iii)). Hence there exists f̃ ∈ E 1/p−1,2(X ) such that, for all
constants C and g ∈ L2(X ) satisfying that

∫
X g(x)dμ(x) = 0 and supp(g) is

bounded,

(2.10) 	(g) =
∫

X
f̃(x)g(x)dμ(x) =

∫
X

(
f̃(x) + C

)
g(x)dμ(x),

and ‖f̃ ‖E 1/p−1,2(X ) � ‖	‖(Hp,2(X ))∗ � ‖	‖
(Hp,2

D (X ))∗ . We then need to choose a

suitable constant C such that f ≡ f̃ + C ∈ E 1/p−1,2
D (X ).
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Observe that for all constants C̃, f̃ + C̃ ∈ E 1/p−1,2(X ). Then by Lemma
2.1(i), to show f ∈ E 1/p−1,2

D (X ) and ‖f ‖E 1/p−1,2
D (X )

� ‖	‖
(Hp,2

D (X ))∗ , it suffices
to show that for all B ∈ D,

(2.11) |fB |[μ(B)]1−1/p � ‖	‖
(Hp,2

D (X ))∗ .

To this end, for any B ∈ D, let L2(B) ≡ {f ∈ L2(X ) : supp(f) ⊂ B}, and
let L2

0(B) ≡ {f ∈ L2(B) :
∫

X f(x)dμ(x) = 0}. Then for any g ∈ L2(B), the
function g[μ(B)]1/2−1/p‖g‖−1

L2(B)
is a (p,2)D-atom supported in B, and

|	(g)| ≤ ‖	‖
(Hp,2

D (X ))∗ ‖g‖
Hp,2

D (X )
≤ [μ(B)]1/p−1/2‖	‖

(Hp,2
D (X ))∗ ‖g‖L2(B),

which implies that 	 ∈ (L2(B))∗ = L2(B). By this together with the Riesz
representation theorem, there exists a function fB ∈ L2(B) such that for all
g ∈ L2(B), 	(g) =

∫
B fB(x)g(x)dμ(x) and

(2.12) ‖fB ‖L2(B) ≤ [μ(B)]1/p−1/2‖	‖
(Hp,2

D (X ))∗ .

Moreover, from this fact and (2.10), we deduce that for all g ∈ L2
0(B),∫

X [fB(x) − f̃(x)]g(x)dμ(x) = 0, which further implies that fB − f̃ = 0 in
[L2

0(B)]∗. Recall that [L2
0(B)]∗ = L2(B)/C (the space of functions f ∈ L2(B)

modulo constant functions) and f = 0 in L2(B)/C if and only if f is a con-
stant (see [4, page 633]). Using these facts, we have that fB − f̃ is a constant
CB .

Now it suffices to verify that, for all balls B,S ∈ D, we have CB = CS .
Observe that g ≡ {[μ((1/2)B)]−1χ(1/2)B − [μ((1/2)S)]−1χ(1/2)S } is a multiple
of certain (p,2)-atom and that [μ((1/2)B)]−1χ(1/2)B and [μ((1/2)S)]−1χ(1/2)S

are multiplies of (p,2)D-atoms. Therefore, from the fact that fB − CB = f̃ =
fS − CS and (2.10), it follows that

	(g) = 	

([
μ
(1

2
B

)]−1
χ(1/2)B

)
− 	

([
μ
(1

2
S

)]−1
χ(1/2)S

)
=

1
μ(1

2B)

∫
B

fB(x)χ(1/2)B(x)dμ(x) − 1
μ(1

2S)

∫
S

fS(x)χ(1/2)S(x)dμ(x)

=
∫

B∪S
f̃(x)g(x)dμ(x) + CB − CS = 	(g) + CB − CS ,

which implies that CB = CS . Denote the constant as above by C̃, and define
f ≡ f̃ + C̃. Then by this, (2.12), and the Hölder inequality, we have that for
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all B ∈ D,

|fB |[μ(B)]1−1/p = |(fB)B |[μ(B)]1−1/p � ‖	‖
(Hp,2

D (X ))∗ .

This implies (2.11), from which and from Lemma 2.1(i) we further deduce
that f ∈ E 1/p−1,2

D (X ) and that ‖f ‖E 1/p−1,2
D (X )

� ‖	‖
(Hp,2

D (X ))∗ . Thus, (Hp
D(X ))∗ ⊂

E 1/p−1,2
D (X ), which together with Lemma 2.2 and (2.9) then completes the

proof of Theorem 2.1.

§3. Boundedness of the radial and the Poisson maximal functions

This section is devoted to the boundedness of the radial and the Poisson
maximal functions from E α,p

ρ (X ) to Ẽ α,p
ρ (X ). We start with the notion of

the radial maximal function.

Definition 3.1. Let ρ be an admissible function on X , and let {Tt}t>0 be
a family of linear integral operators on L2(X ). Moreover, assume that there
exist positive constants C, γ, δ1, δ2, and β satisfying that for all t ∈ (0, ∞)
and x,x′, y ∈ X with d(x,x′) ≤ t/2,

(3.1) |Tt(x, y)| ≤ C
1

Vt(x) + V (x, y)

( t

t + d(x, y)

)γ( ρ(x)
t + ρ(x)

)δ1
,

(3.2) |Tt(x, y) − Tt(x′, y)| ≤ C
1

Vt(x) + V (x, y)

( t

t + d(x, y)

)γ(d(x,x′)
t

)β
,

(3.3) |1 − Tt(1)(x)| ≤ C
( t

t + ρ(x)

)δ2
.

Let {Tt}t>0 be as in Definition 3.1. For all f ∈ L1
loc(X ), the radial maximal

function T+ is defined by

T+(f) ≡ sup
t>0

|Tt(f)|.

Then we have the following result.

Theorem 3.1. Let α ∈ (−∞, γ/n) ∩ (−∞,min{β/(2n), δ1/n, δ2/(2n)}],
let p ∈ (1, ∞), and let ρ be an admissible function. If {Tt}t>0 satisfies (3.1)–
(3.3), then there exists a positive constant C such that for all f ∈ E α,p

ρ (X ),
T+(f) ∈ Ẽ α,p

ρ (X ) and

‖T+(f)‖Ẽ α,p
ρ (X )

≤ C‖f ‖E α,p
ρ (X ).
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Proof. We consider only the case that α ∈ (0, γ/n) ∩ (0,min{β/(2n), δ1/n,

δ2/(2n)}]; the proof for α ∈ (−∞,0] is similar but easier. By the homo-
geneity of ‖ · ‖E α,p

ρ (X ) and ‖ · ‖Ẽ α,p
ρ (X )

, we assume that f ∈ E α,p
ρ (X ) and

‖f ‖E α,p
ρ (X ) = 1.

Let Dρ be as in Remark 2.2(iv), and let B ≡ B(x0, r) ∈ Dρ. Observe that
T+(f) � HL(f), where for all x ∈ X and f ∈ L1

loc(X ), HL(f) denotes the
Hardy-Littlewood maximal function of f defined by

HL(f)(x) ≡ sup
B	x

1
μ(B)

∫
B

|f(y)| dμ(y).

Recall that HL is bounded on Lp(X ) for p ∈ (1, ∞]. Therefore T+ is bounded
on Lp(X ) for all p ∈ (1, ∞]. By this fact together with (2.1), we see that

(3.4)
∫

B
[T+(fχ2B)(x)]p dμ(x) �

∫
2B

|f(x)|p dμ(x) � [μ(B)]1+αp.

