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On geodesic hyperspheres in a complex projective
space
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1. Introduction ,

Let P,(C) be an n-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4c. R. Takagi
([4] and [5]) classified all homogeneous real hypersurfaces in P, (C) which
are orbits under analytic subgroups of the projective unitary group PU(n+
1) in P,(C). Due to his work, we see that such a homogeneous real
hypersurface in P,(C) is locally congruent to one of the six model spaces
of type Ay, A2, B,C, D and E (for details, see Theorem A in [4]).

On the other hand, it is an open question whether a real hypersurface in
P, (C) has a rigidity or not. More precisely, if M is a (2n — 1)-dimensional
Riemannian manifold and ¢, { are two isometric immersions of M into
P,(C), then are ¢ and i congruent ?

To this problem, Y.-W.Choe, H.S.Kim, Y.J.Suh, R.Takagi and one of
the present authors gave some partial solutions (see [1] and [3]). As a
special case of the rigidity problem, we can consider the following one.

If M s a real hypersurface in P,(C) isometric to one of the model
spaces of siz types, then is M congruent to the model space ?

In this paper we shall give a partial afirmative answer to this question.
The model space of type A; is just a geodesic hypersphere in P,(C) ([5]).
The main purpose is to prove the following

Theorem. Let M be a (2n — 1)-dimensional connected complete Rie-
mannian manifold, and let 7 and ¢ be two isometric immersions of M into
P,(C)(n > 3). If {(M) is a geodesic hypersphere in P,(C), then so is
¢(M), that is, { and ¢ are rigid.

The authors would like to express their sincere gratitude to Professor
Ryoichi Takagi for many valuable suggestions.

2. Preliminaries on real hypersurfaces
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Let ¢« be an isomectric immersion of a (2n — 1)-dimensional Riemannian
manifold M into the complex projective space Pp(C) with the metric of
constant holomorphic sectional curvature 4c. For a local orthonormal
frame field {e;,ez2,...,e2,—1} of M, we denote its dual 1-forms by 6;.
Then the connection forms 6#;; and the curvature forms ©;; of M are

defined by

(2.1) do; +>6:;;A0; =0, 6;;+0; =0,
(2.2) O = dbij + > 0ir A O
respectively, where and in the sequel the indices ¢, j,k,[,... run over the

range {1,2,...,2n — 1}, unless otherwise stated.

With respect to the orthonormal frame field {€é1, é2,...,€2,} of Pp(C)
such that &; = t.e;, we denote the connection forms of P,(C) by éAB, |
where the indices A, B, ... run over the range {1,2,...,2n}. We put

(23) "*ézm‘ =; = ZA,'J'GJ‘, J,'j oL = (ﬁ,‘j and Jonpiot=¢&;,

where J is the complex structure of P,(C) and A;; are components of the
shape operator or the second fundamental tensor of (M,¢). The rank of
the matrix (Aj;) is called the type number of (M,:). Then from (2.1),
(2.2) and (2.3), we have the equations of Gauss and Weingarten

(2.4) Oij =viANY;+cl; ANOj + c (dirdji + dijdr1)0i A Oy,
(2.5) dipi + 3 i N6 = (i + Eidjr)b; A Or

respectively. From (2.3) we also have

(2.6) S didr; = =65 + &i&j, Y€id;i=0, Y& =1,

that is, the tensor fields ¢ = (¢i;) and £ = () form an almost contact
structure on M. ¢ is called a structure vector field.

Since we have dJap = Y (JacOcB—JIBcOca) on Py(C), it follows from
(2.3) that

(2.7) doi; = S (hikOkj — djxki) — &b + &,
(2.8) d¢; = 3 (095 — 6jivs)-
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For another immersion ¢ of M into P,(C), we shall denote the differen-
tial forms and tensor fields of (M, i) by the same symbol as ones in (M, ¢)
but with a hat. Since the canonical 1-forms, connection forms and cur-
vature forms are independent of the choice of immersions, it follows from
(2.4) that

AikAji — AuAji + c(dikdji — dudjk + 2¢ijdr1)
=AiAji — AuAji + c(dindjt — dudir + 20i;br1).

