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H-PROJECTIVELY EQUIVALENT
KAHLER MANIFOLDS AND
GRAVITATIONAL INSTANTONS

DMITRY A. KALININ

1 Introduction

Kahler manifolds were introduced by P. A. Shirokov [17] and E. Kahler [13]
in the first part of our century. Since that time they gained applications in a
wide variety of fields both in mathematics and theoretical physics [1, 4, 8, 9,
11]. In particular, Kahler manifolds have been studied as models for finding
the gravitational instantons which are of great importance for construction of
quantum gravity [7, 16].

The goal of the present paper is to investigate four dimensional Kahler
manifolds admitting H-projective mappings with special attention to Einstein-
Kahler manifolds of this type which can be interpreted as field configurations of
the gravitational instantons. ,

The notion of H-projective mappings was introduced by T. Otsuki and Y. Ta-
shiro [15] as a generalization of projective mappings of Riemannian manifolds
(2, 18]. At the present moment wide variety of Kahler manifolds not admitting
H-projective mappings is known. At the same time, some general methods of
finding H-projective mappings for given Kahler manifold were also developed
(18, 19, 20]. However, the problem of finding Kahler metrics and connections
admitting non-affine H-projective mappings is still unsolved ever in the case of
lower dimensions. Some approaches to its solution was proposed earlier (3, 5, 10]
by the author in co-laboration with Prof. A. V. Aminova.

‘In the first part of the present paper four-dimensional Kéahler manifolds
admitting non-affine H-projective mappings are studied. It is proved that four-
dimensional non-Einstein Kahler manifolds admitting H-projective mappings are
generalized equidistant manifolds. Moreover, it is proved that four-dimensional
generalized equidistant Kahler manifolds admit H-projective mappings in general
case.

The second part of the paper is devoted to investigation of Einstein generalized
equidistant Kahler manifolds which can be interpereted as field configurations
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of gravitational instantons. Explicit expression for the metrics of such manifolds
is found for Ricci-flat case and the case of Einstein-Kahler manifold (Ric = kg)
with k£ # 0.

The author is grateful to A. Aminova, K. Matsumoto and J. Mike§ for
comments, useful discussions and suggestions. My special thanks are addressed
to the referee for valuable remarks and corrections. This work was partially
supported by Russian Foundation for Basic Researches.

2 Differential geometry of Kahler manifolds

Let me start from reminding some relevant facts on differential geometry of
Kahler manifolds [12, 18, 20].

An 2n-dimensional smooth manifold M is called to be almost complex if the
almost complez structure J : TM — TM, J? = —id|rp is defined in its tangent
bundle. A tensor field N of the type (1,2) on M defined by the formula

. N(X,Y)=2(JX,JY] - [X,Y]-J[X,JY] - J[JX,Y]),

for any vector fields X,Y is called torsion of J. If N = 0 then J is called to be
complez structure. In this case (M, J) is called complez manifold.

Let (M, J) be a complex manifold. According to the Newlander-Nirenberg
theorem [12], there exists an unique complex analytic manifold M* coinciding
with M as topological space and such that its complex analytic structure induces
the complex structure J and the structure of differential manifold on M.

The tangent bundle T'M¢ is C-linear isomorphic to the bundle T'M with the
structure of complex bundle induced by J so that there is a canonical C-linear
bundle isomorphism

' TMRrCETM ®TM* (1)

where TM ®pR C is the complexification of T M and the bar denotes the complex
conjugation. .

Let (U,z*), @ = 1,...,n be a chart on M°. If M is the complex manifold
corresponding to M® then we shall say that (U, 2%,2%), a = 1,...,n (or simply
(U, 2,%)) is complex chart on M. Because of the isomorphism (1) vector fields
0o = 8/02%,05 = 0/02%, a = 1,...,n define a basis in TM QR C. Any real
tensor field 7' on M can be uniquely extended to the smooth field of elements of
the ”complexified” tensor algebra

TpM = @ ((TpMc)le ® (T,,Mc)@k? ® (T;Mc)Qka ® (T;M°)®k‘).

ki=1

In the coordinate basis (0, 85), @ = 1,...,n this extension has the form

T=T}$8,0..808,0d" ®..Qdz", Ta-i=Th-*

.. ds  Tnedst

Here the Latin indices varied from 1 to 2n run over the sets of bared (@, 3,7, ...)
and unbarred (a, 3,7, ...) Greek indices varied from 1 to n.
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In particular, the complex structure J can be uniquely extended to C-linear
endomorphism in TM @R C. The action of complex structure on the elements
of coordinate basis is defined by the formulae JO, = 10,, JO5 = —105-