If t ∈ (0, r), then by (3.1), (2.1), the Hölder inequality, and γ > αn, we have

|Tt(fχ(2B)�)(x)|(3.5)

�
∫

(2B)�

1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ
|f(y)| dμ(y)

�
∞∑

j=1

2−jγ
( 1

μ(2j+1B)

∫
2j+1B

|f(y)|p dμ(y)
)1/p

�
∞∑

j=1

2−jγ [μ(2j+1B)]α � [μ(B)]α
∞∑

j=1

2−j(γ−αn)

� [μ(B)]α.

Let t ∈ [r, ∞). By (2.2), we see that for all a ∈ (0, ∞), there exists a constant
C̃a ∈ [1, ∞) such that for all x, y ∈ X with d(x, y) ≤ aρ(x),

(3.6) ρ(y)/C̃a ≤ ρ(x) ≤ C̃aρ(y).

Recall that B ∈ Dρ, which is equivalent to that r ≥ ρ(x0). These facts imply
that for all x ∈ B, ρ(x) � r. By this together with (3.1), (2.1), the Hölder
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inequality, and the facts that γ > αn and δ1 ≥ αn, we have that for all
t ∈ [r, ∞) and x ∈ B,

|Tt(fχ(2B)�)(x)|

�
∫

(2B)�

|f(y)|
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ( ρ(x)
t + ρ(x)

)δ1
dμ(y)

�
( ρ(x)

t + ρ(x)

)δ1
∞∑

j=1

2−jγ 1
V2j−1t(x)

∫
d(x,y)<2jt

|f(y)| dμ(y)

�
( ρ(x)

t + ρ(x)

)δ1
∞∑

j=1

2−jγ
( 1

V2j+1t(x0)

∫
d(x0,y)<2j+1t

|f(y)|p dμ(y)
)1/p

�
( ρ(x)

t + ρ(x)

)δ1
∞∑

j=1

2−jγ [V2j+1t(x0)]α

�
( ρ(x)

t + ρ(x)

)δ1( t

r

)αn
[μ(B)]α

∞∑
j=1

2−j(γ−αn)

� [μ(B)]α.

Combining this and (3.5) yields that for all t ∈ (0, ∞),∫
B

[T+(fχ(2B)�)(x)]p dμ(x) � [μ(B)]1+αp,

which together with (3.4) gives us that∫
B

[T+(f)(x)]p dμ(x) � [μ(B)]1+αp.

This also implies that T+(f)(x) < ∞ for μ almost every x ∈ X .
It remains to show that for all B ≡ B(x0, r) /∈ Dρ,∫

B
[T+(f)(x) − essinf

B
T+(f)]p dμ(x) � [μ(B)]1+αp.

Let f1 ≡ (f − fB)χ2B , let f2 ≡ (f − fB)χ(2B)� , let B1 ≡ {x ∈ B : T+
r (f)(x) ≥

T+
∞(f)(x)}, and let B2 ≡ B \ B1, where T+

r (f) ≡ sup0<t<4r |Tt(f)| and
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T+
∞(f) ≡ supt≥4r |Tt(f)|. We have∫

B
[T+(f)(x) − essinf

B
T+(f)]p dμ(x)

�
∫

B1

[T+
r (f)(x) − essinf

B
|Tr(f)|]p dμ(x)

+
∫

B2

[T+
∞(f)(x) − essinf

B
T+

∞(f)]p dμ(x)

�
∫

B
[T+

r (f1)(x)]p dμ(x) + μ(B) sup
x,y∈B

sup
0<t<4r

|Tt(fB)(x) − Tr(f)(y)|p

+
∫

B
[T+

r (f2)(x)]p dμ(x) + μ(B) sup
x,y∈B

sup
t≥4r

|Tt(f)(x) − Tt(f)(y)|p

≡ E1 + E2 + E3 + E4.

By the Hölder inequality, Lp(X )-boundedness of T+, and (2.1), we have

E1 �
∫

2B
|f(x) − fB |p dμ(x) � [μ(B)]1+αp.

On the other hand, using (3.1), (2.1), the Hölder inequality, Lemma 2.4(ii),
and γ > αn, we have that for all t ∈ (0,4r) and x ∈ B,

|Tt(f2)(x)| �
∫

(2B)�

1
Vt(x) + V (x, z)

( t

t + d(x, z)

)γ
|f(z) − fB | dμ(z)

�
∞∑

j=1

2−jγ 1
V2j−1r(x)

∫
2j+1B

[|f(z) − f2j+1B | + |fB − f2j+1B |]dμ(z)

� [μ(B)]α
∞∑

j=1

2−j(γ−αn) � [μ(B)]α.

This implies that E3 � [μ(B)]1+αp.
Similarly, by applying (3.1), (2.1), and γ > αn, we have that for all x ∈ B,

|Tr(f − fB)(x)|(3.7)

�
∫

X

1
Vr(x) + V (x, z)

( r

r + d(x, z)

)γ
|f(z) − fB | dμ(z)

�
∞∑

j=0

2−jγ 1
V2j−1r(x)

∫
2j+1B

|f(z) − fB | dμ(z) � [μ(B)]α.
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From Lemma 2.4(i), (3.3), δ2 ≥ αn, and t < 4r � ρ(x0), it follows that for
all x ∈ B,

|fB − Tt(fB)(x)| = |fB | |1 − Tt(1)(x)| � [μ(B)]α
( t

ρ(x0)

)δ2−αn
� [μ(B)]α.

This together with (3.7) implies that

E2 � μ(B) sup
x,y∈B

sup
0<t<4r

{|Tt(fB)(x) − fB |p

+ |fB − Tr(fB)(y)|p + |Tr(fB − f)(y)|p}

� [μ(B)]1+αp.

To estimate E4, we first observe that for all x, y ∈ B, ρ(x) ∼ ρ(x0) ∼ ρ(y)
(see (3.6)). By this and (3.2), we have that for all x, y ∈ B and t ∈ [4r, ∞),

|Tt(1)(x) − Tt(1)(y)| �
(r

t

)β
.

On the other hand, it follows from Lemma 2.4(i) and (2.1) that

|fB(x0,t)| �
(ρ(x0)

r

)αn
[μ(B)]α.

Then by these facts and αn ≤ min{(β/2), (δ2/2)}, we obtain that for all
t ∈ [4r, ∞),

|Tt(1)(x) − Tt(1)(y)||fB(x0,t)|

�
(ρ(x0)

r

)αn
[μ(B)]α|Tt(1)(x) − Tt(1)(y)|1/2

× [|Tt(1)(x) − 1| + |1 − Tt(1)(y)|]1/2

�
(ρ(x0)

r

)αn
[μ(B)]α

( r

ρ(x0)

)min{(β/2),(δ2/2)}
� [μ(B)]α.

On the other hand, by (3.2), (2.1), the Hölder inequality, Lemma 2.4(ii),
γ > αn, and β ≥ αn, we see that for all x, y ∈ B and t ∈ [4r, ∞),

|Tt(f − fB(x0,t))(x) − Tt(f − fB(x0,t))(y)|

�
∫

X

(d(x, y)
t

)β 1
Vt(x) + V (x, z)

( t

t + d(x, z)

)γ
|f(z) − fB(x0,t)| dμ(z)
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�
(r

t

)β
∞∑

j=0

2−jγ

V2j−1t(x)

∫
d(x,z)<2jt

[|f(z) − fB(x0,2j+1t)|

+ |fB(x0,t) − fB(x0,2j+1t)|]dμ(z)

�
(r

t

)β
∞∑

j=0

2−j(γ−αn)[μ(B(x0, t))]α � [μ(B)]α.

These inequalities above lead to

E4 � μ(B) sup
x,y∈B

sup
t≥4r

|Tt(f − fB(x0,t))(x) − Tt(f − fB(x0,t))(y)|p

+ μ(B) sup
x,y∈B

sup
t≥4r

[|Tt(1)(x) − Tt(1)(y)||fB(x0,t)|]p � [μ(B)]1+αp,

which completes the proof of Theorem 3.1.

