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HILBERT-SAMUEL POLYNOMIALS FOR THE
CONTRAVARIANT EXTENSION FUNCTOR

ANDREW CRABBE, DANIEL KATZ,

JANET STRIULI, and EMANOIL THEODORESCU

Abstract. Let (R,m) be a local ring, and let M and N be finite R-modules.

In this paper we give a formula for the degree of the polynomial giving the

lengths of the modules Exti
R(M,N/m

nN). A number of corollaries are given,

and more general filtrations are also considered.

§1. Introduction

Let (R,m,k) be a Noetherian local ring, let I ⊆ R be an ideal, and let
M and N be finitely generated R-modules. It is well known that if the
lengths λ(M/InM) of the modules M/InM are finite for n large, these
lengths are given by a rational polynomial of degree dim(M). In [7] (see
also [6]) it is shown that the lengths of the modules TorR

i (M,N/InN)
and Exti

R(M,N/InN) have polynomial growth for large n whenever the
lengths of these modules are finite. However, the degrees of the corre-
sponding Hilbert-Samuel polynomials are not as easy to determine (see [7],
[3], and [5]). This paper has three purposes. The first is to improve the
known estimates for the degrees of the polynomials giving the lengths of
Exti

R(M,N/InN) and TorR
i (M,N/InN) in the case I = m by giving a pre-

cise formula for these degrees. Previous results for the case I = m for the
torsion functor were given in [3] and [5], where various assumptions were
made in order to control this degree. In this paper we do not need to make
any assumptions on M , N , or R to obtain our formulas, and we need only
make modest assumptions on them to obtain a formula that makes direct
reference only to M and N . In fact, in Section 2 we begin by giving a general
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formula (see Proposition 2.1) for the degree of the Hilbert polynomial asso-
ciated to general cohomology or homology modules, which specializes to our
main results in Section 3 when the ideal in question is m and the cohomology
is determined by either the contravariant extension functor (Theorem 3.2) or
the torsion functor (Theorem 3.12). For example, the following theorem is a
direct consequence of our main result in Section 3. Here we write E i

M,N,m(n)
for the Hilbert polynomial giving λ(Exti

R(N,M/mnM)), for n large.

Theorem 1.1. Let (R,m,k) be a local Noetherian ring, and let M and N

be two finitely generated R-modules such that M has a rank and dim(N) =
dim(R). Then deg(E i

M,N,m(n)) = dim(N) − 1.

As we show below, the degree of E i
M,N,m(n) is partially controlled by the

dimension of Ωi
R(M), the ith syzygy of M . Consequently, as an application

of our degree formula, we obtain the following proposition, which yields some
information about the dimension of the syzygies of finite-length modules. In
Proposition 1.2, we use p.d.(M) to denote the projective dimension of M .

Proposition 1.2. Let (R,m,k) be a local ring, and let M be a finitely
generated R-module, free of constant rank on the punctured spectrum of R.
Assume that dim(R) ≥ 2, that the Betti numbers of M are nondecreasing,
and that i < p.d.(M). Then dim(Ωi+1

R (M)) = d.

Our second purpose, especially regarding Section 3, is to lay the ground-
work for results concerning indecomposable modules in [2], where knowledge
of the relative growth of the Hilbert polynomials of large syzygies of the
residue field k is required. In particular, Theorem 1.1 above plays a crucial
role in [2].

Finally, in Section 4, we address our third purpose, to show that the
results of Section 3 can, in many cases, be extended to more general filtra-
tions to give results for the extension functor parallel to those given in [5]
for the torsion functor.

§2. General cohomology

Throughout, (R,m,k) denotes a Noetherian local ring of Krull dimen-
sion d, and all modules are finitely generated R-modules. In this section we
prove a general result about the Hilbert polynomial associated to an ideal
and the cohomology (or homology) of a complex. We start by letting

C: X
α→ Y

β→ Z
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be a complex of finitely generated R-modules with Y �= 0. We assume that
I ⊆ R is an ideal such that the homology modules H(C ⊗ R/In) associated to
C ⊗ R/In have finite length for n large. By [7, Proposition 3], the lengths of
the modules H(C ⊗ R/In) are given by a polynomial P C

I (n) for n large. The
following proposition strengthens [7, Proposition 3], in that we replace the
degree estimate there by an equality. In the statement of this proposition
we set

M :=
⊕
n≥0

(
InZ ∩ im(β)

)
/In im(β).

Note that M is a finitely generated graded module over the Rees algebra of
R with respect to I , so that if its graded components have finite length as
R-modules, then these lengths are ultimately given by a rational polynomial
of degree dim(M) − 1.

Proposition 2.1. Let (R,m,k) be a local ring, and let C as above be a
complex of finitely generated R-modules with Y �= 0. Let I ⊆ R be an ideal
such that the lengths of the cohomology modules H(C ⊗ R/In) are nonzero
and finite for n large, and let P C

I (n) denote the corresponding Hilbert-
Samuel polynomial. Then

deg
(
P C

I (n)
)
= max

{
dim(H(C)), dim(M) − 1

}
.

Proof. Set A := ker(β) and B := im(α). We begin by arguing as in the
proof of [7, Proposition 3]. By the Artin-Rees lemma, there exists h > 0 so
that, for n ≥ h,

InZ ∩ im(β) = In−h
(
IhZ ∩ im(β)

)
.

Since an element in the cohomology of the complex C ⊗ R/In corresponds
to an element in Y that gets mapped by β into InZ ∩ im(β), it follows (see
[7]) that for n ≥ h,

H(C ⊗ R/In) =
A + In−hC

B + In−hD
,

where C := β−1(IhZ) and D := IhY . Now for n large,

P C
I (n) = λ

( A + In−hC

B + In−hD

)
= λ

(A + In−hC

A + In−hD

)
+ λ

(A + In−hD

B + In−hD

)
(2.1)

= λ
(A + In−hC

A + In−hD

)
+ λ

(U + In−hW

In−hW

)
,(2.2)

where U := A/B = H(C) and W := (D + B)/B. We first note that by [7,
Lemma 2], both length expressions on the right-hand sides of (2.1) and
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(2.2) are given by polynomials. Let P1(n) denote the polynomial giving the
lengths of (A + In−hC)/(A + In−hD), and let P2(n) denote the polynomial
giving the lengths of (U + In−hW )/In−hW . We first calculate the degree of
P1(n). For this, we note that, by definition,

(2.3)
A + In−hC

A + In−hD
∼= InZ ∩ im(β)

In im(β)
.

