On geodesic hyperspheres in a complex projective

 spaceIn-Bae Kim, Byung Hak Kim and Hyunjung Song

1. Introduction

Let $P_{n}(\mathbb{C})$ be an n-dimensional complex projective space with FubiniStudy metric of constant holomorphic sectional curvature $4 c$. R. Takagi ([4] and [5]) classified all homogeneous real hypersurfaces in $P_{n}(\mathbb{C})$ which are orbits under analytic subgroups of the projective unitary group $P U(n+$ 1) in $P_{n}(\mathbb{C})$. Due to his work, we see that such a homogeneous real hypersurface in $P_{n}(\mathbb{C})$ is locally congruent to one of the six model spaces of type A_{1}, A_{2}, B, C, D and E (for details, see Theorem A in [4]).

On the other hand, it is an open question whether a real hypersurface in $P_{n}(\mathbb{C})$ has a rigidity or not. More precisely, if M is a ($2 n-1$)-dimensional Riemannian manifold and $\iota, \hat{\imath}$ are two isometric immersions of M into $P_{n}(\mathbb{C})$, then are ι and $\hat{\imath}$ congruent ?

To this problem, Y.-W.Choe, H.S.Kim, Y.J.Suh, R.Takagi and one of the present authors gave some partial solutions (see [1] and [3]). As a special case of the rigidity problem, we can consider the following one.

If M is a real hypersurface in $P_{n}(\mathbb{C})$ isometric to one of the model spaces of six types, then is M congruent to the model space?

In this paper we shall give a partial affirmative answer to this question. The model space of type A_{1} is just a geodesic hypersphere in $P_{n}(\mathbb{C})([5])$. The main purpose is to prove the following

Theorem. Let M be a ($2 n-1$)-dimensional connected complete Riemannian manifold, and let $\hat{\imath}$ and ι be two isometric immersions of M into $P_{n}(\mathbb{C})(n \geq 3)$. If $\hat{\imath}(M)$ is a geodesic hypersphere in $P_{n}(\mathbb{C})$, then so is $\iota(M)$, that is, $\hat{\imath}$ and ι are rigid.

The authors would like to express their sincere gratitude to Professor Ryoichi Takagi for many valuable suggestions.

2. Preliminaries on real hypersurfaces

Let , be an isometric immersion of a ($2 n-1$)-dimensional Riemannian manifold M into the complex projective space $P_{n}(\mathbb{C})$ with the metric of constant holomorphic sectional curvature $4 c$. For a local orthonormal frame field $\left\{e_{1}, e_{2}, \ldots, e_{2 n-1}\right\}$ of M, we denote its dual 1 -forms by θ_{i}. Then the connection forms $\theta_{i j}$ and the curvature forms $\Theta_{i j}$ of M are defined by

$$
\begin{gather*}
d \theta_{i}+\sum \theta_{i j} \wedge \theta_{j}=0, \quad \theta_{i j}+\theta_{j i}=0 \tag{2.1}\\
\Theta_{i j}=d \theta_{i j}+\sum \theta_{i k} \wedge \theta_{k j} \tag{2.2}
\end{gather*}
$$

respectively, where and in the sequel the indices i, j, k, l, \ldots run over the range $\{1,2, \ldots, 2 n-1\}$, unless otherwise stated.

With respect to the orthonormal frame field $\left\{\tilde{e}_{1}, \tilde{e}_{2}, \ldots, \tilde{e}_{2 n}\right\}$ of $P_{n}(\mathbb{C})$ such that $\tilde{e}_{i}=\iota_{*} e_{i}$, we denote the connection forms of $P_{n}(\mathbb{C})$ by $\tilde{\theta}_{A B}$, where the indices A, B, \ldots run over the range $\{1,2, \ldots, 2 n\}$. We put

$$
\begin{equation*}
\iota^{*} \tilde{\theta}_{2 n i}=\psi_{i}=\sum A_{i j} \theta_{j}, \quad J_{i j} \circ \iota=\phi_{i j} \quad \text { and } \quad J_{2 n i} \circ \iota=\xi_{i} \tag{2.3}
\end{equation*}
$$