Now we consider the boundedness of the Poisson semigroup maximal
operator. Let {Tt}t>0 be a family of linear integral operators on L2(X ). We
always set

Pt ≡ 1√
π

∫ ∞

0

e−s

√
s
Tt/(2

√
s) ds.

For all f ∈ L1
loc(X ), define the Poisson semigroup maximal operator P+ by

P+(f) ≡ sup
t>0

|Pt(f)|.

Lemma 3.1. Assume that {Tt}t>0 satisfies (3.1)–(3.3) with the same con-
stants δ1, δ2, β, and γ as there. Then {Pt}t>0 also satisfies (3.1)–(3.3) with
the constants δ1, δ′

2, β′, and γ′, where δ′
2 ∈ (0,1) ∩ (0, δ2], β′ ∈ (0,1) ∩ (0, β],

and γ′ ∈ (0,1) ∩ (0, γ].

Proof. For all a, s, t ∈ (0, ∞), from the fact that t + a ≤ (1 + s)(t/s + a),
it follows that

(3.8)
t/s

t/s + a
≤ (1 + s−1)

t

t + a
.

On the other hand, from (2.1), we deduce that for all x, y ∈ X and s,
t ∈ (0, ∞),

Vt/s(x) + V (x, y) ∼ μ
(
B(x, t/s + d(x, y))

)
(3.9)
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� (1 + s)−nμ
(
B(x, t + d(x, y))

)
∼ (1 + s)−n[Vt(x) + V (x, y)].

By (3.1), (3.8), and (3.9), we see that for all x, y ∈ X ,

|Pt(x, y)| �
∫ ∞

0
e−s2/4Tt/s(x, y)ds

�
∫ ∞

0
e−s2/4 1

Vt/s(x) + V (x, y)

( t/s

t/s + d(x, y)

)γ( ρ(x)
t/s + ρ(x)

)δ1
ds

� 1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ′ ( ρ(x)
t + ρ(x)

)δ1

×
∫ ∞

0
e−s2/4(1 + s)n+δ1(1 + s−γ′

)ds

� 1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ′ ( ρ(x)
t + ρ(x)

)δ1
.

Now we prove that for all t ∈ (0, ∞) and x, x′, y ∈ X with d(x,x′) ≤ t/2,

(3.10) |Pt(x, y) − Pt(x′, y)| �
(d(x,x′)

t

)β′ 1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ′

.

Observe that in this case, t + d(x, y) ∼ t + d(x′, y) and d(x,x′) ≤ t/(2s) if
and only if s ≤ t/[2d(x,x′)]. Then (3.1) and (3.2) together with (3.8) and
(3.9) yield

|Pt(x, y) − Pt(x′, y)|

�
∫ ∞

0
e−s2/4|Tt/s(x, y) − Tt/s(x

′, y)| ds

�
[∫ t/[2d(x,x′)]

0

(d(x,x′)
t/s

)β
+

∫ ∞

t/[2d(x,x′)]

]
× e−s2/4

Vt/s(x) + V (x, y)

( t/s

t/s + d(x, y)

)γ
ds

�
[∫ t/[2d(x,x′)]

0
(1 + s)β′

+
∫ ∞

t/[2d(x,x′)]
sβ′

]
e−s2/4(1 + s)n(1 + s−γ′

)ds

×
(d(x,x′)

t

)β′ 1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ′
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�
(d(x,x′)

t

)β′ 1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ′

,

which implies (3.10).
On the other hand, by (3.3) and (3.8), we see that for all x ∈ X and

t ∈ (0, ∞),

|1 − Pt(1)(x)| �
∫ ∞

0
e−s2/4|1 − Tt/s(1)(x)| ds

�
∫ ∞

0
e−s2/4

( t/s

t/s + ρ(x)

)δ2
ds

�
( t

t + ρ(x)

)δ′
2

∫ ∞

0
e−s2/4(1 + s−δ′

2)ds �
( t

t + ρ(x)

)δ′
2
.

This finishes the proof of Lemma 3.1.

Theorem 3.2. Let ρ be an admissible function, let {Tt}t>0 satisfy (3.1)–
(3.3) with the same constants β, γ, δ1, and δ2 as there, and let δ′

2, β′, and
γ′ be positive constants such that δ′

2 ∈ (0,1) ∩ (0, δ2], β′ ∈ (0,1) ∩ (0, β], and
γ′ ∈ (0,1) ∩ (0, γ]. Let α ∈ (−∞, γ′/n) ∩ (−∞,min{β′/(2n), δ1/n, δ′

2/(2n)}],
and let p ∈ (1, ∞). Then there exists a positive constant C such that for all
f ∈ E α,p

ρ (X ), P+(f) ∈ Ẽ α,p
ρ (X ) and

‖P+(f)‖Ẽ α,p
ρ (X )

≤ C‖f ‖E α,p
ρ (X ).

Proof. Notice that our assumption on {Tt}t>0 and Lemma 3.1 imply that
{Pt}t>0 satisfies (3.1)–(3.3) with constants δ1, δ′

2, γ′, and β′. By this and an
argument similar to the proof of Theorem 3.1, we can prove Theorem 3.2. We
omit the details by the similarity. This finishes the proof of Theorem 3.2.

Remark 3.1. (i) If α > 0, then by Lemma 2.2(ii), the spaces Ẽ α,p
ρ (X ) in

Theorems 3.1 and 3.2 are exactly the spaces E α,p
ρ (X ). If α < 0 and X is an

RD-space, then by Remark 2.3(ii) and the fact that the maximal operators
are nonnegative, we know that if the space Ẽ α,p

ρ (X ) in Theorems 3.1 and 3.2
is replaced by the space E α,p

ρ (X ), we obtain the same results.
(ii) Let X be an RD-space, and let ρ be an admissible function. Assume

that there exist constants C ∈ (0, ∞), ε1 ∈ (0,1], ε2 ∈ (0, ∞), δ ∈ (0,1], and
γ ∈ (0, ∞) and an (ε1, ε2)-AOTI (approximation of the identity) {T̃t}t>0

(see, e.g., [12], [32] for the definition of AOTI) with kernels {T̃t(x, y)}t>0
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such that for all t ∈ (0, ∞) and x, y ∈ X ,

(3.11) |Tt(x, y) − T̃t(x, y)| ≤ C
( t

t + ρ(x)

)δ 1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ
.

If α = 0 and (3.1)–(3.3) were replaced by (3.11), Theorems 3.1 and 3.2 were
obtained in [32]. We remark that since for all x ∈ X , T̃t(1)(x) = 1 (see [32]),
(3.11) implies (3.3) with δ2 = δ.

§4. Boundedness of the Littlewood-Paley g-function

In this section, we consider the boundedness of certain variants of the
Littlewood-Paley g-function from E α,p

ρ (X ) to Ẽ α,p
ρ (X ). The boundedness

from BMOρ(X ) to BLOρ(X ) where X is an RD-space of this operator was
obtained in [32].

Let ρ be an admissible function on X , and let {Qt}t>0 be a family of
operators bounded on L2(X ) with integral kernels {Qt(x, y)}t>0 satisfying
that there exist constants C ∈ (0, ∞), δ1 ∈ (0, ∞), δ2 ∈ (0,1), β ∈ (0,1], and
γ ∈ (0, ∞) such that for all t ∈ (0, ∞) and x,x′, y ∈ X with d(x,x′) ≤ (t/2),

(Q)i |Qt(x, y)| ≤ C
1

Vt(x) + V (x, y)

( t

t + d(x, y)

)γ( ρ(x)
t + ρ(x)

)δ1
;

(Q)ii |Qt(x, y) − Qt(x′, y)| ≤ C
( d(x,x′)

t + d(x, y)

)β 1
Vt(x) + V (x, y)

×
( t

t + d(x, y)

)γ
;

(Q)iii
∣∣∣∫

X
Qt(x, y)dμ(y)

∣∣∣ ≤ C
( t

t + ρ(x)

)δ2
.