Let us call holomorphic transformation a coordinate transformation of the
form 2/ = w*(z), z'* = w*(z) where w®(z) are complex analytic functions. Let
X be a real vector field. If the Lie derivative LxJ is equal to zero then X is
called to be holomorphic vector field. The condition LxJ = 0 in a complex chart
(U, 2z, %) yields 856* = 9,£# = 0, u,v = 1,...,n. Using the holomorphic coordinate
transformations, in a vicinity of a regular point any holomorphic vector field can
be reduced to the form X = 8, + 6.

A complex manifold (M, J) is called Kdhler manifold if a pseudo Riemannian
metric g can be defined on M satisfying [12, 20]

9(JX,JY)=g(X,Y), VxJ=0 (2)

for any vector fields X,Y. Here V is the Levi-Civita connection of. the metric g.
The 2-form
QUX,Y)=g(JX,Y) (3)

is called fundamental 2-form of Kahler manifold M. From Eqgs. (2), (3) and the -
condition JZ = —id|rys it follows that Q is closed: dQ = 0.

Let (U,z,Z) be a complex chart on (M,g,J). Then the components of
the metric g, the complex structure J and the fundamental 2-form € in the
coordinate basis are defined by the conditions

9.5 = 938> 9ap = 955 = 0, (4)
Jo=—J8=is5, Je=JF=0, (5)
Q=0 =igz  Qup =0z = (6)

while the condition d? = 0 takes the form

Oagp7 = OpGo aigﬁ-y = aﬁga'r- (7)

From here it follows that in U exists a real-valued function ® obeying
9up = 0u0g®. (8)

This function is called Kéhler potential of the metric g. It is defined up to the
gauge transformations

@' =@+ f(2) + f(2). (9)
where f is an appropriate holomorphic function. From (4)-(8) it follows that the
only non-zero Christoffel symbols and Riemann tensor of the metric g are

T5, =I5, = 9" 0s9n (10)

while non-zero components of Ricci tensor Ric are defined by the conditions
g;ﬁ = R%g., = ;7# = —R%y'ﬁ = —3,7ng, (11)
Raﬁ = aﬁaﬁ— ln(det(glﬁ))’ Raﬁ = R_aﬁ‘ (12)
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3 H-projective mappings of Kahler manifolds

A smooth curve v : ¢t — z(t) on a Kahler manifold (M, g, J) of real dimension
2n > 2 is called to be H-planar curve if its tangent vector x = dz/dt satisfies
the equations

Vix = a(t)x + b(t)J(x)

where a(t) and b(t) are functions of the parameter ¢.

Let us consider two Kahler manifolds M, M’ with metrics g, ¢’ and complex
structures J, J'. A diffeomorphism f : M — M’ is called H-projective mapping
if for any H-planar curve v in M the curve f o v is H-planar curve in M’. If
a pair of Kahler manifolds M and M’ admit a non-affine H-projective mapping
f : M — M' then we shall say that these two manifolds are H-projectively
equivalent. Any non-affine H-projective mapping preserve the complex structure,
ie. fuod =J'o f. [19].

Necessary and sufficient condition for a dlffeomorphlsm f to be H-projective
mapping can be expressed by the equation [18, 20]

fHV 1 x(£Y)) = VxY = p(Y)X + p(X)Y - p(JX)JY — p(JY)JX (13)

where p is a closed 1-form (dp = 0) on M and V, V' are the covariant derivatives
with respect to Levi-Civita connections of the metrics g, ¢’. If, in particular,
p = 0, then H-projective mapping preserves the connection and is affine. We
shall consider further only non-affine, i.e. proper H-projective mappings. The

condition (13) is equivalent to the following equation
(V§)(X,Y, Z) = 2p(2)§(X,Y) + p(X)§(Y, Z) + p(Y)§(X, Z)—
p(JX)3(Y,JZ) - p(JY)§(X, J 2)

where § = f*¢' and X,Y,Z are vector fields on M. In a complex coordinates,
setting Y = 8,, Z = 85 and W = 8,, we get with the help of (4) and (5)