As for the rigidity of (M, ) and (M,?), the following are known and
will be used later.

(2.9)

Theorem A ([1]). Let M be a (2n — 1)-dimensional Riemannian
manifold, and ¢ and ¢ be two isometric immersions of M into P,(C)(n > 3).
If two structure vector fields coincide up to sign on M and the type number
of (M, ) or (M,+) is not equal to 2 at every point of M, then i and ¢ are
rigid.

Theorem B ([3]). Let M be a (2n — 1)-dimensional Riemannian
manifold, and i and ¢ be two isometric immersions of M into P,(C)(n > 3).
If there exists a principal direction in common and the type number of
(M,?) or (M,.) is not equal to 2 at every point of M, then { and ¢ are
rigid.

3. Geodesic hyperspheres

Let Z be an isometric immersion of a (2n — 1)-dimensional connected
complete Riemannian manifold M into the complex projective space P,(C),
and (M) be a geodésic hypersphere in P,(C). Then there exists a local
orthonormal frame field {e; = €, e;,...,e2n—1} on M such that

a 0 ... 0 0 0
0 0

31) A=|: 4, and $=|: 4.
0 0

where 2 < p,¢ < 2n — 1, and the principal curvatures & and r of (M, ?)
are given by

(3.2) & = 2\/ccot 20, r = /ccoth
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(for instance, see [5]).
The geodesic hyperspheres in P,(C) are characterized by

Lemma 3.1. (M) is a geodesic hypersphere in P,(C) if and only if
the shape opcrator A of (M, ) is given by

(3.3) Aji = r8ji + (& — r)éjé;

where & and r are scalar fields, and r # 0 on M.

Proof. If i(M) is a geodesic hypersphere, then it is easily seen that
(2.8) and (3.1) give rise to

(3.4) S bt =r>.6;ib;,
which is equivalent to (3.3).

Converscly, if (3.3) is satisfied on M, then it follows from (2.6) and
(3.3) that > &;A;; = &€, that is, & is a principal curvature of M. 1t is

well known ([2]) that & is a constant on M. Moreover (3.3) is equivalent
to

(3.5) i = r6; + (& — r)éi,
where 1) is the associated 1-form of é , that is, 7 = D {:-0,-. By applying qgji
to (3.5), it is easily seen from (2.6) that (3.5) is equivalent to (3.4).

Differentiating (3.5) and making use of (2.1), (2.5), (2.8), (3.4) and
(3.5), we have

dr A (8; — &) = [c+ (& — r))(T5:0; A1+ €885 A 6r).
Multiplying this equation by ¢; and using (2.6), we obtain
[c+r(a— r)]Zd?,-,:aj ANG; =0.

Since the rank of the matrix (¢ ;i) is equal to 2n — 2, then this equation is
reduced to

(3.6) ct+r(@—r)=0,
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which shows that r is a non-zero constant on M. Moreover if we set r =
Vccot B, then (3.2) is satisfied. Therefore i( M) is a geodesic hypersphere
in P,(C).

4. Proof of Theorem ,

Since (M) is a geodesic hypersphere in P,(C), then the shape operator
A of (M, £) is given by (3.3) in Lemma 3.1, and the principal curvatures
& and r(# 0) are all constants on M.

It follows from (2.9) and (3.3) that

AinAji — AuAjr + c(Qirdji — ditdjx + 20i;Px1)
(4.1) = r2 (6 bj1 — 6ubdjr) — c(6inb;ér — 8uéién + 850€ile — 81€:6)
+ c(ir it — biudjk + 26i;r1).

For the shape operator A of (M, ), We shall define some scalar fields
on M as ‘

(42) o= N¢gEA  B=Y¢EAj, v= €A and f =3¢,
Then, first of all, we see tha,t:Af2 <1 on :7\4
Multiplying (4.1) by €€k, €:€x and €;&x, we have
(4.3) o dji — S ExArj&iAn — 3¢ &drilidu = (r? — cf*)6ji — v,
— cfi&i + cf (€& + &;&)
(4.4) BA;i — S ErAr;61An = ar(f8;: — €;&),
(4.5) vAji — Dk Aki&iAu + 3 Erdrilidn = ar(6ji — &)

respectively, where we have used (2.6) and (3.6). If we take the symmetric
parts of (4.4), we obtain

S (ErArjb1An — ExAr;E1AL) = ar(é;& — &6).