For all f ∈ L1
loc(X ) and x ∈ X , define the Littlewood-Paley g-function by

(4.1) g(f)(x) ≡
(∫ ∞

0
|Qt(f)(x)|2 dt

t

)1/2
.

Lemma 4.1. Let α ∈ (−∞,min{γ/n, δ2/n}), let p ∈ (1, ∞), and let ρ be
an admissible function on X . Then there exists a positive constant C such
that for all f ∈ E α,p

ρ (X ),
(i) for all x ∈ X and t > 0,

|Qt(f)(x)| ≤ C
( ρ(x)

t + ρ(x)

)δ1[
μ
(
B(x, t)

)]α‖f ‖E α,p
ρ (X );
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(ii) for all x, y ∈ X and t ≥ 2d(x, y),

|Qt(f)(x) − Qt(f)(y)|

≤
{

C
(d(x,y)

t

)β(
1 + ρ(x)

t

)αn[μ(B(x, t))]α‖f ‖E α,p
ρ (X ), α > 0,

C
(d(x,y)

t

)β(
1 + log ρ(x)

t

)
[μ(B(x, t))]α‖f ‖E α,p

ρ (X ), α ≤ 0.

Proof. By the homogeneity of ‖ · ‖E α,p
ρ (X ), we may assume that f ∈ E α,p

ρ (X )
and that ‖f ‖E α,p

ρ (X ) = 1. By (Q)i, (4.2), (2.1), γ > αn, and the Hölder
inequality, we have that for all x ∈ X and t ≥ ρ(x),

|Qt(f)(x)| �
∫

X

1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ
(4.2)

×
( ρ(x)

t + ρ(x)

)δ1
|f(y)| dμ(y)

�
( ρ(x)

t + ρ(x)

)δ1
∞∑

j=0

2−jγ 1
V2j−1t(x)

∫
d(x,y)<2jt

|f(y)| dμ(y)

�
( ρ(x)

t + ρ(x)

)δ1
∞∑

j=0

2−jγ
[
μ
(
B(x,2jt)

)]α

�
( ρ(x)

t + ρ(x)

)δ1[
μ
(
B(x, t)

)]α
∞∑

j=0

max{2−j(γ−αn),2−jγ }

�
( ρ(x)

t + ρ(x)

)δ1[
μ
(
B(x, t)

)]α
.

Let x ∈ X , and let t < ρ(x). In this case, t + ρ(x) ∼ ρ(x). Using γ > αn,
(Q)i, (2.1), Lemma 2.4(ii), and the Hölder inequality, we have

|Qt(f − fB(x,t))(x)|

�
∞∑

j=0

2−jγ 1
V2j−1t(x)

∫
d(x,y)<2jt

|f(y) − fB(x,t)| dμ(y)

�
∞∑

j=0

2−jγ
{ 1

V2jt(x)

∫
d(x,y)<2jt

|f(y) − fB(x,2jt)| dμ(y)

+ |fB(x,2jt) − fB(x,t)|
}
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�
[
μ
(
B(x, t)

)]α
∞∑

j=0

2−jγ max{2j max{αn,0}, j + 1} � [μ(B(x, t))]α.

On the other hand, from (Q)iii, Lemma 2.4(i), t < ρ(x), and δ2 > αn, we
deduce that

|Qt(fB(x,t))(x)| �
[
μ
(
B(x, t)

)]α
( t

t + ρ(x)

)δ2

× max
{

1 + log
ρ(x)

t
,
(ρ(x)

t

)max{αn,0}}
�

[
μ
(
B(x, t)

)]α
( ρ(x)

t + ρ(x)

)δ1
.

This gives (i).
To show (ii), by (Q)ii, we see that for all x, y ∈ X and t ≥ 2d(x, y),

|Qt(f)(x) − Qt(f)(y)|(4.3)

�
∫

X

( d(x, y)
t + d(x, z)

)β 1
Vt(x) + V (x, z)

( t

t + d(x, z)

)γ
|f(z)| dμ(z)

�
(d(x, y)

t

)β
∞∑

j=0

2−jγ 1
V2j−1t(x)

∫
d(x,z)<2jt

|f(z)| dμ(z).

Now we consider the following two cases.
Case (i). α ∈ (0, ∞). In this case, if t ≥ ρ(x), by γ > αn, the Hölder

inequality, (4.3), and (2.1), we have

|Qt(f)(x) − Qt(f)(y)| �
(d(x, y)

t

)β
∞∑

j=0

2−jγ
[
μ
(
B(x,2jt)

)]α(4.4)

�
(d(x, y)

t

)β[
μ
(
B(x, t)

)]α
.

Assume that t < ρ(x). Let N1 ∈ N such that 2N1−1t < ρ(x) ≤ 2N1t. From the
Hölder inequality and (2.1), it follows that

∞∑
j=N1

2−jγ 1
V2j−1t(x)

∫
d(x,z)<2jt

|f(z)| dμ(z)(4.5)

�
∞∑

j=N1

2−jγ
[
μ
(
B(x,2jt)

)]α �
[
μ
(
B(x, t)

)]α
.
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By the Hölder inequality, (2.1), and Lemma 2.4(i), we see that for all j ∈
{0,1, . . . ,N1 − 1},

1
V2j−1t(x)

∫
d(x,z)<2jt

|f(z)| dμ(z) �
(ρ(x)

t

)αn[
μ
(
B(x, t)

)]α
.

This together with γ > αn gives us

N1−1∑
j=0

2−jγ 1
V2j−1t(x)

∫
d(x,z)<2jt

|f(z)| dμ(z) �
(ρ(x)

t

)αn[
μ
(
B(x, t)

)]α
.

Combining this and (4.3)–(4.5) leads to that for all x, y ∈ X and t ≥ 2d(x, y),

|Qt(f)(x) − Qt(f)(y)| �
(
1 +

ρ(x)
t

)αn[
μ
(
B(x, t)

)]α
.

Case (ii). α ∈ (−∞,0]. If t ≥ ρ(x), then (4.3) yields that

|Qt(f)(x) − Qt(f)(y)| �
(d(x, y)

t

)β[
μ
(
B(x, t)

)]α
.

Let t < ρ(x), and let N1 be the integer as in Case (i). Then by (4.3), (2.1),
Lemma 2.4(i), and the Hölder inequality, we have

|Qt(f)(x) − Qt(f)(y)|

�
(d(x, y)

t

)β{N1−1∑
j=0

2−jγ 1
V2j−1t(x)

∫
d(x,z)<2jt

|f(z)| dμ(z) +
∞∑

j=N1

· · ·
}

�
(d(x, y)

t

)β{N1−1∑
j=0

2−jγ
(
1 + log

ρ(x)
t

)
+

∞∑
j=N1

2−jγ
}[

μ
(
B(x, t)

)]α

�
(d(x, y)

t

)β(
1 + log

ρ(x)
t

)[
μ
(
B(x, t)

)]α
,

which implies (ii) and then completes the proof of Lemma 4.1.

Theorem 4.1. Let p ∈ (1, ∞), let ρ be an admissible function on X , let g

be as in (4.1), and let

α ∈
(

−∞, β/(3n)
]

∩
(

−∞,min
{
γ/n, δ1/n, δ2/(3n)

})
.

If g(·) is bounded on Lp(X ), then there exists a positive constant C such
that for all f ∈ E α,p

ρ (X ), [g(f)]2 ∈ Ẽ 2α,p/2
ρ (X ) and ‖[g(f)]2‖Ẽ 2α,p/2

ρ (X )
≤

C‖f ‖2
E α,p

ρ (X )
.
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Proof. By similarity, we prove only the case when α > 0. Let f ∈ E α,p
ρ (X ).

