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1. Introduction
Let $P_{n}(\mathbb{C})$ be an n-dimensional complex projective space with Fubini-

Study nnetric of constant holomorphic sectional curvature $4c$ . R. Takagi
([4] and [5]) classified all homogeneous real $hypersu\iota\cdot faces$ in $P_{1l}(\mathbb{C})$ which
are orbits under analytic subgroups of the projective unitary group PU$(n+$

1) in $P_{n}(\mathbb{C})$ . Due to his work, we see that such a homogeneous real
$hype\iota\cdot slllfacc$ in $P_{n}(\mathbb{C})$ is locally congruent to one of the six model spaces
of $tyl$ ) $cA_{1},$ $A_{2},$ $B,$ $C,$ $D$ and $E$ (for details, see Theorem A in [4]).

On the other hand, it is an open question whether a real hypersurface in
$P_{n}(\mathbb{C})$ has a rigidity or not. More precisely, if $M$ is a $(2n-1)$-dimensional
Ricmannian manifold and $\iota,$

$\iota\wedge$ are two isometric immersions of $M$ into
$P_{n}(\mathbb{C})$ , then are $\iota$, and $\iota\wedge$ congruent ?

To tllis problern, Y.-W.Choe, H.S.Kim, Y.J.Suh, R.Takagi and one of
the present autlzors gave solne partial solutions (see [1] and [3]). As a
special case of the rigidity problem, we can consider the following one.

If $AI$ is a real hypersurface in $P_{n}(\mathbb{C})$ isometric to one of the model
spaces of six types, then is $Mcongr\cdot uent$ to the model $sp$ace ?

In t,his paper we shall give a partial affirmative answer to this question.
The model space of type $A_{1}$ is just a geodesic hypersphere in $P_{n}(\mathbb{C})$ ([5]).
The main purpose is to prove the following

Theorem. Let $M$ bc a $(2\uparrow\tau-1)$-dimensional connected complete Rie-
Inannia,$n$ manifold, and let $\iota\wedge$ and $\iota$ be two isometric immersions of $M$ int $0$

$P_{n}(\mathbb{C})(r\iota\geq 3)$ . If $\iota\wedge(M)$ is a geodesic hypersphere in $P_{n}(\mathbb{C})$ , then so is
$\iota(M)$ , tha.t is, $\iota\wedge$ and $\iota$ are rigid.

The authors would like to express their sincere gratitude to Professor
Ryoichi Takagi for many valuable suggestions.

2. Prelilninaries on real hypersurfaces
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Let $\iota$ be $\dot{c}tll;_{1^{\backslash }}\subset olr1(\backslash ,t,1^{\cdot}ic$ ilnmcrsion of a $(2n-1)$-dimensional Riemannian
$nlaIlifold1tI$ into thc complex projective space $P_{n}(\mathbb{C})$ with the metric of
constant holoniorphic sectional curvature $4c$ . For a local orthonormal
frame field $\{e_{1}, e_{2}, \ldots, e_{2n-1}\}$ of $M$ , we denote its dual l-forms by $\theta_{i}$ .
Then the conncction forms $\theta_{ij}$ and the curvature forms $\Theta_{ij}$ of $M$ are
defined by

(2.1) $d\theta;+\sum\theta_{ij}\wedge\theta_{j}=0$ , $\theta_{ij}+\theta_{ji}=0$ ,

(2.2) $\Theta_{ij}=d\theta_{ij}+\sum\theta_{ik}\wedge\theta_{kj}$

respectivcly, where and in the sequel the indices $i,j,$ $k,$ $l,$
$\ldots$ run over the

rangc $\{1, 2, \ldots, 2n-1\}$ , unless otherwise stated.
Witlz respect to the orthonormal frame field $\{\tilde{e}_{1},\tilde{e}_{2}, \ldots,\tilde{e}_{2n}\}$ of $P_{n}(\mathbb{C})$

such that $\tilde{e}_{i}=\iota_{*}e_{i}$ , we denote the connection forms of $P_{n}(\mathbb{C})$ by $\tilde{\theta}_{AB}$ ,
where the indices $A,$ $B,$