Thus, by the definition of M, deg(P1(n)) = dim(M) − 1 if P1(n) is not
identically zero.

We now show that if P2(n) is not identically zero the degree of P2(n)
equals dim(U) = dim(H(C)). Since P C

I (n) = P1(n) + P2(n), this will com-
plete the proof of the proposition. For this, note that there exists c > 0 so
that for n sufficiently large,

P2(n) = λ
( U

U ∩ In−hW

)
= λ

( U

U ∩ IcW

)
+ λ

( U ∩ IcW

In−h−c(U ∩ IcW )

)
,

so either U ∩ IcW = 0 or P2(n) has degree equal to dim(U ∩ IcW ). But since
U/(U ∩ IcW ) has finite length if U ∩ IcW �= 0, then dim(U) = dim(U ∩ IcW ),
which gives what we want.

In the case I = m, we can replace M in the statement of Proposition 2.1 by
T := im(β). This allows us to give a precise formula for P C

m (n) in terms of the
modules appearing in the complex C. Our main results in the next section
concerning the extension and torsion functors are immediate consequences
of the following theorem.

Theorem 2.2. Let (R,m,k) be a local ring, and let C as above be a
complex of finitely generated R-modules with Y �= 0. Write P C

m (n) for the
Hilbert-Samuel polynomial giving the lengths of the cohomology modules
H(C ⊗ R/mn), for n large, and set T := im(β). If T ⊆ mZ, then

deg
(
P C

m (n)
)

= max
{
dim(H(C)), dim(T ) − 1

}
.

Proof. By Proposition 2.1, we have to show only that dim(M) = dim(T ).
On the one hand, since T ⊆ mZ, we have

mn−1T ⊆ mnZ ∩ T.

Therefore,
⊕

n≥1 mn−1T/mnT ⊆ M. It follows that

dim(T ) = dim
(⊕

n≥1

mn−1T/mnT
)

≤ dim(M).
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On the other hand, by the Artin-Rees lemma, there exists an e ≥ 1 so that
for n large, mnZ ∩ T = mn−e(meZ ∩ T ). As in the proof of Proposition 2.1,
write P1(n) for the polynomial giving the lengths of Mn. Then

P1(n) ≤ λ(T/mnT ) − λ(T/mn−eT ),

and the degree of the polynomial giving the latter difference equals
dim(T ) − 1. This shows that M has dimension less than or equal to the
dimension of T and thus must have dimension equal to T , which is what we
want.

In the following corollary, we record some observations related to the case
that P C

I (n) is the zero polynomial.

Corollary 2.3. Retain the notation from Proposition 2.1 and Theo-
rem 2.2.

(a) If P C
I (n) ≡ 0, then H(C) = 0.

(b) If im(α) ⊆ mY , then H(C) and im(β) cannot be simultaneously zero.
(c) If im(α) ⊆ mY and im(β) ⊆ mZ, then P C

m (n) ≡ 0 if and only if H(C) = 0
and im(β) has nonzero finite length.

Proof. Part (a) is immediate from (2.2) in the proof of Proposition 2.1.
For (b), suppose im(β) = 0. Then H(C) = Y/ im(α). Since im(α) ⊆ mY and
Y �= 0, we cannot have H(C) = 0, by Nakayama’s lemma.

For (c), suppose first that P C
m (n) ≡ 0. By (a), we have H(C) = 0. From

(2.1) and (2.3), we have mnZ ∩ im(β) = mn im(β), for n large. Since im(β) is
contained in mZ, it follows that mn−1 im(β) = mn im(β), so by Nakayama’s
lemma, im(β) has finite length. By (b), im(β) �= 0. Conversely, suppose
that H(C) = 0 and im(β) has finite length. Using the notation from the
proof of Proposition 2.1, the fact that U := H(C) = 0 implies that P2(n) ≡ 0.
Since im(β) has finite length, (2.3) and the Artin-Rees lemma imply that
P1(n) ≡ 0. Since P C

m (n) = P1(n) + P2(n), this gives what we want.

Remark 2.4. Regarding Proposition 2.1, note that generally it is the
term dim(M) − 1 that makes determining the exact degree of P C

I (n) for
arbitrary I difficult. Indeed, whenever H(C) is zero, the degree of P C

I (n)
is equal to dim(M) − 1. (Think of the case when I is m-primary and
P C

I (n) = λ(Tori(R/In,R)).) Our success in determining the degree of P C
m (n)

in Theorem 2.2 and the corresponding results in Section 3 is because, in
these cases, we can calculate the dimension of M. Similarly, our success
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in Section 4 with filtrations more general than the m-adic filtration is due
strictly to the ability to calculate the dimension of M in those cases as well.

§3. The m-adic filtration for the contravariant extension functor

In this section we apply the results of Section 2 to give a precise formula
for the degree of the Hilbert polynomial giving the lengths of the mod-
ules Exti

R(M,N/mnN) and TorR
i (M,N/mnN). Our formulas below for the

degrees of these polynomials (see Theorems 3.2 and 3.12) involve the dimen-
sion of the image of the ith syzygy of M or its transpose in an appropriate
direct sum of copies of N and are immediate consequences of Theorem 2.2.
We will show that, in those cases where the dimension of syzygies of M and
their transposes are well behaved, our formulas either agree with or improve
prior estimates. However, the formulas in Theorems 3.2 and 3.12 are valid
in all cases.