By the homogeneity of ‖ · ‖E α,p
ρ (X ) and ‖ · ‖Ẽ α,p

ρ (X )
, we may assume that

‖f ‖E α,p
ρ (X ) = 1. For all balls B ≡ B(x0, r) ∈ Dρ, we need to prove that

(4.6)
∫

B
[g(f)(x)]p dμ(x) � [μ(B)]1+αp.

For all x ∈ X , write

[g(f)(x)]2 =
∫ 8r

0
|Qt(f)(x)|2 dt

t
+

∫ ∞

8r
|Qt(f)(x)|2 dt

t

≡ [g1(f)(x)]2 + [g2(f)(x)]2.

By the Lp(X )-boundedness of g and (2.1), we have∫
B

[g1(fχ2B)(x)]p dμ(x) �
∫

2B
|f(x)|p dμ(x) � [μ(B)]1+αp.(4.7)

By (Q)i, γ > αn, (2.1), and the Hölder inequality, we have that for all x ∈ B

and t < 8r,

|Qt(fχ(2B)�)(x)| �
∫

(2B)�

1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ
|f(y)| dμ(y)

�
( t

r

)γ
∞∑

j=1

2−jγ 1
μ(2j+1B)

∫
2j+1B

|f(y)| dμ(y)

�
( t

r

)γ
[μ(B)]α

∞∑
j=1

2−j(γ−αn) �
( t

r

)γ
[μ(B)]α.

From this, it follows that∫
B

[g1(fχ(2B)�)(x)]p dμ(x)(4.8)

�
(∫ 8r

0

( t

r

)2γ dt

t

)p/2

[μ(B)]1+αp � [μ(B)]1+αp.

Combining (4.7) and (4.8) leads to

(4.9)
∫

B
[g1(f)(x)]p dμ(x) � [μ(B)]1+αp.
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Applying [33, Lemma 2.1(ii) and 2.1(iii)], we have that for all x, y ∈ X ,

1
ρ(x)

� 1
ρ(y)

(
1 +

d(x, y)
ρ(y)

)−k0/(1+k0)
,

where k0 is as in Definition 2.2. By this fact, we obtain that for all x ∈ B

and t ≥ 8r,

1
ρ(x)

� 1
ρ(x0)

(
1 +

r

ρ(x0)

)−k0/(1+k0)
� 1

ρ(x0)

( r

ρ(x0)

)−k0/(1+k0)
.

From this, Lemma 4.1(i), and (2.1), we deduce that for all x ∈ B,

|Qt(f)(x)| �
(ρ(x)

t

)δ1[
μ
(
B(x, t)

)]α

�
(ρ(x0)

t

)δ1( r

ρ(x0)

)δ1(k0/(1+k0))( t

r

)αn
[μ(B)]α,

which together with the assumption that δ1 > αn implies that∫
B

[g2(f)(x)]p dμ(x)

� [μ(B)]1+αp
( r

ρ(x0)

)pδ1(k0/(1+k0)){∫ ∞

8r

(ρ(x0)
t

)2δ1( t

r

)2αn dt

t

}p/2

� [μ(B)]1+αp
( r

ρ(x0)

)pδ1(k0/(1+k0))(ρ(x0)
r

)pδ1

� [μ(B)]1+αp.

This together with (4.9) gives (4.6). Moreover, it follows from (4.6) that
g(f)(x) < ∞ for almost every x ∈ X .

Now we assume that B ≡ B(x0, r) /∈ Dρ. We need to prove that

(4.10)
∫

B

{
[g(f)(x)]2 − essinf

B
[g(f)]2

}p/2
dμ(x) � [μ(B)]1+αp.

To this end, write

[g(f)(x)]2 =
∫ 8r

0
|Qt(f)(x)|2 dt

t
+

∫ 8ρ(x0)

8r
· · · +

∫ ∞

8ρ(x0)
· · ·

≡ [gr(f)(x)]2 + [gr,ρ(x0)(f)(x)]2 + [gρ(x0),∞(f)(x)]2.
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Then∫
B

{
[g(f)(x)]2 − essinf

B
[g(f)]2

}p/2
dμ(x)

�
∫

B
[gr(f)(x)]p dμ(x)

+
∫

B

{
[gr,ρ(x0)(f)(x)]2 − essinf

B
[gr,ρ(x0)(f)]2

}p/2
dμ(x)

+
∫

B

{
[gρ(x0),∞(f)(x)]2 − essinf

B
[gρ(x0),∞(f)]2

}p/2
dμ(x)

�
∫

B
[gr(f)(x)]p dμ(x) + μ(B) sup

x,y∈B
|[gr,ρ(x0)(f)(x)]2 − [gr,ρ(x0)(f)(y)]2|p/2

+ μ(B) sup
x,y∈B

|[gρ(x0),∞(f)(x)]2 − [gρ(x0),∞(f)(y)]2|p/2 ≡ I1 + I2 + I3.

Write f = (f − fB)χ2B + (f − fB)χ(2B)� + fB ≡ f1 + f2 + fB. By the
Lp(X )-boundedness of g(·) and (2.1), we have

(4.11)
∫

B
[gr(f1)(x)]p dμ(x) �

∫
2B

|f(x) − fB |p dμ(x) � [μ(B)]1+αp.

Using (Q)i, (2.1), the Hölder inequality, Lemma 2.4(ii), and γ > αn, we
obtain that for all x ∈ B,

|Qt(f2)(x)|

�
∫

(2B)�

1
Vt(x) + V (x, y)

( t

t + d(x, y)

)γ
|f(y) − fB | dμ(y)

�
( t

r

)γ
∞∑

j=1

2−jγ 1
μ(2j+1B)

∫
2j+1B

[|f(y) − f2j+1B | + |f2j+1B − fB |]dμ(y)

�
( t

r

)γ
[μ(B)]α

∞∑
j=1

2−j(γ−αn) �
( t

r

)γ
[μ(B)]α,

from which it follows that

(4.12)
∫

B
[gr(f2)(x)]p dμ(x) � [μ(B)]1+αp

(∫ 8r

0

( t

r

)2γ dt

t

)p/2

� [μ(B)]1+αp.
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Recall that for all x ∈ B, ρ(x) ∼ ρ(x0) (see (3.6)). By this, (Q)iii, and
Lemma 2.4(i), we have that for all x ∈ B,

|Qt(fB)(x)| �
( t

t + ρ(x)

)δ2
|fB | �

( t

ρ(x0)

)δ2(ρ(x0)
r

)αn
[μ(B)]α.

This together with δ2 > 3αn and r < ρ(x0) implies that∫
B

[gr(fB)(x)]p dμ(x)

� [μ(B)]1+αp
(ρ(x0)

r

)αpn
(∫ 8r

0

( t

ρ(x0)

)2δ2 dt

t

)p/2

� [μ(B)]1+αp.

Combining this, (4.11), and (4.12) yields I1 � [μ(B)]1+αp.
Since γ > αn, by Lemma 4.1, (2.1), and ρ(x0) ∼ ρ(x) for all x ∈ B, we

have that for all x, y ∈ B and t ∈ [8ρ(x0), ∞),

|Qt(f)(x) − Qt(f)(y)| �
(d(x, y)

t

)β[
μ
(
B(x, t)

)]α �
(r

t

)β−αn
[μ(B)]α,

and

|Qt(f)(x)| �
(ρ(x0)

t

)δ1[
μ
(
B(x, t)

)]α �
(ρ(x0)

t

)δ1( t

r

)αn
[μ(B)]α.