where J is the complex structure of $P_{n}(\mathbb{C})$ and $A_{i j}$ are components of the shape operator or the second fundamental tensor of (M, ι). The rank of the matrix $\left(A_{j i}\right)$ is called the type number of (M, ι). Then from (2.1), (2.2) and (2.3), we have the equations of Gauss and Weingarten

$$
\begin{gather*}
\Theta_{i j}=\psi_{i} \wedge \psi_{j}+c \theta_{i} \wedge \theta_{j}+c \sum\left(\phi_{i k} \phi_{j l}+\phi_{i j} \phi_{k l}\right) \theta_{k} \wedge \theta_{l} \tag{2.4}\\
d \psi_{i}+\sum \psi_{j} \wedge \theta_{j i}=c \sum\left(\xi_{j} \phi_{i k}+\xi_{i} \phi_{j k}\right) \theta_{j} \wedge \theta_{k} \tag{2.5}
\end{gather*}
$$

respectively. From (2.3) we also have

$$
\begin{equation*}
\sum \phi_{i k} \phi_{k j}=-\delta_{i j}+\xi_{i} \xi_{j}, \quad \sum \xi_{j} \phi_{j i}=0, \quad \sum \xi_{i}^{2}=1 \tag{2.6}
\end{equation*}
$$

that is, the tensor fields $\phi=\left(\phi_{i j}\right)$ and $\xi=\left(\xi_{i}\right)$ form an almost contact structure on $M . \xi$ is called a structure vector field.

Since we have $d J_{A B}=\sum\left(J_{A C} \tilde{\theta}_{C B}-J_{B C} \tilde{\theta}_{C A}\right)$ on $P_{n}(\mathbb{C})$, it follows from (2.3) that

$$
\begin{gather*}
d \phi_{i j}=\sum\left(\phi_{i k} \theta_{k j}-\phi_{j k} \theta_{k i}\right)-\xi_{i} \psi_{j}+\xi_{j} \psi_{i} \tag{2.7}\\
d \xi_{i}=\sum\left(\xi_{j} \theta_{j i}-\phi_{j i} \psi_{j}\right) . \tag{2.8}
\end{gather*}
$$

For another immersion $\hat{\imath}$ of M into $P_{n}(\mathbb{C})$, we shall denote the differential forms and tensor fields of $(M, \hat{\imath})$ by the same symbol as ones in (M, ι) but with a hat. Since the canonical 1 -forms, connection forms and curvature forms are independent of the choice of immersions, it follows from (2.4) that

$$
\begin{align*}
& A_{i k} A_{j l}-A_{i l} A_{j k}+c\left(\phi_{i k} \phi_{j l}-\phi_{i l} \phi_{j k}+2 \phi_{i j} \phi_{k l}\right) \\
= & \hat{A}_{i k} \hat{A}_{j l}-\hat{A}_{i l} \hat{A}_{j k}+c\left(\hat{\phi}_{i k} \hat{\phi}_{j l}-\hat{\phi}_{i l} \hat{\phi}_{j k}+2 \hat{\phi}_{i j} \hat{\phi}_{k l}\right) . \tag{2.9}
\end{align*}
$$

As for the rigidity of (M, ι) and ($M, \hat{\imath}$), the following are known and will be used later.

Theorem A ([1]). Let M be a $(2 n-1)$-dimensional Riemannian manifold, and $\hat{\iota}$ and ι be two isometric immersions of M into $P_{n}(\mathbb{C})(n \geq 3)$. If two structure vector fields coincide up to sign on M and the type number of $(M, \hat{\imath})$ or (M, ι) is not equal to 2 at every point of M, then $\hat{\imath}$ and ι are rigid.

Theorem B ([3]). Let M be a $(2 n-1)$-dimensional Riemannian manifold, and $\hat{\iota}$ and ι be two isometric immersions of M into $P_{n}(\mathbb{C})(n \geq 3)$. If there exists a principal direction in common and the type number of $(M, \hat{\imath})$ or (M, ι) is not equal to 2 at every point of M, then $\hat{\imath}$ and ι are rigid.