We begin by establishing some notation. Let

F: · · · → Fi+1
φi+1→ Fi

φi→ Fi−1 → · · ·

denote a minimal free resolution of M . We set βi(M) := rank(Fi) for all
i. Thus, for all i ≥ 0, βi(M) is the ith Betti number of M . We can calcu-
late Exti(M,N/InN) by applying Hom(−,N/InN) to F. Thus, Exti(M,N/

InN) is the cohomology of the cochain complex Hom(F,N/InN).
Alternately, we may first apply the functor Hom(−,N) to the resolution

F to obtain the complex

Hom(F,N): · · · → Nβi−1(M) φi→ Nβi(M) φi+1→ Nβi+1(M) → · · · ,

which we then tensor with R/In. The resulting complex HomR(F,N) ⊗
R/In is isomorphic to HomR(F,N/InN). Hence we may calculate Exti

R(M,

N/InN) as the ith cohomology of HomR(F,N) ⊗ R/In. Homology and
cohomology of complexes of this form were studied in [7].

Hilbert polynomials for derived functors
For fixed i ≥ 1, assume that the modules Exti(M,N/InN) have finite

length for n large. It follows from [7, Corollary 4] that the lengths
λ(Exti

R(M,N/InN)) are given by a rational polynomial for n sufficiently
large. We will write E i

M,N,I(n) for this polynomial. By [7, Corollary 4], we
have the following estimate for the degree of E i

M,N,I(n):

deg
(

E i
M,N,I(n)

)
≤ max

{
dim(Exti

R(M,N)), �N (I) − 1
}
,
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where �N (I) denote the analytic spread of I on N . Recall that �N (I) is the
Krull dimension of the graded module

⊕
n≥0 InN/mInN . Equivalently, if

we write S for the ring R/ann(N) and R(IS) for the Rees ring of S with
respect to IS, then �N (I) is the dimension of the ring R(IS)/mR(IS); that
is, it is just the analytic spread of the image of I in the ring S. (See [7, proof
of Proposition 3] for a proof of this fact.) Moreover, in [7] it is shown that
equality holds in the degree estimate when the first term on the right is at
least as large as the second term on the right. Similarly, in [7], it is shown
that when, for i ≥ 1 fixed, the modules TorR

i (M,N/InN) have finite length,
those lengths are given by a rational polynomial in n, for n sufficiently large.
We will write τM,N,I

i (n) for the corresponding polynomial. In [7], it is shown
that

deg
(
τM,N,I
i (n)

)
≤ max

{
dim(Tori(M,N)), �N (I) − 1

}
,

and equality holds when the first term on the right-hand side of the inequal-
ity is at least as large as the second term on the right-hand side.

Remark 3.1. Before stating one of the main results of this section, we
first point out that the degree bounds above can be recovered from Propo-
sition 2.1. For the degree of E i

M,N,I(n), it follows from Proposition 2.1 that

deg
(

E i
M,N,I(n)

)
= max

{
dim(Exti

R(M,N)), dim(Ti) − 1
}

for Ti =
⊕

n≥0(I
nNβi+1(M) ∩ im(φi+1))/In im(φi+1). Note that we can regard

Ti as a module over the Rees ring R(IS) of S := R/ann(N) with respect
to IS. Since, by assumption, the lengths of the graded components of Ti

are finite (see the proof of Proposition 2.1), Ti must be annihilated by some
power of mR(IS), say, mq R(IS). Then dim(Ti) ≤ dim(R(IS)/mq R(IS)) =
�N (I), which gives what we want. The argument for the degree bound involv-
ing τM,N,I

i (n) is entirely analogous.

We are now ready for the main result of this section.

Theorem 3.2. Let (R,m) be a local ring, and let M and N be finitely
generated R-modules. Fix 0 ≤ i ≤ p.d.(M). Set Ti := im(φi+1), for φi+1 as
above. Then

deg
(

E i
M,N,m(n)

)
= max

{
dim(Exti(M,N)), dim(Ti) − 1

}
.

Proof. If we use the fact above that Exti
R(M,N/mnN) is the ith coho-

mology of the complex Hom(F,N) ⊗ R/mn, then the theorem follows imme-
diately from Theorem 2.2.
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Remark 3.3. (i) Since the resolution F is minimal, it follows from Corol-
lary 2.3 that E i

M,N,m(n) is identically zero if and only if Exti(M,N) = 0 and
Ti has nonzero finite length. Therefore, if we adopt the conventions that the
zero polynomial has degree −1 and the zero module has dimension −∞,
Theorem 3.2 does give the correct value for the degree of E i

M,N,m(n) in this
case.

(ii) Concerning the upper bound for the degree of E i
M,N,I(n) given before

Remark 3.1, when I is an m-primary ideal, in particular, when I = m,
�N (I) = dim(N). Thus, since dim(Ti) ≤ dim(N), we see that Theorem 3.2
improves the estimate from [7] in the special case that m = I . This improve-
ment is extended to more general filtrations (but not all modules) in Sec-
tion 4.

(iii) The Hilbert polynomial τM,R,m
i (n) giving the lengths of Tori(M,R/

mn) has degree less than d for all i > 0 (see [5] or Theorem 3.12 below). This
no longer holds for E i

M,R,m(n). Indeed, let R be a local ring with a prime ideal
P of maximal dimension such that RP is not Gorenstein, and set M := R/P .
Then Exti(M,R)P �= 0 for all i > 0, so that dim(Exti(M,R)) = d, for all
i > 0. Thus, by Theorem 3.2, deg(E i

M,R,m(n)) = d, for all i > 0.

Corollary 3.4. Suppose that M has finite p.d., say, p.d.(M) = i. Then
deg(E i

M,N,m(n)) = dim(Exti(M,N)).

Proof. This is immediate from the theorem, since in this case, Ti = 0.

In Theorem 3.2, we may replace Ti by N in any number of situations, as
the following corollary shows.

Corollary 3.5. Let (R,m) be a local ring, and let M and N be finitely
generated R-modules. Fix 0 ≤ i < p.d.(M), and suppose that one of the fol-
lowing conditions holds:
(a) i = 0;
(b) there exists a prime ideal P of maximal dimension in the support of N

so that some entry of φi+1 (say, r) does not belong to P (e.g., r is a
nonzero divisor on N);

(c) βi(M) > βi−1(M);
(d) N = R, and MP is not a free RP -module, for some prime ideal P ⊆ R

of dimension d.
Then

deg
(

E i
M,N,m(n)

)
= max

{
dim(Exti(M,N)), dim(N) − 1

}
.
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Proof. For (a), we have an exact sequence

0 → Hom(M,N) → Nβ0
φ1→ T0 → 0.