By these inequalities and β ≥ 3αn, we see that for all x, y ∈ B,

[gρ(x0),∞(f)(x)]2 − [gρ(x0),∞(f)(y)]2

≤
∫ ∞

8ρ(x0)
|Qt(f)(x) + Qt(f)(y)| |Qt(f)(x) − Qt(f)(y)| dt

t

≤
∫ ∞

8ρ(x0)

(ρ(x0)
t

)δ1(r

t

)β−2αn
[μ(B)]2α dt

t
� [μ(B)]2α,

which implies that I3 � [μ(B)]1+αp.

By Lemma 4.1(i), (2.1), and the fact that for all x ∈ B, ρ(x0) ∼ ρ(x), we
have that for all t ∈ [8r,8ρ(x0)) and x ∈ B,

|Qt(f)(x)| �
[
μ
(
B(x, t)

)]α �
( t

r

)αn
[μ(B)]α.
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Thus the fact that β ≥ 3αn implies that for all x, y ∈ B,

[gr,ρ(x0)(f)(x)]2 − [gr,ρ(x0)(f)(y)]2

≤
∫ 8ρ(x0)

8r
|Qt(f)(x) + Qt(f)(y)| |Qt(f)(x) − Qt(f)(y)| dt

t

� [μ(B)]α
∫ 8ρ(x0)

8r

( t

r

)αn
|Qt(f)(x) − Qt(f)(y)| dt

t
.

Let t ∈ [8r,8ρ(x0)), and let x, y ∈ B. We write

|Qt(f)(x) − Qt(f)(y)|

≤
∣∣∣∫

X
[Qt(x, z) − Qt(y, z)][f(z) − fB]dμ(z)

∣∣∣
+ |fB |

∣∣∣∫
X

[Qt(x, z) − Qt(y, z)]dμ(z)
∣∣∣

≡ H1 + H2.

By (Q)ii, t ∈ [8r,8ρ(x0)), (2.1), and Lemma 2.4(ii), we see that for all x ∈ B,

H1 �
∫

X

( d(x, y)
t + d(x, z)

)β 1
Vt(x) + V (x, z)

( t

t + d(x, z)

)γ
|f(z) − fB | dμ(z)

�
∞∑

j=0

rβtγ

(t + 2j−1r)β+γ

1
μ(2j+1B)

×
∫

2j+1B

{
|f(z) − f2j+1B | + |f2j+1B − fB |

}
dμ(z)

�
∞∑

j=0

rβtγ

(t + 2jr)β+γ
2jαn[μ(B)]α.

From this, we deduce that∫ 8ρ(x0)

8r

( t

r

)αn
H1

dt

t

� [μ(B)]α
∞∑

j=0

2jαn

∫ 8ρ(x0)

8r

(r

t

)β−αn tγ+β−1

(t + 2jr)β+γ
dt

� [μ(B)]α.
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By Lemma 2.4(i), (Q)iii, β ≥ 3αn, δ2 > 3αn, and the fact that for all
z ∈ B, ρ(x0) ∼ ρ(z), we have that for μ almost every x, y ∈ B,∫ 8ρ(x0)

8r

( t

r

)αn
H2

dt

t

≤
∫ 8ρ(x0)

8r

( t

r

)αn(ρ(x0)
r

)αn
[μ(B)]α|Qt(1)(x) − Qt(1)(y)|2/3

×
( t

ρ(x0)

)δ2/3 dt

t

�
∫ 8ρ(x0)

8r

(ρ(x0)
r

)αn
[μ(B)]α

(r

t

)β/3( t

ρ(x0)

)δ2/3 dt

t

�
∫ ρ(x0)

8r
[μ(B)]α

( t

ρ(x0)

)(δ2/3)−αn dt

t
� [μ(B)]α.

This finishes the proof of Theorem 4.1.

As a consequence of Theorem 4.1, we have the following conclusion.

Corollary 4.1. With the same assumptions as in Theorem 4.1, there
exists a positive constant C such for all f ∈ E α,p

ρ (X ), g(f) ∈ Ẽ α,p
ρ (X ) and

‖g(f)‖Ẽ α,p
ρ (X )

≤ C‖f ‖E α,p
ρ (X ).

Proof. Since

0 ≤ g(f) − essinf
B

g(f) ≤ {[g(f)]2 − essinf
B

[g(f)]2}1/2,

applying (4.10), we have that for all balls B /∈ Dρ,{ 1
[μ(B)]1+αp

∫
B

[g(f)(x) − essinf
B

g(f)]p dμ(x)
}1/p

(4.13)

�
{ 1

[μ(B)]1+αp

∫
B

{
[g(f)(x)]2 − essinf

B
[g(f)]2

}p/2
dμ(x)

}1/p

� ‖f ‖E α,p
ρ (X ).

On the other hand, by (4.6), we obtain that for all balls B ∈ Dρ,{ 1
[μ(B)]1+αp

∫
B

[g(f)(x)]p dμ(x)
}1/p

� ‖f ‖E α,p
ρ (X ),

which together with (4.13) completes the proof of Corollary 4.1.
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Remark 4.1. (i) If α = 0 and X is an RD-space, Theorem 4.1 and Corol-
lary 4.1 were already obtained in [32].

(ii) We point out that Remark 3.1(i) is also suitable to Theorem 4.1 and
Corollary 4.1.

§5. Several applications

This section is divided into Sections 5.1–5.4. We apply the results obtained
in Sections 3 and 4, respectively, to the Schrödinger operator or the degen-
erate Schrödinger operator on R

d, and to the sub-Laplace Schrödinger oper-
ator on Heisenberg groups or on connected and simply connected nilpotent
Lie groups.

5.1. Schrödinger operators on R
d

Let d ≥ 3, and let R
d be the d-dimensional Euclidean space endowed with

the Euclidean norm | · | and the Lebesgue measure dx. Denote the Lapla-
cian

∑d
j=1

∂2

∂x2
j

on R
d by Δ and the corresponding heat (Gauss) semigroup

{etΔ}t>0 by {T̃t}t>0. Let V be a nonnegative locally integrable function on
R

d, let L ≡ −Δ + V be the Schrödinger operator, and let {Tt}t>0 be the
corresponding semigroup with kernels {Tt(x, y)}t>0. Moreover, for all t > 0
and x, y ∈ R

d, set

Qt(x, y) ≡ t2
dTs(x, y)

ds

∣∣∣
s=t2

.

Let q ∈ (d/2, d], let V ∈ Bq(Rd, | · |, dx), and let ρ be as in (2.3). Then we
have the following estimates (see [6], [9], [7]).

Proposition 5.1. Let q ∈ (d/2, d], let β ∈ (0,2 − d/q), and let N ∈ N.
Then there exist positive constants C̃ and C, where C is independent of N ,
such that for all t ∈ (0, ∞) and x,x′, y ∈ X with d(x,x′) ≤

√
t/2,

(i) |Tt(x, y)| ≤ C̃t−d/2 exp{−|x − y|2/Ct}[ρ(x)/(
√

t + ρ(x))]N [ρ(y)/
(

√
t + ρ(y))]N ,
(ii) |Tt(x, y) − Tt(x′, y)| ≤ C̃[|x − x′ |/

√
t]βt−d/2 exp{−|x − y|2/Ct}[ρ(x)/

(
√

t + ρ(x))]N [ρ(y)/(
√

t + ρ(y))]N ,
(iii) |Tt(x, y) − T̃t(x, y)| ≤ C̃[

√
t/(

√
t + ρ(x))]2−d/qt−d/2 exp{−|x − y|2/

Ct};

and for all t ∈ (0, ∞) and x,x′, y ∈ X with d(x,x′) ≤ t/2,

(iv) |Qt(x, y)| ≤ C̃t−d exp{−|x − y|2/Ct2}[ρ(x)/(t + ρ(x))]N [ρ(y)/(t +
ρ(y))]N ,
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(v) |Qt(x, y) − Qt(x′, y)| ≤ C̃[|x − x′ |/t]βt−d exp{−|x − y|2/Ct2}[ρ(x)/
(t + ρ(x))]N [ρ(y)/(t + ρ(y))]N ,

(vi) |
∫ d

R
Qt(x, y)dμ(y)| ≤ C̃[t/ρ(x)]2−d/q[ρ(x)/(t + ρ(x))]N .