3. Geodesic hyperspheres

Let \imath be an isometric immersion of a $(2 n-1)$-dimensional connected complete Riemannian manifold M into the complex projective space $P_{n}(\mathbb{C})$, and $\hat{\iota}(M)$ be a geodesic hypersphere in $P_{n}(\mathbb{C})$. Then there exists a local orthonormal frame field $\left\{e_{1}=\hat{\xi}, e_{2}, \ldots, e_{2 n-1}\right\}$ on M such that

$$
\hat{A}=\left(\begin{array}{cccc}
\hat{\alpha} & 0 & \ldots & 0 \tag{3.1}\\
0 & & & \\
\vdots & & r \delta_{p q} & \\
0 & &
\end{array}\right) \text { and } \quad \hat{\phi}=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
0 & & \\
\vdots & \hat{\phi}_{p q} & \\
0 & &
\end{array}\right)
$$

where $2 \leq p, q \leq 2 n-1$, and the principal curvatures $\hat{\alpha}$ and r of $(M, \hat{\imath})$ are given by

$$
\begin{equation*}
\hat{\alpha}=2 \sqrt{c} \cot 2 \theta, \quad r=\sqrt{c} \cot \theta \tag{3.2}
\end{equation*}
$$

(for instance, see [5]).
The geodesic hyperspheres in $P_{n}(\mathbb{C})$ are characterized by
Lemma 3.1. $\hat{\iota}(M)$ is a geodesic hypersphere in $P_{\boldsymbol{n}}(\mathbb{C})$ if and only if the shape operator \hat{A} of $(M, \hat{\imath})$ is given by

$$
\begin{equation*}
\hat{A}_{j i}=r \delta_{j i}+(\hat{\alpha}-r) \hat{\xi}_{j} \hat{\xi}_{i} \tag{3.3}
\end{equation*}
$$

where $\hat{\alpha}$ and r are scalar fields, and $r \neq 0$ on M.
Proof. If $\hat{\iota}(M)$ is a geodesic hypersphere, then it is easily seen that (2.8) and (3.1) give rise to

$$
\begin{equation*}
\sum \hat{\phi}_{j i} \hat{\psi}_{j}=r \sum \hat{\phi}_{j i} \theta_{j} \tag{3.4}
\end{equation*}
$$

which is equivalent to (3.3).
Conversely, if (3.3) is satisfied on M, then it follows from (2.6) and (3.3) that $\sum \hat{\xi}_{j} \hat{A}_{j i}=\hat{\alpha} \hat{\xi}_{i}$, that is, $\hat{\alpha}$ is a principal curvature of M. It is well known ([2]) that $\hat{\alpha}$ is a constant on M. Moreover (3.3) is equivalent to

$$
\begin{equation*}
\hat{\psi}_{i}=r \theta_{i}+(\hat{\alpha}-r) \hat{\xi}_{i} \hat{\eta} \tag{3.5}
\end{equation*}
$$

where $\hat{\eta}$ is the associated 1 -form of $\hat{\xi}$, that is, $\hat{\eta}=\sum \hat{\xi}_{i} \theta_{i}$. By applying $\hat{\phi}_{j i}$ to (3.5), it is easily seen from (2.6) that (3.5) is equivalent to (3.4).

Differentiating (3.5) and making use of (2.1), (2.5), (2.8), (3.4) and (3.5), we have

$$
d r \wedge\left(\theta_{i}-\hat{\xi}_{i} \hat{\eta}\right)=[c+r(\hat{\alpha}-r)]\left(\sum \hat{\phi}_{j i} \theta_{j} \wedge \hat{\eta}+\sum \hat{\xi}_{i} \hat{\phi}_{j k} \theta_{j} \wedge \theta_{k}\right) .
$$

Multiplying this equation by $\hat{\xi}_{i}$ and using (2.6), we obtain

$$
[c+r(\hat{\alpha}-r)] \sum \hat{\phi}_{j i} \theta_{j} \wedge \theta_{i}=0
$$

Since the rank of the matrix $\left(\hat{\phi}_{j i}\right)$ is equal to $2 n-2$, then this equation is reduced to

$$
\begin{equation*}
c+r(\hat{\alpha}-r)=0 \tag{3.6}
\end{equation*}
$$

which shows that r is a non-zero constant on M. Moreover if we set $r=$ $\sqrt{c} \cot \theta$, then (3.2) is satisfied. Therefore $\hat{\iota}(M)$ is a geodesic hypersphere in $P_{n}(\mathbb{C})$.