9By = 29,5%0 + 20 5%0s  Gapy=9ap5=0 (14)

where g;; are components of the pullback f*g’, comma denotes the covariant
derivation and p = 1 ;dz*. Note, that f*g’ is a Kdhler metric on (M, J) because

f preserves the complex structure. Hence, g;; obey the conditions similar to (4)
and (7).
Using the Sinyukov’s transformation [18]

29 _I\G

aaE = E =€'g ga"‘gkﬂ’ aaﬂ = aaﬁ = 0’ gaﬁ — e—2¢aaﬁ (15)

where a*® = q “;g"'-xg“ﬁ and (g'*f) = (9!, 5)_1’ we can write (14) in the form

oy = A"‘g’vﬁ’ at_’ﬁﬁ = Aﬁg"a (16)
where
Aa = Ag = —2’(,b' e2¢gluugau
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Transvecting (16) with g*?, we find
_— 1 .. -
A—y = /\7 = 587(9”01,']') = 6,,)\, A= aaﬁg“ﬁ. (17)

From here it follows, that \;dz' = d\ for a real function .
The integrability conditions of (16) follows from the Ricci identity

20,3 = @ot Ri; + axs Ry (18)
For (ijkl) = (y7aB) and (yvaf) vsing (11) we get
a,5Rew + 6onRE ;= g.5han = 9arMG ) (19)

g—yﬁAa,u - guﬁ/\a,'y = 0. (20)

The remaining integrability conditions hold identitically or can be obtained from
(19) and (20) by complex conjugation. Contracting (19) with g*” we find

. —
—a,5R + a"‘T‘_R%'y = 9,59" Aay — NAg,-

From hére, using (17) and the identity aoz R * = @azR%P, it is easy to derive
g BBy 7]

a’R% — a*RY, = 0. (21)
Transvecting (20) with g*® we find (n —1)A4,, = 0 which means that A,, =0
and A% = 0, or, because I'y; = 0,

OA* =0, 3, *=0. | (22)

So, we come to the conclusion that A = A9; is a holomorphic vector field. Using
the holomorphic coordinate transformations A can be reduced to the form

A=08,+8;, A =6%  IF=4§. (23)

Theorem 1 Let f be a non-affine H-projective mapping of a Kdhler manifold
(M, g) on a Kdhler manifold (M',g’). Let also d\ = A\, dz* + Azdz® be the ezact
1-form defined by Egs. (14) — (17). Then the real vector field JA = :A*9y —1\%05
is infinitesimal isometry of M, i.e. the Killing equations hold: Ljrg = 0.

Proof: Using Egs. (10), (17) and (22) we find
—id5 + iAq 5 = —10x05(a,z9"") + 10504 (a,zg"") = 0,
i/\p'a -+ i/\a,g =0, _iAﬁ,E —_ i)‘a,ﬁ =0,

or Lsgi; = S;; +S;; =0, where S = JA and S; = ¢;S'. Since f is non-affine
mapping the vector field A # 0 and S is the infinitesimal isometry. Q.E.D.
If we make A = 0, + O (see (23)), then the Killing equations take the form

(61 — 95)9,5 = 0 (24)
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Lemma 1 If « Kdhler manifold (M,g,J) admits an infinitesimal tsometry X
which is a holomorphic vector field, then the Kdhler potential of g can be reduced
to the form _ _

® = &(2' + 21, 2%, 2%,..). (25)

Proof: Any holomorphic vector field can be locally reduced to the form X =
i(0, — 0y). Then the Killing equations take the form (24). From here using (8)
we find

(81 — 89,5 = Oada(r — B = 0. (26)

Hence, (61 — 37)® = f(z) + h(Z) where f is a holomorphic function and A is
an antiholomorphic function. Similarly, because @ is real we have (0 — 05)® =
—(0, — 07)® and h(Z) = —f(2). Let us change the Kahler potential using the
gauge transformations of the form

=9+ / f(2)de* + / f(2)da! = / f(2)dz" — / h(z)dzT.

Substituting this expression in (26), we obtain (0 — 3;)®’' = 0. From here we
find @ = ®'(z! + 2*,22,2%,...). Q. E. D.