Let q1, q2 ∈ (d/2, ∞] with q1 < q2. Observe that Bq2(R
d) ⊂ Bq1(R

d). There-
fore, Proposition 5.1 holds for all q ∈ (d/2, ∞]. On the other hand, recall that
{T̃t2 }t>0 satisfies that for all t ∈ (0, ∞), T̃t2(1) = 1 (see [6], [9]). Thus {Tt2 }t>0

satisfies assumptions (3.1)–(3.3). Moreover, the L2(Rd)-boundedness of
g-function g(·) was obtained in [6]. Using this, Proposition 5.1(iv) and
5.1(v), and the vector-valued Calderón-Zygmund theory (see, e.g., [26]),
we obtain the Lp(Rd)-boundedness of g(·) for p ∈ (1, ∞). Then by applying
this fact and Proposition 5.1, Theorems 3.1, 3.2, and 4.1, and Corollary 4.1,
we have the following result.

Proposition 5.2. Let q ∈ (d/2, ∞], let p ∈ (1, ∞), let V ∈ Bq(Rd, | · |, dx),
and let ρ be as in (2.3).

(i) If α ∈ (−∞,1/d − 1/(2q)), then there exists a positive constant C

such that for all f ∈ E α,p
ρ (Rd), T+(f), P+(f) ∈ Ẽ α,p

ρ (Rd) and

‖T+(f)‖Ẽ α,p
ρ (Rd)

+ ‖P+(f)‖Ẽ α,p
ρ (Rd)

≤ C‖f ‖E α,p
ρ (Rd).

(ii) If α ∈ (−∞,2/(3d) − 1/(3q)), then there exists a positive constant C

such that for all f ∈ E α,p
ρ (Rd), [g(f)]2 ∈ Ẽ 2α,p/2

ρ (Rd) with ‖[g(f)]2‖Ẽ 2α,p/2
ρ (Rd)

≤
C‖f ‖2

E α,p
ρ (Rd)

, and g(f) ∈ Ẽ α,p
ρ (Rd) with ‖g(f)‖Ẽ α,p

ρ (Rd)
≤ C‖f ‖E α,p

ρ (Rd).

5.2. Degenerate Schrödinger operators on R
d

Let d ≥ 3, and let R
d be the d-dimensional Euclidean space endowed

with the Euclidean norm | · | and the Lebesgue measure dx. Recall that a
nonnegative locally integrable function w is said to be an A2(Rd) weight in
the sense of Muckenhoupt if

sup
B⊂Rd

{ 1
|B|

∫
B

w(x)dx
}1/2{ 1

|B|

∫
B

[w(x)]−1 dx
}1/2

< ∞,

where the supremum is taken over all the balls in R
d. Observe that if we

set w(E) ≡
∫
E w(x)dx for any measurable set E, then there exist positive

constants C,Q, and κ such that for all x ∈ R
d, λ > 1, and r > 0,

C−1λκw
(
B(x, r)

)
≤ w

(
B(x,λr)

)
≤ CλQw

(
B(x, r)

)
;
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namely, the measure w(x)dx satisfies (2.1). Thus (Rd, | · |,w(x)dx) is a space
of homogeneous type.

Let w ∈ A2(Rd), and let {ai,j }1≤i,j≤d be a real symmetric matrix function
satisfying that for all x, ξ ∈ R

d,

C−1|ξ|2 ≤
∑

1≤i,j≤d

ai,j(x)ξiξj ≤ C|ξ|2.

Then the degenerate elliptic operator L0 is defined by

L0f(x) ≡ − 1
w(x)

∑
1≤i,j≤d

∂i

(
ai,j(·)∂jf

)
(x),

where x ∈ R
d. Denote by {T̃t}t>0 ≡ {e−tL0 }t>0 the semigroup generated

by L0.
Let V be a nonnegative locally integrable function on w(x)dx. Define

the degenerate Schrödinger operator by L ≡ L0 + V. Then L generates a
semigroup {Tt}t>0 ≡ {e−tL }t>0 with kernels {Tt(x, y)}t>0. Moreover, for all
t ∈ (0, ∞) and x, y ∈ R

d, set

Qt(x, y) ≡ t2
dTs(x, y)

ds

∣∣∣
s=t2

.

Let q ∈ (Q/2,Q], let V ∈ Bq(Rd, | · |,w(x)dx), and let ρ be as in (2.3). Then
{Tt(·, ·)}t>0 and {Qt(·, ·)}t>0 satisfy Proposition 5.1 with t−d/2 replaced by
[V√

t(x)]−1, t−d by [Vt(x)]−1 and d by Q. In fact, the corresponding Proposi-
tion 5.1(i) and 5.1(iii) here were given in [6]. The proof of the corresponding
Proposition 5.1(ii) here is similar to that of Proposition 5.1 (see [9]). The
proofs of the corresponding Proposition 5.1(iv), 5.1(v), and 5.1(vi) here are
similar to that of [7, Proposition 4]. We omit the details here.

Recall that {T̃t2 }t>0 satisfies that for all t ∈ (0, ∞), T̃t2(1) = 1 (see, e.g.,
[13]). Thus {Tt2 }t>0 satisfies assumptions (3.1)–(3.3). Moreover, the L2(Rd)-
boundedness of g(·) can be obtained by the same argument as in [6,
Lemma 3]. Using this, Proposition 5.1(iv) and 5.1(v), and the vector-valued
Calderón-Zygmund theory, we obtain the Lp(Rd)-boundedness of g(·) for
p ∈ (1, ∞). Then by applying these facts, Theorems 3.1, 3.2, and 4.1, and
Corollary 4.1, we have the following result.

Proposition 5.3. Let w ∈ A2(Rd), let q ∈ (Q/2, ∞], let p ∈ (1, ∞), let
V ∈ Bq(Rd, | · |,w(x)dx), and let ρ be as in (2.3) with dμ(x) = w(x)dx.
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(i) If α ∈ (−∞,1/Q − 1/(2q)), then there exists a positive constant C

such that for all f ∈ E α,p
ρ (w(x)dx), T+(f), P+(f) ∈ Ẽ α,p

ρ (w(x)dx) and

‖T+(f)‖Ẽ α,p
ρ (w(x)dx)

+ ‖P+(f)‖Ẽ α,p
ρ (w(x)dx)

≤ C‖f ‖E α,p
ρ (w(x)dx).

(ii) If α ∈ (−∞,2/(3Q) − 1/(3q)), then there exists a positive constant C

such that for all f ∈ E α,p
ρ (w(x)dx), [g(f)]2 ∈ Ẽ 2α,p/2

ρ (w(x)dx) with
‖[g(f)]2‖Ẽ 2α,p/2

ρ (w(x)dx)
≤ C‖f ‖2

E α,p
ρ (w(x)dx)

, and g(f) ∈ Ẽ α,p
ρ (w(x)dx) with

‖g(f)‖Ẽ α,p
ρ (w(x)dx)

≤ C‖f ‖E α,p
ρ (w(x)dx).

5.3. Schrödinger operators on Heisenberg groups
The (2n+1)-dimensional Heisenberg group H

n is a connected and simply
connected nilpotent Lie group with the underlying manifold R

2n × R and
the multiplication

(x, s)(y, s) =
(
x + y, t + s + 2

n∑
j=1

[xn+jyj − xjyn+j ]
)
.