$\ldots$ run over the range $\{1, 2, \ldots, 2n\}$ . We put

(2.3) $l^{*}\tilde{\theta}_{2ni}=\psi_{i}=\sum A_{ij}\theta_{j}$ , $J_{ij}o\iota=\phi_{ij}$ and $J_{2ni}o\iota=\xi\{$ ,

where $J$ is the complex structure of $P_{n}(\mathbb{C})$ and $A_{ij}$ are components of the
shape opera.tor or the second fundamental tensor of (M. $\iota$ ). The rank of
the matrix $(A_{ji})$ is called the type number of (M,. $\iota$ ). Then from (2.1),
(2.2) and (2.3), we have the equations of Gauss and Weingarten

(2.4) $\Theta;j=\psi i\wedge\psi j+c\theta_{i^{\wedge\theta}j}+c\sum(\phi ik\phi jl+\phi\phi)\theta\wedge\theta$ ,
(2.5) $d\psi_{i}$) $+\sum\psi_{j}\wedge\theta_{ji}=c\sum(\xi_{j}\phi_{ik}+\xi_{i}\phi_{jk})\theta_{j}\wedge\theta_{k}$

respectively. From (2.3) we also have

(2.6) $\sum\phi ik\phi kj=-\delta_{ij}+\xi i\xi j$ $\sum\xi j\phi ji=0$ , $\sum\xi^{2}i=1$ ,

that is, the tensor fields $\phi=(\phi_{ij})$ and $\xi=(\xi_{i})$ form an almost contact
structure on M. $\xi$ is called a structure vector field.

Since we have $dJ_{AB}=\sum(J_{AC}\tilde{\theta}_{CB}-J_{BC}\tilde{\theta}_{CA})$ on $P_{n}(\mathbb{C})$ , it folows from
(2.3) that

(2.7) $d\phi ij=\sum(\phi ik\theta kj-\phi jk\theta ki)-\xi i\psi j+\xi j\psi i$ ,
(2.8) $d\xi_{i}=\sum(\xi_{j}\theta_{ji}-\phi_{ji}\psi_{j})$ .
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For another immcrsion $\iota\wedge$ of $M$ into $P_{n}(\mathbb{C})$ , we shall denote the differen-
tial forrns and tensor fields of $(M, \iota\wedge)$ by the same symbol as ones in $(M, \iota)$

but with a hat. Since the canonical l-forms, connection forms and cur-
vature forrns are independent of the choice of immersions, it follows from
(2.4) that

$A_{ik}A_{jl}-A_{il}A_{jk}+c(\phi_{ik}\phi_{jl}-\phi_{il}\phi_{jk}+2\phi_{ij}\phi_{kl})$

(2.9)
$=\hat{A}_{ik}\hat{A}_{jI}-\hat{A}_{il}\hat{A}_{jk}+c(\hat{\phi}_{ik}\hat{\phi}_{jl}-\hat{\phi}_{il}\hat{\phi}_{jk}+2\hat{\phi}_{ij}\hat{\phi}_{kl})$ .

As for the rigidity of $(M, \iota)$ and $(M, \iota\wedge)$ , the following are known and
will be used later.

Tlleoreln A ([1]). Let $M$ be a $(2n-1)$ -dimensional Riema.nnian
manifold, and $\iota\wedge and$

$\iota$ be two isom$etzicim$mersions of $M$ into $P_{n}(\mathbb{C})(n\geq 3)$ .
If two $st_{l}$ructurc vector fields coincide up to sign on $\Lambda f$ and the type number
of $(M, l^{\wedge})$ or $(M, l)$ is not equal to 2 $a.t$ every poin $t$ of $\mathbb{J}f$ , then $\iota\wedge and$

$\iota$ are
rigid.