By Theorem 3.2, if dim(Hom(M,N)) = dim(N), deg(E 0
M,N,I(n)) = dim(N),

which is the maximum value in question. Otherwise, the exact sequence
above shows that T0 and N have the same dimension, so dim(T0) − 1 =
dim(N) − 1 is the maximum value, and this gives what we want.

For (b), since rP · NP �= 0, (Ti)P = im(φi+1)P �= 0. Thus, dim(Ti) =
dim(N), and this gives what we want by Theorem 3.2.

To prove (c), let P be a prime ideal of maximal dimension in the support
of N . By Theorem 3.2, it suffices to show that either Exti(M,N)P �= 0 or
(Ti)P �= 0. If Exti(M,N)P = 0 and (Ti)P = 0, then (φi)P is surjective. But
this cannot happen if βi(M) > βi−1(M).

For (d), by assumption, (φi+1)P �= 0, so (Ti)P �= 0, which gives the result.

It is clear that as long as any one of the conditions (a)–(d) of Corollary 3.5
is met, we obtain deg(E i

M,N,m(n)) = dim(N) − 1 whenever the dimension
of Exti(M,N) is less than dim(N). We list a couple of such cases in the
following corollary.

Corollary 3.6. Let (R,m) be a local ring, and let M and N be finitely
generated R-modules. Fix 0 ≤ i < p.d.(M), and suppose that one of the fol-
lowing conditions holds.
(a) M has a rank, and dim(N) = dim(R).
(b) M is a nonzero syzygy of k, and dim(N) ≥ 1.
Then deg(E i

M,N,m(n)) = dim(N) − 1.

Proof. Let P be a prime of maximal dimension in the support of N . In
(a), P is a minimal prime of R. Therefore, by [5, Remark 2.1], in either (a)
or (b), the image of (φi+1)P is a nonzero summand of (Fi)P . Thus, in each
case, at least one entry of (φi+1)P is a unit. Therefore, in both (a) and (b),
the conclusion of Corollary 3.5 holds; that is,

deg
(

E i
M,N,m(n)

)
= max

{
dim(Exti(M,N)), dim(N) − 1

}
.

On the other hand, if (a) holds, it follows that dim(Exti(M,N)) < d =
dim(N), so the maximum value in question is dim(N) − 1. Similarly, if (b)
holds, then dim(Exti(M,N)) = 0, so again, the maximum in question is
dim(N) − 1, which completes the proof.
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Corollary 3.7. If βi(M) = βi−1(M), then deg(E i
M,N,m(n)) ≥ dim(N) −

2.

Proof. By dimension shifting, we may assume i = 1. Then we have an
exact sequence

0 → mnN

mn+1N
→ N

mn+1N
→ N

mnN
→ 0,

from which we obtain

0 → Hom(M,mnN/mn+1N) → Hom(M,N/mn+1N)

→ Hom(M,N/mnN) → Ext1(M,mnN/mn+1N)
ρn→ Ext1(M,N/mn+1N).(3.1)

Since the resolution of M is minimal, the lengths of

Hom(M,mnN/mn+1N), Ext1(M,mnN/mn+1N)

are just β0(M) · L(n) and β1(M) · L(n), respectively, where L(n) is the
polynomial giving the minimal number of generators of mnN for n large.
Using the fact that β1(M) = β0(M), it follows that

E 1
M,N,m(n + 1) ≥ E 0

M,N,m(n + 1) − E 0
M,N,m(n).

By Corollary 3.5, E 0
M,N,m(n) has degree greater than or equal to dim(N) − 1,

and this gives what we want.

Remark 3.8. Let R be a two-dimensional local ring of depth one, and
suppose that a ∈ R is a parameter such that (0 : (0 : a)) = (a). Then for
M := R/(a) and i = 1, we have that E 1

M,R,m(n) is a nonzero constant. In par-
ticular, this gives an example where β0(M) = β1(M) and deg(E 1

M,R,m(n)) =
dim(R) − 2, that is, an example where the lower bound in Corollary 3.7 is
attained. To see this, let

· · · → Rr φ2→ R
·a→ R → M → 0

be the start of a minimal resolution of M . Note that the image of φ2 is
just (0 : a). To calculate Ext1(M,R), we look at the dual of the resolution,
thereby getting the complex

0 → R
·a→ R

φt
2→ Rr → · · · .
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Note that ker(φt
2) = (0 : (0 : a)), so by our assumption, Ext1(M,R) = 0.

On the other hand, clearly a belongs to the annihilator of T := im(φt
2), so

dim(T ) ≤ 1. Since the depth of R is one, T cannot be zero-dimensional.
Thus, dim(T ) = 1, so by Theorem 3.2, E 1

M,R,m(n) is a nonzero constant.
To find a concrete example with the stated properties, it suffices to find

a one-dimensional local ring (S,n) with a parameter a satisfying (0 : (0 :
aS)) = (a). Indeed, given such an S and a, let R := S[X](n,X), where X

is an indeterminate over S. Then R and a meet the requirements stated
above. Finally, to find such an S, we use the following example shown to us
by Craig Huneke.

Example 3.9. Let k be a field, and let x, y, z, u, and v be indeterminates.
Let S denote the power series ring k[[x, y, z, u, v]] modulo the ideal I , where
I is the ideal generated by x2, xz, z2, xu, zv,u2, v2, zu+xv +uv, yu, yv, yx −
zu, yz − xv. Then S is a one-dimensional local ring with parameter ideal yS

satisfying (0 : (0 : yS)) = yS.

For a deeper analysis of this situation, the interested reader should consult
[4].

Corollaries 3.6 and 3.7 together with Theorem 3.2 yield some information
on the dimension of syzygies over an arbitrary local ring. In Section 5, we
record some of the consequences that our work has for the dimension of
syzygies.

In our last corollary of this section concerning the contravariant extension
functor, we record what happens when N = R is a Cohen-Macaulay local
ring with a canonical module.