Under the same consideration as the above, it is easily verified that this
equation is reduced to

(4.6) ¥ €Az — BY €A i = ar(& — fi),
(4.7) BY A5 —ad €A i = ar(fé — &),
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and
(4.8) ay — B? = ar(1 — f?).

Now we shall prove

Lemma 4.1. Let i and ¢ be two isometric immersions of a (2n — 1)-
dimensional connected complete Riemannian manifold M into P,(C), and
i(M) be a geodesic hypersphere. If the principal curvature & is equal to
zero on M, then the two structure vector fields coincide up to sign on M.

Proof. At first we see from (3.6) and (4.8) that r2 = ¢ and ay = 2.
Therefore our case can be occurred when 6 = tan™?(%1) as seen in (3.2).
If there is a point p of M such that a(p) = 0, then (4.3) is reduced to

S ExAr €A+ 3¢ En il = c[(f2 —1)6j: + &t + &€ — F(€;6:+66)).
Summing up for 7 and j, we have
(4.9) I AE|% + 3c||$¢]I* = (2n — 3)e(f* - 1),

where || || denotes the magnitude. Since f2 —1 < 0 and n > 3, then
(4.9) gives rise to #¢ = 0 and hence ¢ = +£ at p.

Let o # 0 on an open neighborhood U in M. If 8 = 0 at some points
of U, then 4 = 0 at that points by (4.8). We assume that there is a point

q of U such that 8(q) = 0. Then it follows from (4.7) that ijAji =0 at
q. Comparing this relation with (4.5), we have qSé = 0 and hence £ = ££
at ¢. If 8 # 0 on an open subset V of U, then it follows from (4.7) that

SEiAji = (Bla)LEjAji.
Substituting this relation into (4.4), we obtain
adji =Y EeAr;&1Aun.
If we compare this equation with (4.3), then we have
3 €k = (f* = D5 + &6 + &6 — (&6 + &),

which implies that 3||¢¢||? = (2n — 3)(f? — 1) and hence £ = +éon V.
This completes the proof.
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Lemma 4.2. If the principal curvature & is not equal to zero on M
under the assumptions as in Lemma 4.1, then we have f* = 1, that is, the
two structure vector fields coincide up to sign on M.

Proof. Assume that there is an open neighborhood U of M such that
p g
f?# 1 onU. Then it follows from (4.6), (4.7) and (4.8) that

(4.10) S A = ub + v,

where we have put v = (8 —~f)/(1 — f?) and v = (v — Bf)/(1 — f?).
Substituting (4.10) into (4.5), we have

(4.11) vAji + 302&-%;‘&% =ard;; + u?é; &+
(v = ar)é;éi + uv (€56 + €56

on U. Since f2? # 1, then ¢ is a non-zero vector field on U. Multiplying
(4.11) by >~ €pdni and using (2.6), we obtain

(4.12) 7ZAjiék¢ki = [&r — 3¢(1 - fz)]zék@cj

on U.

Assume that there is a point p of U such that v(p) = 0. Then we see
from (4.8) that —3%(p) = ar(1 — f3(p)) and so ar < 0. We also see from
(4.12) that ar = 3¢(1 — f?(p)) > 0 and it is contrary. Therefore v # 0
on U. The equation (4.12) shows that ¢¢ is a principal direction of (U, ).
Since we see from (3.3) that ¢¢ is a principal direction of (M, 1), then 3
is the principal direction in common on U.

Since the type number of (M,?) is equal to 2n — 2 or 2n — 1 by Lemma
3.1, then we sce that the structure vector fields ¢ and é coincide up to
sign on U by Theorems A and B. This contradicts to f2 # 1 on U, and
completes the proof.

Proof of Theorem. By Lemmas 4.1 and 4.2, the two structure vector
fields coincide up to sign on M and the type number of (M, i) is not equal
to 2 at every point of M. Therefore i and ¢ are rigid by Theorem A and
this completes the proof.
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