Theorem $B$ ([3]). Let $M$ be a $(2n-1)$ -dimensional Riemann $i$an
$m$anifold, and $\hat{\iota}$ and $\iota$ be two isometric $im$mersions of $M$ into $P_{n}(\mathbb{C})(n\geq 3)$ .
If thei $ec$xists a principal dir$e$ction in common and the type number of
$(M, \iota\wedge)01^{\cdot}(\Lambda I, \iota)$ is not $cq$ual to 2 at $e$very poin $t$ of A4, then $\hat{\iota}$ and $\iota$ are
rigid.

3. Geodesic hyperspheres
Let $l^{\wedge}$, be an isometric immersion of a $(2n-1)- dimensional\backslash $ connected

complete Riemannian manifold $M$ into the complex projective space $P_{n}(\mathbb{C})$ ,
and $\hat{\iota}(Jf)$ be a geodesic hypersphere in $P_{n}(\mathbb{C})$ . Then there exists a local
orthonormal frame field $\{e_{1}=\hat{\xi}, e_{2}, \ldots , e_{2n-1}\}$ on $M$ such that

(3.1) $\hat{A}=\left(\begin{array}{llll}\hat{\alpha} & 0 & & 0\\0 & & & \\\vdots & & r\delta_{pq} & \\0 & & & \end{array}\right)$ and $\hat{\phi}=\left(\begin{array}{lll}0 & & 0\\0 & & \\\vdots & \hat{\phi}_{pq} & \\0 & & \end{array}\right)$

$w1_{1}er(12\leq l)q\leq 2n-1$ , and the principal curvatures $\hat{\alpha}$ and $r$ of $(M, \iota\wedge)$

are $giv\epsilon n$ by

(3.2) $\hat{\alpha}=2\sqrt{c}$ cot $ 2\theta$ , $r=\sqrt{c}$ cot $\theta$
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(for instance. see [5]).

Th(} geodesic hyperspheres in $P_{n}(\mathbb{C})$ are characterized by

Lelnllla 3.1. $p^{\wedge}(M)$ is a geodesi $c$ hypersphere in $P_{\mathfrak{n}}(\mathbb{C})$ if and only if
thc $\epsilon_{i}h_{t}’\iota 1$) $\epsilon^{1}op$erator $\hat{A}$ of $(M, \iota\wedge)$ is given by

(3.3) $\hat{A}_{ji}=r\delta_{ji}+(\hat{\alpha}-r)\hat{\xi}_{j}\hat{\xi}_{i}$

where $\hat{\alpha}$ and $r$ are scalar ficlds, and $r\neq 0$ on $M$ .

Proof. If $\iota\wedge(\Lambda f)$ is a geodesic hypersphere, then it is easily seen that
(2.8) and (3.1) give rise to

(3.4) $\sum\hat{\phi}_{ji}\hat{\psi}_{j}=r\sum\hat{\phi}_{ji}\theta_{j}$ ,

which is equivalent to (3.3).
Convcrsely, if (3.3) is satisfied on $\Lambda/I$ , tlren it follows from (2.6) and

(3.3) that, $\sum\hat{\xi}_{j}\hat{A}_{ji}=\hat{\alpha}\xi_{i}$ , that is, $\hat{\alpha}$ is a principal curvature of $M$ . It is
well known ([2]) that $\hat{\alpha}$ is a constant on $M$ . Moreover (3.3) is equivalent
to

(3.5) $\hat{\psi}_{i}=r\theta_{i}+(\hat{\alpha}-r)\hat{\xi};\hat{\eta}$ ,

where $|t\wedge$ is the associated l-form of $\xi$ , that is, $\hat{\eta}=\sum\hat{\xi}_{1}\theta;$ . By applying $\hat{\emptyset}ji$

to (3.5), it is easily seen from (2.6) that (3.5) is equivalent to (3.4).
Differentiating (3.5) and making use of (2.1), (2.5), (2.8), (3.4) and

(3.5), wc have

$(l_{\Gamma}\wedge(\theta_{i}-\hat{\xi}_{i}\hat{\eta})=[c+r(\hat{\alpha}-r)](\sum\hat{\phi}_{ji}\theta_{j}\wedge\hat{\eta}+\sum\hat{\xi}_{i}\hat{\phi}_{jk}\theta_{j}\wedge\theta_{k})$ .