Corollary 3.10. Suppose that R is a Cohen-Macaulay local ring with
canonical module ω. Assume that 0 ≤ i < p.d.(ω). Then,
(a) deg(E i

ω,R,m(n)) = max{dim(Exti(ω,R)), dim(R) − 1}, and
(b) deg(E i

ω,R,m(n)) = dim(R) − 1, if R is generically Gorenstein.

Moreover, if i = 0, then deg(E 0
ω,R,m(n)) = dim(R).

Proof. We consider (a) and (b) together. Suppose there exists a mini-
mal prime P ⊆ R such that RP is not Gorenstein. Then ωP is not a free
R-module, so (a) holds by Corollary 3.5(d). Otherwise, R is generically
Gorenstein, so (b) holds by Corollary 3.6(a).

Now suppose that i = 0, and let P ⊆ R be a prime of maximal dimen-
sion. Then Hom(ω,R)P �= 0, so dim(Hom(ω,R)) = d, and the result follows
from (a).
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Remark 3.11. Returning to the setup at the beginning of this section, let
τM,N,m
i (n) denote the polynomial giving the lengths of Tori(M,N/mnN),

for n large. Then Tori(M,N/mnN) is the ith homology in the complex
(F ⊗ N) ⊗ R/mn, so Theorem 2.2 yields a formula for the degree of τM,N,m

i (n)
analogous to the one obtained in Theorem 3.2 for E i

M,N,m(n). When N = R,
several special cases were given in [5]. Note that one can then list several
corollaries to Theorem 3.12 analogous to those above.

Theorem 3.12. Let (R,m) be a local ring, and let M and N be finite
R-modules. Fix 0 ≤ i ≤ p.d.(M), and let τM,N,m

i (n) denote the Hilbert poly-
nomial giving the lengths of the modules Tori(M,N/mnN) for n large. Let
Ci denote the image of the induced map φi ⊗ 1N : Fi ⊗ N → Fi−1 ⊗ N . Then

deg
(
τM,N,m
i (n)

)
= max

{
dim(Tori(M,N)), dim(Ci) − 1

}
.

In particular, if N = R and i ≥ 1, then

deg
(
τM,N,m
i (n)

)
= dim

(
Ωi

R(M)
)

− 1.

Proof. For the first statement, we just apply Theorem 2.2 to the ith spot
of the complex F ⊗ N , where, as before, F denotes the minimal resolution
of M . The second statement follows immediately from the first.

Remark 3.13. (i) Assume that N = R and i ≥ 1. Then the theorem
above shows that the degree of τM,N,m

i (n) is simply the dimension of the
ith syzygy of M minus one. On the other hand, for N = R and i ≥ 1, the
degree of E i

M,N,m(n) is determined by both the dimension of the module
Exti(M,R) and the dimension of Ti, which in this case is the dimension of
the (i+1)st syzygy of M . Suppose that M and R are such that Exti(M,R)
has dimension less than or equal to d − 1 (e.g., R is generically Gorenstein
or M has a rank). Then the degree of E i

M,R,m(n) is less than or equal to
d − 1. Now, since either the ith or the (i + 1)st syzygy of M must have
dimension equal to the dimension of R, it follows that either τM,R,m

i (n) or
E i

M,R,m(n) has maximal degree dim(R) − 1. Of course, as above, very minor
assumptions on M will also guarantee that both polynomials have maximal
degree. However, as pointed out in Question 5.1, for R and M arbitrary,
it is not known whether the dimensions of the syzygies of M ultimately
stabilize, so one cannot make a definitive statement regarding the degrees
of E i

M,R,m(n) and τM,R,m
i (n), even for i sufficiently large.
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(ii) In [3], it is shown that for i > 0,

depth(R) − 1 ≤ deg
(
τM,R,m
i (n)

)
≤ dim(R) − 1.

By Theorem 3.12, we have deg(τM,R,m
i (n)) = dim(Ωi

R(M)) − 1. Now on the
one hand, depth(R) = depth(Fi) ≤ dim(Ωi

R(M)), while on the other hand,
dim(Ωi

R(M)) ≤ dim(R), so our result improves the upper and lower bounds
for the degree of τM,R,m

i (n) given in [3]. Furthermore, if M has a rank and
N = R, it is shown in [5] that deg(τM,R,m

i (n)) = dim(R) − 1. Since in this
case, R, M , and Ωi

R(M) all have the same dimension, Theorem 3.12 recovers
this result as well.

§4. More general filtrations

We now turn to giving an analogue of the main results in [5] for Exti(M,

N/InN). In [5], the second and fourth authors considered the Hilbert poly-
nomial giving the lengths of Tori(M,R/In). In that paper, various assump-
tions were made on I and M which forced τM,N,I

i (n) to have maximal degree
�(I) − 1. Roughly speaking, the assumptions on M were made so that the
ith syzygy has maximal dimension. The assumptions on the filtrations given
in [5] were made in order to replicate some of the properties satisfied by the
m-adic filtration. The reason for this is now clear in light of Theorem 3.12.
Likewise, we may use some of the ideas underlying Theorem 3.2 to give the
corresponding results for E i

M,N,I(n) for similar I and M .
Before presenting our main results, we state a proposition which is sim-

ply a restatement of Proposition 2.1 in the context of the contravariant
extension functor. For the sake of consistent notation with Section 3, we set
Ti := im(φi+1), and we set

Ti :=
⊕
n≥0

(InNβi+1(M) ∩ Ti)/InTi.

Note that, in our present context, Ti is just M from Proposition 2.1.

Proposition 4.1. Let (R,m) be a local ring, and suppose that M and
N are finitely generated R-modules. Fix 0 ≤ i ≤ p.d.(M), and let I ⊆ R be
an ideal. Assume that, for all large n, the lengths of Exti(M,N/InN) are
nonzero and finite. Then

deg
(

E i
M,N,I(n)

)
= max

{
dim(Exti(M,N)), dim(Ti) − 1

}
.
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We now give an analogue of Theorem 3.2 for ideals divisible by m.