4. Proof of Theorem

Since $\hat{\imath}(M)$ is a geodesic hypersphere in $P_{n}(\mathbb{C})$, then the shape operator \hat{A} of $(M, \hat{\imath})$ is given by (3.3) in Lemma 3.1, and the principal curvatures $\hat{\alpha}$ and $r(\neq 0)$ are all constants on M.

It follows from (2.9) and (3.3) that

$$
\begin{align*}
& A_{i k} A_{j l}-A_{i l} A_{j k}+c\left(\phi_{i k} \phi_{j l}-\phi_{i l} \phi_{j k}+2 \phi_{i j} \phi_{k l}\right) \\
= & r^{2}\left(\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}\right)-c\left(\delta_{i k} \hat{\xi}_{j} \hat{\xi}_{l}-\delta_{i l} \hat{\xi}_{j} \hat{\xi}_{k}+\delta_{j l} \hat{\xi}_{i} \hat{\xi}_{k}-\delta_{j k} \hat{\xi}_{i} \hat{\xi}_{l}\right) \tag{4.1}\\
& +c\left(\hat{\phi}_{i k} \hat{\phi}_{j l}-\hat{\phi}_{i l} \hat{\phi}_{j k}+2 \hat{\phi}_{i j} \hat{\phi}_{k l}\right) .
\end{align*}
$$

For the shape operator A of (M, ι), We shall define some scalar fields on M as

$$
\begin{equation*}
\alpha=\sum \xi_{j} \xi_{i} A_{j i}, \beta=\sum \xi_{j} \hat{\xi}_{i} A_{j i}, \gamma=\sum \hat{\xi}_{j} \hat{\xi}_{i} A_{j i} \text { and } f=\hat{\xi}_{j} \xi_{j} \tag{4.2}
\end{equation*}
$$

Then, first of all, we see that $f^{2} \leq 1$ on M.
Multiplying (4.1) by $\xi_{i} \xi_{k}, \hat{\xi}_{i} \xi_{k}$ and $\hat{\xi}_{i} \hat{\xi}_{k}$, we have

$$
\begin{gather*}
\alpha A_{j i}-\sum \xi_{k} A_{k j} \xi_{l} A_{l i}-3 c \sum \xi_{k} \hat{\phi}_{k j} \xi_{l} \hat{\phi}_{l i}=\left(r^{2}-c f^{2}\right) \delta_{j i}-r^{2} \xi_{j} \xi_{i} \tag{4.3}\\
-c \hat{\xi}_{j} \hat{\xi}_{i}+c f\left(\hat{\xi}_{j} \xi_{i}+\xi_{j} \hat{\xi}_{i}\right) \\
\beta A_{j i}-\sum \xi_{k} A_{k j} \hat{\xi}_{l} A_{l i}=\hat{\alpha} r\left(f \delta_{j i}-\xi_{j} \hat{\xi}_{i}\right) \tag{4.4}\\
\gamma A_{j i}-\sum \hat{\xi}_{k} A_{k j} \hat{\xi}_{l} A_{l i}+3 c \sum \hat{\xi}_{k} \phi_{k j} \hat{\xi}_{l} \phi_{l i}=\hat{\alpha} r\left(\delta_{j i}-\hat{\xi}_{j} \hat{\xi}_{i}\right) \tag{4.5}
\end{gather*}
$$

respectively, where we have used (2.6) and (3.6). If we take the symmetric parts of (4.4), we obtain

$$
\sum\left(\hat{\xi}_{k} A_{k j} \xi_{l} A_{l i}-\xi_{k} A_{k j} \hat{\xi}_{l} A_{l i}\right)=\hat{\alpha} r\left(\hat{\xi}_{j} \xi_{i}-\xi_{j} \hat{\xi}_{i}\right) .
$$