Multiplying this equation by (; and using (2.6), we obtain

$[c+r(\hat{\alpha}-r)]\sum\hat{\phi}_{ji}\theta_{j}\wedge\theta_{i}=0$

Since the rank of the matrix $(\hat{\phi}_{ji})$ is equal to $2n-2$ , then this equation is
reduced to

(3.6) $c+r(\hat{\alpha}-r)=0$ ,

–32–



$w1_{1}ic11$ sliows that $r$ is a non-zero constant on $M$ . Moreover if we set $r=$

$\sqrt{c}cot\theta_{G}.tll(Yn(3.2)$ is satisfied. Therefore $\iota\wedge(M)$ is a geodesic hypersphere
in $P_{r1}(\mathbb{C})$ .

4. Proof of Theorem
$Sin(;(ds^{\wedge}l(\Lambda I)$ is a, geodesic hypersphere in $P_{n}(\mathbb{C})$ , then the shape operator

$\hat{A}$ of $(Jl, \iota\wedge)$ is given by (3.3) in Lemma 3.1, and the principal curvatures
$\hat{\alpha}$ and $r(\neq 0)$ are all constants on A4.

It follows from (2.9) and (3.3) that

$A_{ik}Ajl-A_{il}Aik+c(\phi ik\phi jl-\phi_{il}\phi jk+2\phi ij\phi kl)$

(4.1) $=r^{2}(\delta_{ik}\delta_{jl}-\delta_{il}\delta_{jk})-c(\delta_{ik}\hat{\xi}_{j}\hat{\xi}_{l}-\delta_{il}\hat{\xi}_{j}\hat{\xi}_{k}+\delta_{jl}\hat{\xi}_{i}\hat{\xi}_{k}-\delta_{jk}\hat{\xi}_{\uparrow}\cdot\hat{\xi}_{l})$

$+c(\hat{\phi}ik\hat{\phi}jl-\hat{\phi}il\hat{\phi}jk+2\hat{\phi}ij\hat{\phi}kl)$ .

For the shape operator $A$ of (A4, $\iota$ ), We shall define some scalar fields
on $\mathbb{J}I$ as

(4.2) $\alpha=\sum\xi_{j}\xi_{i}A_{ji},$ $\beta=\sum\xi_{j}\hat{\xi}_{i}A_{ji},$ $\gamma=\sum\hat{\xi}_{j}\hat{\xi}_{i}A_{ji}$ and $f=\hat{\xi}j\xi j$ .

Then, first of all, we see that $f^{2}\leq 1$ on $M$ .
Multiplying (4.1) by $\xi_{i}\xi_{k},\hat{\xi}_{i}\xi_{k}$ and $\hat{\xi}_{i}\hat{\xi}_{k}.$ , we have

(4.3) $\alpha A_{ji}-\sum\xi_{k}A_{kj}\xi_{l}A_{li}-3c\sum\xi_{k}\hat{\phi}_{kj}\xi_{l}\hat{\phi}_{li}=(r^{2}-cf^{2})\delta_{ji}-r^{2}\xi_{j}\xi_{i}$

$-c\hat{\xi}_{j}\hat{\xi}_{i}+cf(\hat{\xi}_{j}\xi_{i}+\xi_{j}\hat{\xi}_{i})$

(4.4) $\beta A_{ji}-\sum\xi_{k}A_{kj}\hat{\xi}_{l}A_{li}=\hat{\alpha}r(f\delta_{ji}-\xi_{j}\xi_{i})$ ,

