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The adjacency operators of the infinite directed graphs
and the von Neumann algebras generated by partial isometries
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1. Introduction.

A directed graph G = (V| E) is a pair of countable sets V and E. An
element v € V is called a vertex and an element (v, u) € E is called an arc
with an initial vertex v and a terminal vertex u. For each vertex v eV,
the outdegree d*(v), the indegree d~(v) and the valency d(v) are defined as
follows ;

d*(v) = K(v,u) ; (v,u) € B}, d=(v) = {(u,0) ; (u,v) € E}|

and

d(v) = d*(v) +d (v)

respectively where |{-}| means the cardinal number of a set {-}. A graph has
bounded valency if there is a constant o > 0 such that d(v) £ « for every
vertex v € V. Throughout this paper, we assume that a graph is a directed
graph without multiple arcs and has bounded valency.

Mohar defined an adjacency operator for infinite undirected graphs in [2],
and Fujii, Sasaoka and Watatani defined one for infinite graphs in [1]. An
adjacency operator is in general unbounded, but we treat only bounded adja-
cency operator under the our assumption that a graph has bounded valency.

Let H be the Hilbert space #2(V') with the canonical basis {es;v € V}
defined by e,(u) = 6, , for u,v € V.

Let us define a closed operator A = A(G) with the domain D(A) by

veV ueV (v,u)eE

D(A):{x=ZerUEH; Y :cv|2<oo}

Az = Z Z z,e, for xz € D(A).
u€V (v,u)eE
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Now, we call A = A(G) the adjacency operator of G. Then we have the
following lemma [1 ; Theorem 2].

Lemma 1. Let A be the adjacency operator of a graph G. Then, A is
bounded if and only if G has bounded valency.

We firstly show some properties of an adjacency operator which is a par-
tial isometry.

An operator T on a Hilbert space K is a partial isometry if A*A and AA*
are projections. In [1], a characterization that an adjacency operator is a
partial isometry was given as follows :

Lemma 2. Let A be the adjacency operator of a graph G. Then, A is a
partial isometry if and only if the connected components of G are one of the
following ;

o, <;>, O——0—> - - - —0—0 ,
C C ‘C C ...... 3 04_0 O C ...... y
A\
...... O O « e o s s o ’ O—»QQ——» ¢ 2+ ¢ ¢ ¢ ——ourpO—»0
2. Results.

An operator T on K is called a power partial isometry if 7™ is a partial
isometry form =1, 2, ---.

If we treat the adjacency operator A = A(G) of an infinite directed graph
G and A is a partial isometry, then we can show by considering Lemma 2
that A is a power partial isometry.

Proposition 3. Let A be the adjacency operator of a graph G. If A is
a partial isometry, then A is a power partial isometry.

Proof. By Lemma?2, the operator A is represented by the direct sum
in the following ;

A=>@U, on H=)Y oH,

n=1 n=1
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where U, is an operator satisfying one of the following conditions ;

(1) U, =0on H,,
(2) U, = the identity on H,,
(3) dimH, = s < oo and {en(k)}1=1 is a basis for Hy,, and then

Unen(k) = €n(k+1) (1 § k é S — 1) and Unen(s) = O,

(4) dim H,, = s < oo and {e,(k)}{=, is a basis for H,, and then

Unenry = €1y (1 £k <s—1) and Unen) = en),

(5) dim H,, = oo and {e,(k)}se; is a completely orthonormal basis for H,,
and then
U’nen(k) = €En(k+1) (k = 1, 27 vt ')7

(6) dim H, = oo and {en(k)}req is a completely orthonormal basis for H,,
and then

Unen(l) =0 and Unen(k) = €n(k-1) (k =2,3, ),

(7) dim H, = oo and {enx)}ie_o is a completely orthonormal basis for

H,, and then
Unen(k) = €n(k+1) (k € Z)

Then, each subspace H, reduces A. .

In the case of (1) (resp. (2)), U™ = 0 (resp. U = the identity) on H,
(m=1, 2, ---). And so, U, is a power partial isometry on H,.

In the case of (3), Ulenk) = en(h4m) (1 £ k< s —m) and Ulepx) = 0
(s—m <k £5s). And so U, is a power partial isometry on H,.

In the case of (4) and (7), since U, is a unitary operator on H,, U, is a
power partial isometry on H,.

Furthermore, in the cases of (5) and (6), since U, is a unilateral shift on
H,, U, is a power partial isometry on H,.

Since each subspace H, reduces A, A is a power partial isometry on H
by the above mentioned arguments. This gives the proof of Proposition 3.
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As a property for the power partial isometries, Saito [5] showed the fol-
lowing result :

Let T be a power partial isometry on a Hilbert space K which is quasi-
nilpotent. Then the von Neumann algebra M (T') generated by T is of typel
where M (T') means the von Neumann algebra generated by T' and the iden-
tity 1.

Furthermore, Saito denoted as a remark in [5] that the type of von Neu-
mann algebra generated by a general power partial isometry may be un-
known.

For this remark, we can give an answer for a power partial isometry which
is not necessarily quasi-nilpotent.

In particular, the following theorem is an extension of result obtained by
Saito [5; Theorem 3|.

Let U be an operator on a Hilbert space K. Then U is called a truncated
shift of index n (n =1, 2, --) if U is the operator such that K is the n-fold
direct sum K = Ko Ko ® ---d Ko,and U =0if n =1 and

U(flaf%' ot afn) = <07f1)f27 tr ’fn—1>
if n > 1. Then, Saito showed the following result [5; Theorem 3].