Theorem 4.2. Let (R,m) be a local ring, and suppose that M and N

are finitely generated R-modules. Let I be an ideal divisible by m, that is,
I = mC, for some ideal C ⊆ R. Fix 0 ≤ i ≤ p.d.(M), and suppose that the
lengths of Exti(M,N/InN) are nonzero and finite for n large. Then,

deg
(

E i
M,N,I(n)

)
= max

{
dim(Exti(M,N)), �Ti(I) − 1

}
,

where as before, Ti := im(φi+1).

Proof. By Proposition 4.1, it suffices to prove dim(Ti) = �Ti(I). Consider
the filtration J whose terms are Jn := mn−1Cn, n ≥ 1. Note that Jn+1 = IJn

for all n ≥ 1. Then J is an I-good filtration, so by [5, Proposition 2.2], the
graded module

⊕
n≥0 JnTi/mJnTi has dimension �Ti(I). Now, on the one

hand, since F is a minimal resolution, JnTi ⊆ InNβi+1(M) ∩ Ti. Thus,
⊕
n≥0

JnTi/mJnTi ⊆ Ti,

from which it follows that Ti has dimension at least �Ti(I). On the other
hand, set S := R/ann(Ti). Then Ti is a finitely generated module over the
Rees algebra R(IS) of S with respect to IS whose graded components have
finite length. Thus, there exists r > 0 such that mr R(IS) annihilates Ti.
Therefore,

dim(Ti) ≤ dim
(

R(IS)/mr R(IS)
)
= �S(I) = �Ti(I).

Thus, dim(Ti) = �Ti(I), which gives what we want.

Remark 4.3. For I = mC and ITi �= 0, the value of �Ti(I) can vary any-
where between zero and dim(Ti), and the latter can be as large as dim(R).
However, if we set S := R/ann(Ti) and assume that height(IS) > 0, then
�Ti(I) achieves its maximum value of dim(Ti). To see this, after a change in
notation, it suffices to see that if height(I) > 0, then �(I) = d = dim(R). For
this, recall that since height(C) > 0, the Hilbert-Samuel polynomial giving
the lengths of the modules Crms/Crms+1 for r, s large is a polynomial of
total degree d − 1 in r and s with nonnegative leading coefficients. For large
n, we set n := r = s. It follows that the polynomial giving the lengths of
(Cm)n/m(Cm)n = In/mIn has degree d − 1. Therefore, �(I) = d.

If N = R, we have an immediate corollary for ideals divisible by m.
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Corollary 4.4. Let R be a local ring, and let M be a finitely generated
R-module. Assume that R is unmixed and equidimensional. Assume further
that either M has a rank or R is generically Gorenstein. Let I = mC be an
ideal of R such that height(I) > 0. Then, deg(E i

M,R,I(n)) = d − 1.

Proof. If M has a rank or R is generically Gorenstein, dim(Exti(M,R)) ≤
d − 1. Thus, by Theorem 4.2 and its proof, it suffices to show that �Ti(I) = d.
Consider the (i+1)st syzygy of M , Ki := im(φi+1). Since Ki and Ti have the
same support, we just have to show that �Ki(I) = d. Let P be any prime
minimal in the support of Ki. Since R is unmixed and equidimensional,
S := R/P has dimension d. Since height(I) > 0, height(IS) > 0. By the
remark above, �S(I) = d. Since �Ki(I) is the maximum value over all such
S, it follows that �Ki(I) = d, which is what we want.

Our final goal is to state a theorem that is a variant for the contravariant
extension functor of the main results in [5]. It gives a number of cases where
the degree of E i

M,N,I(n) is d − 1. First, we require a definition and a lemma.
In the lemma, we maintain the notation established throughout this paper.

Definition 4.5. Let M be a finitely generated R-module; M is said to
test finite projective dimension if, for all finitely generated modules N , N

has finite projective dimension if and only if for some i > 0, TorR
i (M,N) = 0.

While the residue field k obviously satisfies this condition—and this is
the case one is often interested in—it follows from [1, Corollary 3.3] that
R/J satisfies the condition for any integrally closed m-primary ideal J . Of
course, if M tests finite projective dimension, then so does any syzygy of M .

Lemma 4.6. Let N be a finitely generated R-module such that NP �= 0,
for every minimal prime P . Let M be a finitely generated R-module such
that either M has a rank or M is free of constant rank on the punctured
spectrum of R and M tests finite projective dimension. Assume further that
i < p.d.(M). Then for φi+1 as in Section 3 and Ti := im(φi+1), the annihi-
lator of Ti is nilpotent.

Proof. Set Ki := im(φi+1). Then (Ki)P �= 0 for all minimal primes P ⊆ R.
When M has a rank, this follows from [5, Remark 2.1]. If M is free of
constant rank on the punctured spectrum of R and M tests finite projective
dimension, this was shown for finite length M in [5, proof of Theorem 3.3,
first paragraph], but for the reader’s convenience, we repeat the argument
in this slightly more general case. First, note that if depth(R) > 0, then M
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has a rank, and we are in the previous case. Suppose that depth(R) = 0.
By hypothesis, Ki is also free of constant rank on the punctured spectrum
of R. If this locally constant rank were zero, then Ki would have finite
length. But then by Corollary 2.3(c), Tori(R/mn,M) = 0 for large n. By
the hypothesis on M , R/mn has finite projective dimension, which cannot
be when depth(R) = 0. Thus Ki does not have finite length and thus must
be nonzero when localized at any nonmaximal prime ideal. In particular,
(Ki)P is nonzero for each minimal prime P . Thus, in both cases, the map
(φi+1)P is nonzero for each such P , and so its transpose (φt

i+1)P is also
nonzero. Since the FP is split exact for all minimal primes P , the complex
Hom(F,N)P is also split exact, and since NP is nonzero for each minimal
prime P , it follows that (Ti)P is not zero for each minimal prime P . Thus,
the annihilator of Ti is nilpotent.