(4.5) $\gamma A_{ji}-\sum\hat{\xi}kA\hat{\xi}lA+3c\sum\xi k\phi kj\hat{\xi}l\phi li=\hat{\alpha}r(\delta ji-\hat{\xi}j\hat{\xi}i)$

respectively, where we have used (2.6) and (3.6). If we take the symmetric
parts of (4.4), we obtain

$\sum(\hat{\xi}_{k}A_{kj}\xi_{l}A_{li}-\xi_{k}A_{kj}\hat{\xi}_{l}A_{li})=\hat{\alpha}r(\hat{\xi}_{j}\xi_{i}-\xi_{j}\xi_{i})$ .

Under the same consideration as the above, it is easily verified that this
equation is reduced to

(4.6) $\gamma\sum\xi_{j}A_{ji}-\beta\sum\hat{\xi}_{j}A_{ji}=\hat{\alpha}r(\xi_{j}-f\xi_{i})$ ,

(4.7) $\beta\sum\xi_{j}A_{ji}-\alpha\sum\hat{\xi}_{j}A_{ji}=\hat{\alpha}r(f\xi;-\hat{\xi}_{i})$ ,
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and

(4.8) $\alpha\gamma-\beta^{2}=\hat{\alpha}r(1-f^{2})$ .

Now we sltall prove

Lemma 4.1. Let $\iota\wedge$ and $l$ be two isometric immersions of a $(2n-1)-$

dimensional connected $c$onJplete $Ri$emanniim manifold $M$ into $P_{n}(\mathbb{C})$ , and
$\wedge(\Lambda I)l)e$ a geodesic hypcrsphcre. If thc principal $cu$rvature $\hat{\alpha}$ is equ $al$ to
zero on Af, then the two structure vector fields coincide up to $s$ign on Al.

Proof. At first we see from (3.6) and (4.8) that $r^{2}=c$ and $\alpha\gamma=\beta^{2}$ .
Therefore our case can be occurred when $\theta=\tan^{-1}(\pm 1)$ as seen in (3.2).

If there is a point $p$ of $M$ such that $\alpha(p)=0$ , then (4.3) is reduced to

$\sum\xi_{k}A_{kj}\xi_{l}A_{li}+3c\sum\xi_{k}\hat{\phi}_{kj}\xi_{l}\hat{\phi}_{li}=c[(f^{2}-1)\delta_{ji}+\xi_{j}\xi_{i}+\hat{\xi}_{j}\hat{\xi};-f(\hat{\xi}_{j}\xi_{i}+\xi_{j}\hat{\xi}_{i})]$ .

$SumIning$ up for $i$ and $j$ , we have

(4.9) 11 $A\xi\Vert^{2}+3c\Vert\hat{\phi}\xi\Vert^{2}=(2n-3)c(f^{2}-1)$ ,

wllcr($.\backslash \Vert$ $||$ denotes the magnitude. Since $f^{2}-1\leq 0$ and $n\geq 3$ , then
(4.9) gives rise to $\hat{\phi}\xi=0$ and hence $\xi=\pm\hat{\xi}$ at $p$ .

Let $n^{J}\neq 0$ on an open neighborhood $U$ in $M$ . If $\beta=0$ at some points
of U. tlzen $\gamma=0$ at that points by (4.8). We assume that there is a point
$q$ of $L^{7}$ such that $\beta(q)=0$ . Then it follows from (4.7) that $\sum\hat{\xi}_{j}A_{ji}=0$ at
$q$ . Comparing this rclation with (4.5), we have $\phi\xi=0$ and hence $\xi=\pm\xi$

at $q$ . If $\beta\neq 0$ on an open subset $V$ of $U$ , then it follows from (4.7) that

$\sum\hat{\xi}_{j}A_{ji}=(\beta/\alpha)\sum\xi_{j}A_{ji}$ .

Substituting this relation into (4.4), we obtain

$\alpha A_{ji}=\sum\xi_{k}A_{kj}\xi_{l}A_{li}$ .