The homogeneous norm on H
n is defined by |(x, t)| = (|x|4 + |t|2)1/4 for all

(x, t) ∈ H
n, which induces a left-invariant metric d((x, t), (y, s)) =

|(−x, −t)(y, s)|. Moreover, there exists a positive constant C such that
|B((x, t), r)| = CrQ, where Q = 2n + 2 is the homogeneous dimension of
H

n and |B((x, t), r)| is the Lebesgue measure of the ball B((x, t), r). The
triplet (Hn, d, dx) is a space of homogeneous type.

A basis for the Lie algebra of left invariant vector fields on H
n is given

by

X2n+1 =
∂

∂t
, Xj =

∂

∂xj
+ 2xn+j

∂

∂t
,

Xn+j =
∂

∂xn+j
− 2xj

∂

∂t
, j = 1, . . . , n.

All nontrivial commutators are [Xj ,Xn+j ] = −4X2n+1, j = 1, . . . , n. The
sub-Laplacian has the form ΔHn =

∑2n
j=1 X2

j .

Let V be a nonnegative locally integrable function on H
n. Define the sub-

Laplacian Schrödinger operator by L ≡ −ΔHn + V. Denote by {Tt}t>0 ≡
{e−tL }t>0 with kernels {Tt(x, y)}t>0 and by {T̃t}t>0 ≡ {etΔHn }t>0. More-
over, for all t ∈ (0, ∞) and x, y ∈ Rd, set

Qt(x, y) ≡ t2
dTs(x, y)

ds

∣∣∣
s=t2

.
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Let V ∈ Bq(Hn, d, dx) with q ∈ (n + 1,2n + 2], and let ρ be as in (2.3).
Then {Tt(·, ·)}t>0 and {Qt(·, ·)}t>0 satisfy Proposition 5.1 with d replaced
by 2(n + 2) and |x − y| replaced by d(x, y) (see [19]).

Observe that {T̃t2 }t>0 satisfies that for all t ∈ (0, ∞), T̃t2(1) = 1 (see also
[32]). Thus {Tt2 }t>0 satisfies assumptions (3.1)–(3.3). Moreover, the L2(Hn)-
boundedness of g(·) was obtained in [19]. Using this, Proposition 5.1(iv)
and 5.1(v), and the vector-valued Calderón-Zygmund theory, we obtain the
Lp(Hn)-boundedness of g(·) for p ∈ (1, ∞). Then by applying these facts,
Theorems 3.1, 3.2, and 4.1, and Corollary 4.1, we have the following con-
clusions.

Proposition 5.4. Let q ∈ (n+1, ∞], let p ∈ (1, ∞), let V ∈ Bq(Hn, d, dx),
and let ρ be as in (2.3).

(i) If α ∈ (−∞,1/(2n+2) − 1/(2q)), then there exists a positive constant
C such that for all f ∈ E α,p

ρ (Hn), T+(f), P+(f) ∈ Ẽ α,p
ρ (Hn) and

‖T+(f)‖Ẽ α,p
ρ (Hn)

+ ‖P+(f)‖Ẽ α,p
ρ (Hn)

≤ C‖f ‖E α,p
ρ (Hn).

(ii) If α ∈ (−∞,1/(3n+3) − 1/(3q)), then there exists a positive constantC
such that for all f ∈ E α,p

ρ (Hn), [g(f)]2 ∈ Ẽ 2α,p/2
ρ (Hn) with ‖[g(f)]2‖Ẽ 2α,p/2

ρ (Hn)

≤ C‖f ‖2
E α,p

ρ (Hn)
, and g(f) ∈ Ẽ α,p

ρ (Hn) with ‖g(f)‖Ẽ α,p
ρ (Hn)

≤ C‖f ‖E α,p
ρ (Hn).

5.4. Schrödinger operators on connected and simply connected
nilpotent Lie groups

Let G be a connected and simply connected nilpotent Lie group, and
let X ≡ {X1, . . . ,Xk } be left-invariant vector fields on G satisfying the
Hörmander condition that {X1, . . . ,Xk } together with their commutators of
order ≤ m generates the tangent space of G at each point of G. Let d be the
Carnot-Carathéodory (control) distance on G associated to {X1, . . . ,Xk }.
Fix a left-invariant Haar measure μ on G. Then for all x ∈ G, Vr(x) = Vr(e);
moreover, there exist κ, D ∈ (0, ∞) with κ ≤ D such that for all x ∈ G,
C−1rκ ≤ Vr(x) ≤ Crκ when r ∈ (0,1], and C−1rD ≤ Vr(x) ≤ CrD when
r ∈ (1, ∞) (see [21], [30], [31]). Thus (G, d,μ) is a space of homogeneous
type.

The sub-Laplacian is given by ΔG ≡
∑k

j=1 X2
j . Denote by {T̃t}t>0 ≡

{etΔG }t>0 the semigroup generated by −ΔG.
Let V be a nonnegative locally integrable function on G. Then the sub-

Laplace Schrödinger operator L is defined by L ≡ −ΔG + V. The operator
L generates a semigroup of operators {Tt}t>0 ≡ {e−tL }t>0, whose kernels
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are denoted by {Tt(x, y)}t>0. Define the radial maximal operator T+ by
T+(f)(x) ≡ supt>0 |e−tL(f)(x)| for all x ∈ G.

Let q > D/2, let V ∈ Bq(G, d,μ), and let ρ be as in (2.3). For all x, y ∈ G

and t ∈ (0, ∞), define

Qt(x, y) ≡ t2
d

ds

∣∣∣
s=t2

Ts(x, y).

Then {Tt(·, ·)}t>0 and {Qt(·, ·)}t>0 satisfy Proposition 5.1 with t−d replaced
by [Vt(x)]−1, t−d/2 by [V√

t(x)]−1, and d by D (see [33], [32]). Observe that
{T̃t2 }t>0 satisfies that for all t ∈ (0, ∞), T̃t2(1) = 1 (see, e.g., [30]). Thus
{Tt2 }t>0 satisfies assumptions (3.1)–(3.3). Moreover, the L2(G)-boundedness
of g(·) can be obtained by the same argument as in [6, Lemma 3]. Using this,
Proposition 5.4(iv) and 5.4(v), and the vector-valued Calderón-Zygmund
theory, we obtain the Lp(G)-boundedness of g(·) for p ∈ (1, ∞). Then by
applying these facts, Theorems 3.1, 3.2, and 4.1, and Corollary 4.1, we have
the following conclusions.

Proposition 5.5. Let q ∈ (D/2, ∞], let p ∈ (1, ∞), let V ∈ Bq(G, d,μ),
and let ρ be as in (2.3).

(i) If α ∈ (−∞,1/D − 1/(2q)), then there exists a positive constant C

such that for all f ∈ E α,p
ρ (G), T+(f), P+(f) ∈ Ẽ α,p

ρ (G) and

‖T+(f)‖Ẽ α,p
ρ (G)

+ ‖P+(f)‖Ẽ α,p
ρ (G)

≤ C‖f ‖E α,p
ρ (G).

(ii) If α ∈ (−∞,2/(3D) − 1/(3q)), then there exists a positive constant C

such that for all f ∈ E α,p
ρ (G), [g(f)]2 ∈ Ẽ 2α,p/2

ρ (G) with ‖[g(f)]2‖Ẽ 2α,p/2
ρ (G)

≤
C‖f ‖2

E α,p
ρ (G)

, and g(f) ∈ Ẽ α,p
ρ (G) with ‖g(f)‖Ẽ α,p

ρ (G)
≤ C‖f ‖E α,p

ρ (G).
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[9] J. Dziubański and J. Zienkiewicz, Hp spaces associated with Schrödinger operators
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