Theorem 4.7. Let (R,m) be a local ring of dimension d, and let I ⊆ R

be an ideal having analytic spread d. Let N and M be finitely generated
R-modules such that λ(Exti(M,N/InN)) is finite for n large. Here, 0 < i <

p.d.(M). Assume that M has a rank (possibly zero) or that M is free of
constant rank on the punctured spectrum of R and M tests finite projective
dimension. Assume further that NP is nonzero for every minimal prime P .
Suppose that one of the following conditions is satisfied:

(i) I = mC for some ideal C ⊆ R;
(ii) (mInN :N m) = InN , for large n;
(iii) (In :R m) �⊆ In, for some n, and R is quasi unmixed.

Then deg(E i
M,N,I(n)) = d − 1.

Proof. We first note that either assumption on M yields dim(Exti(M,

N)) ≤ d − 1. Thus, by Proposition 4.1, we must show that dim(Ti) = d.
The proof of this for each of the stated conditions follows closely the proofs
given for [5, Theorems 3.3 and 3.4]. We will try to give a convincing account
without repeating all of the details from [5]. A crucial point in each case is
that the annihilator of Ti is nilpotent, by Lemma 4.6.

Now suppose that I = mC, for some ideal C. From the proof of Theo-
rem 4.2, we know that dim(Ti) = �Ti(I). By Lemma 4.6, Ti has a nilpotent
annihilator. Thus �Ti(I) = �(I) = d, which gives what we want.

Suppose that (mInN :N m) = InN for large n. Replacing I by It for t

sufficiently large allows us to show, just as in [5, proof of Theorem 3.3,
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paragraph 3], that for all n, we have an equality of socles,

Soc(Ti) = Soc(In−1Ti/I
nTi).

Since Ti has a nilpotent annihilator, d = �(I) = �Ti(I), and the same proof
used in [5, paragraph 4, page 3079] shows that the module

⊕
n≥0 Soc(In−1Ti/

InTi) has dimension d. This in turn implies that Ti also has dimension d,
which is what we want.

Finally, suppose that (In : m) �⊆ In for some n, and suppose that R

is quasi unmixed. Again, since the resolution F is a minimal resolution,
(In : m)Ti ⊆ InNu ∩ Ti. Thus,

⊕
n≥0

(In : m)Ti/I
nTi ⊆ Ti.

Since the annihilator of Ti is nilpotent, the same proof used in [5, proof of
Theorem 3.4, paragraphs 3 and 4] shows that the module

⊕
n≥0(I

n : m)Ti/

InTi has dimension d. Therefore, Ti also has dimension d, and the proof is
complete.

Remark 4.8. One should note that no assumption is made about the
nonvanishing of the extension modules Exti(M,N/InN) in the theorem.
Thus, in particular, the theorem shows that, for ideals and modules as in
the theorem, Exti(M,N/InN) is not zero. A similar remark applies to the
corresponding torsion modules.

Remark 4.9. Since N is not injective, one does not automatically obtain
the analogue of results for Exti+1(M,InN) from Exti(M,N/InN) by dimen-
sion shifting. However, for the question we are interested in, if we assume
that the modules Exti(M,N), Exti(M,N/InN), and Exti+1(M,InN) all
have finite length for large n, the answer follows readily. Indeed, for all
n ≥ 1, the short exact sequence

0 → InN → N → N/InN → 0

gives rise to the long exact sequence

Exti(M,N) → Exti(M,N/InN) → Exti+1(M,InN) → Exti+1(M,N).

It quickly follows that the polynomials giving the lengths of Exti(M,N/

InN) and Exti+1(M,InN) differ only by a constant and, consequently, have
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the same degree, assuming both lengths are not zero. We use this for the
corollaries below.

In [6, page 763], it is asked whether, for fixed i, the polynomial giving the
ith Betti number of InN has degree �N (I) − 1, provided it is not identically
zero. One of the purposes of [5] was to show that the answer is yes in a
number of cases. Similarly, by taking M = k in Theorem 4.7, we can now
note that for fixed i the polynomial giving the ith Bass number of InN is
given by a polynomial of degree d − 1 = �N (I) − 1 in essentially the same
cases.

Corollary 4.10. Let (R,m) be a local ring of dimension d, and let N be
a finitely generated R-module such that NP �= 0, for all minimal primes P .
Assume that I ⊆ R satisfies �(I) = d and any one of the conditions (i)–
(iii) from Theorem 4.7. Then for any i > 0 with i less than the projective
dimension of k, the ith Bass numbers of N/InN and InN are given by
polynomials of degree d − 1.

The following instance of Corollary 4.10 deserves special attention.

Corollary 4.11. Let (R,m) be a quasi-unmixed local ring, and let I be
an integrally closed m-primary ideal. Then for any i > 0 with i less than the
projective dimension of k, the ith Bass numbers of R/In and In are given
by polynomials of degree d − 1.

§5. Appendix

As mentioned in Section 3, our results concerning the degree of E i
M,N,m(n)

are closely related to the dimension of the corresponding syzygies associated
with M . As a consequence, we can shed some light on the following inter-
esting question.

Question 5.1. Let (R,m) be a local ring, and let M be a finitely gen-
erated R-module. Is the dimension of the nth syzygy Ωn

R(M) stable for n

sufficiently large?

In the following remark, we record a few easy observations concerning
Question 5.1.

Remark 5.2. (i) If R is unmixed and equidimensional, then clearly all
syzygies have dimension equal to dim(R).
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(ii) If the dimension of syzygies is ultimately constant, then that constant
value must equal dim(R). This follows since given two consecutive syzygies,
one of them must have dimension equal to dim(R).

(iii) If βi(M) > βi−1(M), then dim(Ωi+1
R (M)) = dim(R). This is because,

for any prime ideal P , (φi)P cannot be injective. Thus, in fact, Ωi+1
R (M)P �= 0

for all P , so in this case Ωi+1(M) has nilpotent annihilator. It follows that
if the Betti numbers of M are eventually increasing, then Question 5.1 has
a positive answer for M .

(iv) If βi(M) < βi−1(M), then dim(Ωi−1(M)) = dim(R). This is because,
for any prime ideal P , (φi)P cannot be surjective. Thus, in fact, Ωi−1(M)P �=
0 for all P , so in this case, Ωi−1(M) has nilpotent annihilator.