If we $COlnp\aleph rc$ this equation with (4.3), then we have

$3\sum\xi_{k}\hat{\phi}_{kj}\xi_{l}\hat{\phi}_{li}=(f^{2}-1)\delta_{ji}+\xi_{j}\xi_{i}+\hat{\xi}_{j}\xi_{i}-f(\hat{\xi}_{j}\xi_{i}+\xi_{j}\hat{\xi}_{i})$ ,

which implies that $3\Vert\hat{\phi}\xi\Vert^{2}=(2n-3)(f^{2}-1)$ and hence $\xi=\pm\xi$ on $V$ .
This complctcs the proof.
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Lelmlna 4.2. If the principal $cu1^{\cdot}t\nearrow atm\cdot e\hat{\alpha}$ is not equ $al$ to zero on $hl$

under tlie $\partial,ssumptions$ as in Lemma 4.1, then we havc $f^{2}=1$ , that is, the
two strizct $ure$ vectoi fields coincide up to sign on Al.

Proof. Assume that tllere is an open neighborhood $U$ of $\Lambda/I$ such that
$f^{2}\neq 1011U$ . Then it follows from (4.6), (4.7) and (4.8) tllat

(4.10) $\sum\hat{\xi}_{j}A_{ji}=u\xi_{i}+v\hat{\xi}_{i}$ ,

where we have put $\tau\iota=(\beta-\gamma f)/(1-f^{2})$ and $v=(\gamma-\beta f)/(1-f^{2})$ .
Substituting (4.10) into (4.5), we have

$\gamma A_{ji}+3c\sum\hat{\xi}k\phi kj\hat{\xi}l\phi li=\hat{\alpha}r\delta ji+u^{2}\xi j\xi i+$

(4.11)
$(v^{2}-\hat{\alpha}r)\hat{\xi}_{j}\hat{\xi}_{i}+uv(\hat{\xi}_{j}\xi_{i}+\xi_{j}\hat{\xi}_{i})$

on $U$ . Since $f^{2}\neq 1$ , then $\emptyset\xi$ is a non-zero vector field on $U$ . Multiplying
(4.11) by $\sum\hat{\xi}_{h}\phi_{hi}$ and using (2.6), we obtain

(4.12) $\gamma\sum A_{ji}\xi_{k}\phi_{ki}=[\hat{\alpha}r-3c(1-f^{2})]\sum\xi_{k}\phi_{kj}$

on $U$ .
Assulne that there is a point $p$ of $U$ such that $\gamma(p)=0$ . Then we see

from (4.8) that $-\beta^{2}(p)=\hat{\alpha}r(1-f^{2}(p))$ and so $\hat{\alpha}r\leq 0$ . We also see from
(4.12) that $\hat{\mathfrak{a}}r=3c(1-f^{2}(p))>0$ and it is contrary. Therefore $\gamma\neq 0$

on $U$ . Thc equation (4.12) shows that $\phi\hat{\xi}$ is a principa,1 direction of $(U, \iota)$ .
Since we see from (3.3) that $\phi\xi$ is a principal direction of $(M, \ell\wedge)$ , then $\phi\hat{\xi}$

is the principal direction in common on $U$ .
Since tlre type number of $(M, \iota\wedge)$ is equal to $2n-2$ or $2\uparrow l-1$ by Lemma

3.1, tlien we see that the structure vector fields $\xi$ and $\xi$ coincide up to
sign on [ $T$ by Theorerns A and B. This contradicts to $f^{2}\neq 1$ on $U$ , and
completes $t,1$) $e$ proof.

Proof of Theorein. By Lemmas 4.1 and 4.2, the two structure vector
fields coincide up to sign on $M$ and the type number of $(\Lambda/I, \iota\wedge)$ is not equal
to 2 a,t every point of M. Therefore $\iota\wedge$ and $\iota$ are rigid by Theorem A and
this completes the proof.
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