Under the same consideration as the above, it is easily verified that this equation is reduced to

$$
\begin{align*}
& \gamma \sum \xi_{j} A_{j i}-\beta \sum \hat{\xi}_{j} A_{j i}=\hat{\alpha} r\left(\xi_{i}-f \hat{\xi}_{i}\right) \tag{4.6}\\
& \beta \sum \xi_{j} A_{j i}-\alpha \sum \hat{\xi}_{j} A_{j i}=\hat{\alpha} r\left(f \xi_{i}-\hat{\xi}_{i}\right) \tag{4.7}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha \gamma-\beta^{2}=\hat{\alpha} r\left(1-f^{2}\right) \tag{4.8}
\end{equation*}
$$

Now we shall prove
Lemma 4.1. Let $\hat{\iota}$ and ι be two isometric immersions of a $(2 n-1)$ dimensional connected complete Riemannian manifold M into $P_{n}(\mathbb{C})$, and $\hat{i}(M)$ be a geodesic hypersphcre. If the principal curvature $\hat{\alpha}$ is equal to zero on M, then the two structure vector fields coincide up to sign on M.

Proof. At first we see from (3.6) and (4.8) that $r^{2}=c$ and $\alpha \gamma=\beta^{2}$. Therefore our case can be occurred when $\theta=\tan ^{-1}(\pm 1)$ as seen in (3.2).

If there is a point p of M such that $\alpha(p)=0$, then (4.3) is reduced to
$\sum \xi_{k} A_{k j} \xi_{l} A_{l i}+3 c \sum \xi_{k} \hat{\phi}_{k j} \xi_{l} \hat{\phi}_{l i}=c\left[\left(f^{2}-1\right) \delta_{j i}+\xi_{j} \xi_{i}+\hat{\xi}_{j} \hat{\xi}_{i}-f\left(\hat{\xi}_{j} \xi_{i}+\xi_{j} \hat{\xi}_{i}\right)\right]$.
Summing up for i and j, we have

$$
\begin{equation*}
\|A \xi\|^{2}+3 c\|\hat{\phi} \xi\|^{2}=(2 n-3) c\left(f^{2}-1\right) \tag{4.9}
\end{equation*}
$$

where \| \| denotes the magnitude. Since $f^{2}-1 \leq 0$ and $n \geq 3$, then (4.9) gives rise to $\hat{\phi} \xi=0$ and hence $\xi= \pm \hat{\xi}$ at p.

Let $\alpha \neq 0$ on an open neighborhood U in M. If $\beta=0$ at some points of U, then $\gamma=0$ at that points by (4.8). We assume that there is a point q of U such that $\beta(q)=0$. Then it follows from (4.7) that $\sum \hat{\xi}_{j} A_{j i}=0$ at q. Comparing this relation with (4.5), we have $\phi \hat{\xi}=0$ and hence $\xi= \pm \hat{\xi}$ at q. If $\beta \neq 0$ on an open subset V of U, then it follows from (4.7) that

$$
\sum \hat{\xi}_{j} A_{j i}=(\beta / \alpha) \sum \xi_{j} A_{j i}
$$

Substituting this relation into (4.4), we obtain

$$
\alpha A_{j i}=\sum \xi_{k} A_{k j} \xi_{l} A_{l i}
$$

If we compare this equation with (4.3), then we have

$$
3 \sum \xi_{k} \hat{\phi}_{k j} \xi_{l} \hat{\phi}_{l i}=\left(f^{2}-1\right) \delta_{j i}+\xi_{j} \xi_{i}+\hat{\xi}_{j} \hat{\xi}_{i}-f\left(\hat{\xi}_{j} \xi_{i}+\xi_{j} \hat{\xi}_{i}\right)
$$

which implies that $3\|\hat{\phi} \xi\|^{2}=(2 n-3)\left(f^{2}-1\right)$ and hence $\xi= \pm \hat{\xi}$ on V. This completes the proof.