Let a Kahler manifold (M,g) admits a non-affine H-projective mapping.
Then, according to Theorem 1 and Lemma 1 the Kahler potential can be reduced
to the form (25). In this case (16) yields

agﬁ = 6’7“% = 6?93’% ag = gaiaﬁﬁa (27)
aj, = Apd3. (28)

Integrating the first equation in (27), we find
ag = 670s% + hj (29)

where Aj are holomorphic functions. From (17) A = ,® + hJ. Since A and 0,®
are real we get

A=0,D + np, hS = hE = np = const (30)
where we have used the fact that a holomorphic function is real iff it is constant.
Substituting (30) in (28), we get

5 = 99165, | ()

In the next section we shall consider this equation for the case of a four-
dimensional Kéahler manifold.

4 Non-Einstein manifolds of dimension four

Let (M,,g,J) be a non-Einstein (Ric # xg) Kahler manifold of dimension
dimgp My = 4. Let M, admits a non-affine H-projective mapping on a Kahler
manifold (Mj, ¢’,J) and let a be the tensor field defined by (15). We introduce
tensor field b = Ljpa where JA is the infinitesimal isometry defined by Theorem 1.
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According to (29) and Lemma 1, in a complex coordinates where

A =0, + 0, JA = 1(0 — 0f) (32)
we have . _
® = P(2! + 21, 2%, 2%) (34)

where fg = hj — pbF are holomorphic functions and @ is the Kahler potential.
From here

by =85 =i —Op)aj =idiff, by=105=0, ¥ =40=0, (35)

Admissible coordinate and gauge transformations which don’t change the
form of vector field A = 8, + 05 and the form (34) of Kahler potential are

2t =2 +1(2%), 2 = m(z?), (36)

@ =0 +4r- (2" +27) + u(2?) + u(2?), reR (37)

where !, m and u are holomorphic functions depending on z? only. Taking the
Lie derivative along JA from both parts of (21), we get

bRy — AR, = 0. (38)
Using this formula it is possible to prove the following

Lemma 2 If a non-Finstein four-dimensional Kdhler manifold My admits a
non-affine H-projective mapping, then in a neighborhood of each point p € M,
exist complex coordinates in which the following relations hold

af = 8505 + f§(*) +pb3, (B —O)@ =0. (39)

We have placed the proof, which is rather long and technical, in Appendix A
so as not interrupt exposition.

Admissible coordinate and gauge transformations not changing (39) are
defined by the formulas (36) and (37). Using these transformations one can
reduce fg to one of the following forms:

a) fg = 656} for f2 #0,
b) f§ = pepsy, ep = (—=1)°*! for ff = 0.

If we admit the first possibility then we come to the contradiction with the
assumption that My is non-Einstein manifold (see proof in Appendix B).

In the second case we have

aj = 695% + pepby + p65,  ep= (-1,  pu=p(z?
and, from (21)

Ri=0, (612 +2u)R; +0,9(R; - Ry) =0. (40)
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Using the symmetry and the reality of a we find

qii(p —F) =0, (41)
97059 — 9,30:® = g,5(F — 1),
91705® — 91301® = 9,5(F + u). (42)

If g,7 # 0 then from (41) it follows that x4 = f. In the case g,7 = g,3 = 0 we find
from (42) that 8,9 = —(p + &). Similarly, by (7) and (8), we get

01917 = 01957 = D953 = 0. (43)

Therefore, from (12) we find R} = R = 0 and from (40) it is easy to get
Ri(p — %) = 0. Hence R} = 0 for 4 # & and R; = 0. So we find that M,
is an Einstein manifold that contradicts to our initial assumption. Therefore,
i = &t =const.

Making the transformation p — p—p, ®— &+ 2u(2t + 21), we reduce ag
to the form

ag = 6703® + pbg. (44)
The rea.lity and the symmetry of the tensor a imply

where ¢ = (22, 2?) is a complex function. Using (8) we get
91 = P91 913 = Ogph® + vPgyy.
Because g,; is real, 8500, ® = 9,%0;®, and by Lemma 1
dzp = 0;p. (46)
This equation can be interpreted as the integrability condition of the system
¢ = O F, P =0;F (47)

where F is a real function depending only on 22 and z2. If the equation (46)
holds, then (47) has a solution F'. Substituting it in (45), we find

8,8 = 0, F0,® , (48)

where 0,0;F # 0, because otherwise det (g,5) = 0.

Because of (44), (45) and (48) the equation (16) holds identically. It means
that any Kahler manifold whose Kahler potential in any complex chart obeys
the equations (44), (45) and (48) admits non-affine H-projective mappings.