Proposition 5.3. Let (R,m) be a local ring of dimension d, and let M

be a finitely generated R-module. Let Ωi+1
R (M) be an (i + 1)st syzygy of M

with 1 ≤ i < p.d.(M). Assume that βi(M) = βi−1(M). Then

max
{
dim(Exti(M,R)), dim(Ωi+1

R (M)) − 1
}

≥ d − 2.

In particular, if dim(R) ≥ 2 and M is free of constant rank on the punctured
spectrum of R, then, in fact, dim(Ωi+1

R (M)) = d.

Proof. We may assume that Ωi+1
R (M) = im(φi+1). By Theorem 3.2,

deg
(

E i
M,R,m(n)

)
= max

{
dim(Exti(M,R)), dim(Ti) − 1

}
,

where Ti now denotes the image of the transpose of φi+1 in Rβi+1(M). On
the other hand, dim(Ti) = dim(Ωi+1

R (M)), since for any prime P the matrix
(φi+1)P is the zero matrix if and only if its transpose is the zero matrix.
Therefore,

deg
(

E i
M,R,m(n)

)
= max

{
dim(Exti(M,R)), dim(Ωi+1

R (M)) − 1
}
.

The first statement in the corollary now follows from Corollaries 3.5(c)
and 3.7.

To prove the second statement, we note that dim(Exti(M,R)) = 0 since
M is free on the punctured spectrum. Therefore, if d ≥ 3, the maximum
value above is dim(Ωi+1

R (M)) − 1. If d = 2, the maximum value is again
dim(Ωi+1

R (M)) − 1. For this, it is enough to show that the dimension of
Ωi+1

R (M) is positive. Assume, by way of contradiction, that dim(Ωi+1
R (M)) =

0. Consider the exact sequence

0 → Ωi+1
R (M) → Rβi(M) φ1→ Rβi−1(M) → Ωi−1

R (M) → 0,
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where βi(M) = βi−1(M). Since Ωi+1
R (M) has finite length and Ωi−1

R (M)
is free of constant rank on the punctured spectrum, it follows from the
sequence above that Ωi−1

R (M) also has finite length. Thus, the det(φi) gener-
ates an m-primary ideal, so dim(R) ≤ 1, which is a contradiction. Therefore,
dim(Ωi+1

R (M)) is strictly positive and hence

dim
(
Ωi+1

R (M)
)

− 1 = max
{
dim(Exti(M,R)), dim(Ωi+1

R (M)) − 1
}

≥ d − 2,

where the inequality follows from the first statement. Thus, dim(Ωi+1
R (M)) ≥

d − 1. To improve this, note that for any prime ideal P �= m, Ωi+1
R (M)P is

a free RP -module of rank independent of P . If this rank were zero, then
Ωi+1

R (M) would have finite length. But since dim(Ωi+1
R (M)) ≥ 1, this cannot

be. Thus, the constant rank of each Ωi+1
R (M)P is not zero, so Ωi+1

R (M)P is
not zero for all nonmaximal primes P . In particular, dim(Ωi+1

R (M)) = d.

The following example shown to us by Hamid Rahmati shows that we
cannot relax the hypothesis dim(R) ≥ 2 in the second statement of Proposi-
tion 5.3.

Example 5.4. Let R := k[[x, y]]/(x2, xy). Let M := R/(y), so that M

is a finite-length R-module. Consider the start of a free resolution of the
R-module M

0 → xR → R
·y→ R → M → 0.

Since x is a socle element, the second syzygy of M also has finite length,
and so dim(Ω2

R(M)) < dim(R).

Proposition 5.5. Let (R,m) be a local ring, and let M be a finitely
generated R-module.
(a) If M has nondecreasing Betti numbers, then M has at most one syzygy

Ωj
R(M) with finite length. Moreover, 1 ≤ j ≤ d.

(b) If the Betti numbers of M are eventually nondecreasing, then M has
only finitely many syzygies with finite length.

Proof. For (a), suppose that M has nondecreasing Betti numbers and
that M ′ := Ωj

R(M) is a syzygy of finite length. Then M ′ is free of con-
stant rank zero on the punctured spectrum of R, so by Proposition 5.3,
dim(Ωi+1

R (M ′)) = d, for all i ≥ 1. Thus, dim(Ωs
R(M)) = d, for all s ≥ j + 2.

On the other hand, the exact sequence

0 → Ωj+1
R (M) → Fj → Ωj

R(M) → 0
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shows that dim(Ωj+1
R (M)) = d, so dim(Ωs

R(M)) = d, for all s ≥ j + 1. Note
that this argument now precludes the possibility of Ωi

R(M) having finite
length for some i < j, so M has at most one syzygy of finite length. To
see that j ≤ d, suppose, to the contrary, that j > d. Since Ωj

R(M)P = 0,
for all prime ideals P �= m, p.d.(MP ) < ∞, for all primes P �= m. It follows
from this that Ωd−1

R (M) is free on the punctured spectrum of R. Note that
since Ωj

R(M) has finite length and since j > d, working backward from
Ωj

R(M) we see that Ωd−1
R (M) must also have constant rank on the punctured

spectrum. If we now apply Proposition 5.3 to Ωd−1
R (M), it follows that

dim(Ωj
R(M)) = d, and this is a contradiction. Thus, j ≤ d, as required. This

finishes the proof of Proposition 5.5(a).
Finally, Proposition 5.5(b) follows immediately from the proof of the first

statement in Proposition 5.5(a).

Remark 5.6. It is clear from Proposition 5.5 that Question 5.1 is related
to a more important question, namely, whether every finitely generated
module over an arbitrary local ring has the property that its Betti num-
bers are eventually nondecreasing. Suppose that this latter property were
true for all local rings. Replacing the module M by one of its large syzy-
gies, one could assume that the Betti numbers of M were nondecreasing. If
Ωi

R(M) were a syzygy of dimension less than d, then we could localize at
prime P minimal in its support. By Proposition 5.3 and Proposition 5.5,
dim(Ωs

R(M)P ) = dim(RP ), for all s ≥ i+1. Thus, if R were equidimensional,
then Ωs

R(M) would have dimension d, for all s ≥ i + 1, and the dimension
of the syzygies of M would stabilize.
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