Lemma 4.2. If the principal curvature $\hat{\alpha}$ is not equal to zero on M under the assumptions as in Lemma 4.1, then we have $f^{2}=1$, that is, the two structure vector fields coincide up to sign on M.

Proof. Assume that there is an open neighborhood U of M such that $f^{2} \neq 1$ on U. Then it follows from (4.6), (4.7) and (4.8) that

$$
\begin{equation*}
\sum \hat{\xi}_{j} A_{j i}=u \xi_{i}+v \hat{\xi}_{i}, \tag{4.10}
\end{equation*}
$$

where we have put $u=(\beta-\gamma f) /\left(1-f^{2}\right)$ and $v=(\gamma-\beta f) /\left(1-f^{2}\right)$. Substituting (4.10) into (4.5), we have

$$
\begin{array}{r}
\gamma A_{j i}+3 c \sum \hat{\xi}_{k} \phi_{k j} \hat{\xi}_{l} \phi_{l i}=\hat{\alpha} r \delta_{j i}+u^{2} \xi_{j} \xi_{i}+ \tag{4.11}\\
\left(v^{2}-\hat{\alpha} r\right) \hat{\xi}_{j} \hat{\xi}_{i}+u v\left(\hat{\xi}_{j} \xi_{i}+\xi_{j} \hat{\xi}_{i}\right)
\end{array}
$$

on U. Since $f^{2} \neq 1$, then $\phi \hat{\xi}$ is a non-zero vector field on U. Multiplying (4.11) by $\sum \hat{\xi}_{h} \phi_{h i}$ and using (2.6), we obtain

$$
\begin{equation*}
\gamma \sum A_{j i} \hat{\xi}_{k} \phi_{k i}=\left[\hat{\alpha} r-3 c\left(1-f^{2}\right)\right] \sum \hat{\xi}_{k} \phi_{k j} \tag{4.12}
\end{equation*}
$$

on U.
Assume that there is a point p of U such that $\gamma(p)=0$. Then we see from (4.8) that $-\beta^{2}(p)=\hat{\alpha} r\left(1-f^{2}(p)\right)$ and so $\hat{\alpha} r \leq 0$. We also see from (4.12) that $\hat{\alpha} r=3 c\left(1-f^{2}(p)\right)>0$ and it is contrary. Therefore $\gamma \neq 0$ on U. The equation (4.12) shows that $\phi \hat{\xi}$ is a principal direction of (U, ι). Since we see from (3.3) that $\phi \hat{\xi}$ is a principal direction of $(M, \hat{\imath})$, then $\phi \hat{\xi}$ is the principal direction in common on U.

Since the type number of ($M, \hat{\imath}$) is equal to $2 n-2$ or $2 n-1$ by Lemma 3.1, then we sce that the structure vector fields ξ and $\hat{\xi}$ coincide up to sign on U by Theorems A and B. This contradicts to $f^{2} \neq 1$ on U, and completes the proof.

Proof of Theorem. By Lemmas 4.1 and 4.2, the two structure vector fields coincide up to sign on M and the type number of ($M, \hat{\imath}$) is not equal to 2 at every point of M. Therefore $\hat{\imath}$ and ι are rigid by Theorem A and this completes the proof.

References

[1] Y.-W. Choe, H.S. Kim, I.-B. Kim and R. Takagi, Rigidity theorems for real hypersurfaces in a complex projective space, Hokkaido Math. J., 25 (1996), 433-451
[2] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296 (1986), 137-149
[3] Y.J. Suh and R. Takagi, A rigidity for real hypersurfaces in a complex projective space, Tôhoku Math. J. 43 (1991), 501-507
[4] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506
[5] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I ; II, J. Math. Soc. Japan 27 (1975), 45-53 ; 507-516

Department of Mathematics
Hankuk University of Foreign Studies
Seoul 130-791, Korea
Department of Mathematics
Kyung Hee University
Suwon 449-701, Korea
and
Department of Mathematics
Hankuk University of Foreign Studies
Seoul 130-791, Korea

Received August 21, 1996