Now we find general solution of the equation (48) for an appropriate function
real F(22,22). Let ﬁ‘(zz,?) be a real function functionally independent from F'.
Rewriting (48) in the variables u = F(22,2%) and v = F(22,2?), we find

0F.
0.8 + 50,8 = 3. (49)
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From here, taking into account the reality of the functions F', u and v as well as
the identity (01 — 0p)® = 0, we find

(62F o5 F
OLF O;F

Since F, F are functionally independent 3,% = 0 and by (49) 0,® — 0,® = 0.
Therefore, the general solution of (48) has the form ® = W(2! + 2! + F(2?,22))
where W is an appropriate real function of one real variable.

From these relations the main result now follows

22-19,® = 0.

Theorem 2 Let f be a non-affine H-projective mapping of a non-Einstein four-
dimensional Kdhler manifold (My,g,J) on a Kihler manifold (M}, q',J). Then
in a neighborhood of each point p € M, ezist complex coordinates (2°,2%), a =
1,...,n in which Kdhler potential ® can be chosen in the form

® = W(z' + 21 + F(2%,22)), F= F, 0,0;F #0, W # const (50)
and the components of the metric g are defined by the formula
gaﬁ = aaa-ﬁ_q)' (51)

In the same coordinate system the pullback f*g' of the metric g’ is defined by
FEq. (15) where

a5 = Gap = 0520:05® + p0,05®, aup=a5z3=0, p€R. (52)

5 Generalized equidistant Kahler manifolds
and gravitational instantons

A (pseudo)Riemannian manifold (M, g) is called equidistant [18] if it admits
a covector field ¢ obeying the condition (V¢)(X,Y) = pg(X,Y) where p is
a smooth function and X,Y are appropriate vector fields on M. If in (50)
W(z) = exp(z) then (51) defines the metrics of an equidistant Kahler manifolds.
Conversely, it can be shown that the Kahler potential of any equidistant manifold
can be reduced to the form [14, 19]

®(21,21,...,2",2%) = exp(z' + 2T + F(zz,?,...,z",z_"))

for a real function F.

We now define a more general class of Kahler manifolds then those of
equidistant manifolds. A Kahler manifold M is called to be generalized equidistant
if in local complex coordinates its Kahler potential can be reduced to the form

® =W(2' + 21+ F(2%,22,...,2",2")), F=F.

Let us consider a four-dimensional generalized equdistant Kahler manifold
with the metric g given by (50) and the tensor field a defined by the equation
(52). As it was shown in the previous section, Eq. (16) where A\, = g,1, Az = gm
holds identically for such g and a. Therefore, we have the following
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Theorem 3 Any four-dimensional generalized equidistant Kdahler manifold ad-
mits a non-affine H-projective mapping.

J. Mikes [14] have proved that equidistant Kahler manifolds admit non-affine
H-projective mappings and Theorem 3 confirms this result for the case of four-
dimensional manifolds.

It is well-known that Kahler manifolds of constant holomorphic sectional
curvature admits H-projective mappings. It is easy to show that such manifolods
are generalized equidistant with

n
® =1In(1 + eexp(z' + 21 + In(1 + ) _ 2°2%))), €= %1
2
for non-zero holomorphic sectional curvature and
® = exp(z' + 21+ In(1 + 3 2°2%))
2

in the flat case. In particular, CP™ and C" are generalized equidistant manifolds.
It is possible also to construct the following class of the generalized equidistant
manifolds. Let N be an algebraic submanifold in C"*! defined by the equation

Fn(2?,...,2") =0

where the function Fy is a polynomial which is invariant with respect to the
action of the group C* = C\{0} by multiplication on C™*!. Let N = {C"*+1\L}
where L is the line 22 = 23 = ... = 2"*! = 0. Note that L is invariant with
respect to the action of C*. Then M = N/C* is a n — 1-dimensional algebraic
submanifold in CP". Locally we can take in CP" the Kahler metric with the
potential defined by the formula [12]

P = ln(21; +22224... + z"“z"“).

It is easy to see that M equipped with the induced metric is an generalized
equidistant Kahler manifold.

We now consider the Einstein generalized equidistant manifolds (Ric = «g).
In the case x = 0 the manifolds are Ricci-flat. Hence, they possess hyper Kahler
structure [7]. For any value of « the Einstein-Kahler manifolds have various
important applications in theoretical and mathematical physics [6, 7, 16]. In
particular, such manifolds describe field configurations of gravitational instantons
[16]. From the point of view of differential geometry the problem of finding
four-dimensional Einstein-Kahler manifolds is also of great interest and leads to
investigation of complex Monge-Ampére equation [7, 21].

The Einstein-Kahler generalized equidistant manifolds are distinguished by
the condition

exp(—k®)01(8:19)’%0;F = f(2)f(z) (53)

where f(z) is an appropriate holomorphic function. By the use of coordinate
transformations one can make f(z) f(z) = const or f(z)f(z) = const exp(2!+21).
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For simplicity we restrict our further consideration only to the first case. Then
we have
exp(—kW)W'W"0,5F = const # 0.

2

Because F depends on z2, 22 only this equation can be rewritten as

W'W" exp(—kW) = const, 0,3F = v = const # 0 (54)

whence . . _ .
F(2%,22) =222+ 7(22 + 22) + o (55)
where «y, 7 and ¢ are real constants.
For k = 0 (Ricci-flat case) after integration of (54), we find

W=A@+BP**+C, c=2'+214F(%2?) (56)

where A, B and C are some real constants. After substituting (55) in (56) and
making the admissible coordinate change z! — 2! + (72 — 0)/2, 22 — 22 — 7, we
obtain the following general expression for Kahler potential @

& = A(2' + 21 + 7222%)3/?

where the constant C is omitted because it corresponds to the gauge transfor-
mations. From here it is easy to get the following expression for the metric in
complex coordinates

ds® = ZA(z1 + 21 + 72222) V22 d2 + 2 dzt d2? + y22d2 dzT+

2v(z' + 21 + 3%lzrz-?—) dz*dz?). (57)
Introducing the real coordinates
2 42 _2l—2t 22422 2=
TET 0 YE T YT T VTR

we find from (57) the following form of the metric of four-dimensional Ricci-flat
generalized equidistant manifolds

ds® = z-A(2m + y(u? + v?))"Y?[dz? + dy*+
2y(u dz du + u dy dv + v dz dv — v dy du)+ (58)
4~(z + %(tf + v?))(du? + dv?)].
For the case & # 0 we have from (54) and (55)
| W'W" exp(—kW) = const.
After first integration of this equation we get
W = —% (Ae™” + B)'/? (59)
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where A and B are some constants. From here it is easy to find the metric
coefficients

A K K -
ng=3_’ge W(AC W+B) 1/3, (60)
Ay 2% . _
g3 = =3¢ (Ae™ + B), (61)
2,22
gr="TEE W (4?1 B+ LAV LB (62)

where the function W schould be found from (59).
Integrating (59) in the case B # 0 we get the following relation between the
function W and its argument z = z' + 21 + F(2?, 22) (here F is given by (55))

c4+C= 2( arctan(vsg";—ﬁ-)
\/—BI/S

In(—BY2 4 T) 4 In(B?/3 + BT + T?)

3B 6B ) (63)
where T = (B — A e*W)!/3, .
In the case B = 0 from (59) it is easy to find
W= % In(z + C) (64)

where an additive constant is not written.

The equations (58), (60)-(64) define the metrics of Einstein generalized
equidistant manifolds. The manifolds of this type can be interpreted as field
configurations of gravitational instantons.

Appendix A

Here we provide the proof of Lemma 2.

It follows from (35) that 55 depend only on 2. Holomorphic coordinate
transformations don’t change this result and can be used to make b} = 0.

Let b3 = 0, consider the following three possibilities in Eq. (38).
1) Let b} = 0 and the tensor field b does not vanishes. Then either b} = b2 = 0
that contradicts with the assumption about not vanishing of tensor b‘ or, because
M, is non-Einstein manifold, R} = R? = 0 and R} # R?. In the last case it is
possible to find such functions v; and v, that

b = v1Rg + v63. (A.1)
2) If b2 # 0 and b} # 0, then from (38) we have

1_ Rl -R} R
B, =0, 2b1 Tk
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hence, b} — b2 = v1(R} — R3), b2 = v; R} = 0, b} = v R} for some function v;. By
putting bﬁ = leﬁ + bﬂ, we ﬁnd b1 — b2 = bl = 62 =0 or bﬂ = v365 where v, is
some function in U.

3) At last, in the case b2 # 0, bl = b2 = 0 we get R} = R} — R; = 0. Hence, it
is possible to find functions v;, v, such that that (A.1) holds. We come to the
conclusion that (A.1) describes all possible cases. In the similar way the relations

b5 = TIRE + U35, b = viRj +va63 =0. (A2)

can be obtained. From here because of the reality and the symmetry of a, b and
Ric it follows that v, and v, are real-valued functions, i.e. (A.1), (A.2) can be
rewritten in the form of one tensor relation

bj- = le;- + v25j-.
Since b = 0 we get v, = —(v1R)/2n, whence

24 R (¢

Because of (10), (31) and (35) we have b5; = 0. Differentiating (A.3) and
denoting A = Inv;, one can find

.A o _(Rg - 6§‘R/2n),j
7 Ry — 65R/2n

The right hand side of this relation doesn’t depend on the variable y' = 715(z1 -

z1), hence, its left hand side shouldn’t depend too. Because A is real we have
A= f(r + 21, 2%, 2%) + 67 - (2 — 2Y), 7 €R,
v = exp A= f( + 27,22, D exp(ir - (2! - 7)), rE€R
Then from (A.3) we get b3 = exp(2i72')&5(2?). Taking into account (35)

f5 = =i [ bzt = exp(2ir)ej() + d3(7),  E=di=0.  (A4)
Using this equation we find from (21), (33) |

650.,8R; — 0@ Ry + djRp — dg R =0, (A.5)

¢, R — cpR;, = 0. (A.6)

Let us consider the cases ¢ # 0 and ¢ = 0. Using the admissible

transformations (36) in the first case one can reduce c§ to the form
g = 63654 + 6565

where ¢ is a holomorphic function depending on 2? only. Substituting this
expression in (A.6), we find ¢R? = R}, R} = R}, whence, by (A.5) we have
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If R; # 0 or R} # 0, then ;% = —2d} is a holomorphic function and g,7 = g,5 =
0, hence, the metric is degenerate. Therefore, R} = R? = Rl — R? = 0 that
contradicts with our assumption that M, is non-Einstein manifold.

So we have ¢ = 0. In this case by the use of the admissible coordinate
transformations one can make

g =& =cibfen,  ep= (-1, (A.7)

5 = dS = d185es + (226383 + (8565, ¢ =0,1.
After the gauge transformation ® — ® + [ v(2?)d2? + [ v(22)d2? we find taking
into account (33) and (A.4)

S = &2 = d}63es + (836, (A.8)

Substituting (A.7) into (A.6), we get cIR} = 0, c}R? = 0, whence, ¢! = 0 or
R} = R} = 0. In the last case from (A.5) and (A.8) follows 8,®(R2 — R!) = 0.
Since 8;® # 0, we find R} — R} = 0. So M, is an Einstein manifold again,
therefore, c; = 0 and f§ = d§(2%). Substituting this result into (33) prove the
Lemma 2.

Appendix B

Here we prove that the condition g = 5;‘6}, contradicts with the assumption
that the considered Kahler manifold is non-Einstein.
From (21) and (39) we find

R, = 8,®R}, R)0,®+ 0, ®(R:—R})=0. (B.1)

Writing down the symmetry conditions of a we obtain with the help of (39) the
next formulae
951 =913  9110:® = 95701 + 9,3,
912012 + 953 = 9:70:9,
9:170:® — 9,107® = 6:13(9;® — 3;®) = 0.
From the last equation it follows that either 8;® = 8;® or g,5 = g,7 = 0.

Let us first take g,7 = g,3 = 0, then from (7) the equality 819,35 = 8,9,7 = 0
follows, hence 8,0;det(g,5) = 0 and, because of (12) we find R;; = R,;; = 0,
therefore, R = R} = 0. Since 8,9 # 0, from (B.1) we get R! — R2 = 0, which
means that M, is Einstein manifold. We came to contradiction with our initial
assumption. Hence, in addition to the formula 8,® = 3;® we have 8;® = 5;9.
From here using Eqs. (8) — (12), it is possible to deduce that all components of
the metric tensor, Christoffel symbols and curvature tensor are real. Then (21)
can be written as

Raga% — R, za; = 0.
From here, putting o, = 1,2 and using the identities 3,® # 0, agj = a%—
and Rz = Rgp, we find R.5 = 0, hence, Ric = 0 that contradicts with the
assumption that M, is non-Einstein. Q.E.D.
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