Let T be the operator represented by the finite direct sum of truncated
shifts

T = z’”: OUnry (1 £n(1) <n(2) <--- <n(r))
k=1

where U, ) is a truncated shift of index n(k). Then the von Neumann algebra
M (T') generated by T is of typel.

Even if T is the operator represented by the infinite direct sum of trun-
cated shifts, we show in the following theorem that the von Neumann algebra

M(T) is of typel.

Theorem 4. Let T be the operator acting on a Hilbert space K repre-
sented by the infinite direct sum of truncated shifts

T =3 @Uun (1Sn(1)<n2)<-<n(k) <)
k=1
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where U,y is a truncated shift of indez n(k). Then the von Neumann algebra
M(T) generated by T is of type L.

Proof. Let T be the infinite direct sum of truncated shifts

T = Z ®Unx) actingon K = Z B K (k)
k.—

where each K, ) is the n(k)-fold direct sum K, x) = I&Ok) EBK(k) ®-- EBK(k)
Then, every K, reduce T' (k =1, 2, ---). Let E(k) be the projection of K
onto Kp(x), then E® is an element of the commutant M(T)" of M(T). Since

n(1)—1 . n(1)—

OO (B0 _EM g (ED a0 e (EH o0 e -,

where Efl) is the projection on K((,l) B O(()l) b O(()l) G- P O(()l) and each OY;)

is the zero operator on the (n(1) — 1)-fold direct sum

n(l)-—l

)

oP a0 e & 0We) KH @ ... g KW

and Eg) is the projection on the (n(k) — n(1) + 1)-fold direct sum

n(k)—n(l)+1

KMo o KP@oP soP e--e0l) (k=2 3, ),

n(1)—1 n(l)—1

is an element of M(T') where O§2) is the zero operator on the (n(k) —n(1)+1)-

fold direct sum

n(k)—n(l)

KP & oK ’(k)(eao((,") 50 @0

and Eﬁc) is the projection of K onto the (n(1) — 1)-fold direct sum
n(l) 1

OP oM g...0 0P KP & o KO .
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Furthermore, since
TT* = (EW - EMa(E® —EMY g .. o (E® — E(k)) @ ---
where E%k) is the projection on
n(k)—-1

KPP o0 o0l e -0l (k=1,2, 3, ),

I-TT"=EV o EP o EP ... 0 EP g ...

is an element of M(T). Thus,
(I N T*n(l)—lTn(l)—l)(I . TT*)

_ {E(l) & (0(2) (2)) DD (O(k) @ E(k)) ®---}
{EV o EP 0 EP -0 EM @}
= W

is an element of M(T). By applying a similar argument for

n(1)-2 . n(1)—2

[—T""7T and I -T°'T",

we can show that Efl) + Eél) is an element of M(T') and so Eél) is also an
element of M(T) where E{¥) is the projection on

S
——

O(()k) @ - O(k)ea A’(k) @O(k) s O(()k) (k — 1, 27 3, . .).

Continuing this process, we can show that E{", E{V . Ei()1) are elements

of M(T) and so E(V is an element of M(T). Hence, E(l) is a central element
of M(T). Next, applying the above process for

[—T"7' 7™ and 1-TT,
[-T7"97T"P7 and I-T'T",
since Efl), EZ(,I), : E(()1) are elements of M(T) and EM is a central element

of M(T), we can show that E?| E{? ... E7(z()2) are elements of M (T') and so
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E®@ is a central element of M(T'). Continuing this process, we can show that
E§’“’, Eék), RN Efﬂ) are elements of M(T) and so E¥) is an element of M(T)
(k =1, 2, ---). Therefore, since every Uy is a truncated shift, M (Uy)) is
a von Neumann algebra of type I,y and so M(T) is a von Neumann algebra
of typel. Thus, we have the complete proof of Theorem 4.

Theorem 5. Let A be the adjacency operator of a graph G. If A is a
partial isometry, then the von Neumann algebra M(A) generated by A is of

type L.

Proof. By Lemma?2 and the proof of Proposition3, we can assume
that A has a representation of the direct sum in the following ;

6 6
A:Z@Un on H=Z@Hn

n=1 n=1

such that
(1) U, =0 on Hj,
(2) U, = the identity on Hj,

(3) Us is the finite or infinite direct sum of truncated shifts with the dif-
ferent indices on Hs,

(4) H4 and Hjy are the infinite dimensional subspaces and Uy (resp. Us) is
a unilateral shift (resp. a backward shift) on Hy (resp. Hs),

(5) Us is a unitary operator on Hg.

Let E, be the projection of H onto H,. Then, since each H, reduces A,
E, is an element of the commutant M (A)" of M(A). Furthermore, we show
that each E, is an element of M(A) and so E, is a central element of M(A).
Since

6 6
E,=1-Y @U:U, and E,=(I-Y 8U:U,) - Ei,
n=3

n=2

E; and E, are elements of M (A).
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Now, since U; U, and U;" U, (resp. U;"U,;" and U;"Ug) converge to
0 as m — oo in the weak topology (resp. equal to the identity for every
m =1, 2, --- on Hy and Hg respectively), E4 4+ Eg is an element of M(A)
and so E3 + Es is also an element of M(A).

Furthermore, U, U?" = E5 for every m = 1, 2, --- and Uy, U™ =0 as
m — oo in the weak topology. Thus, E5s and so Fj are elements of M (A).
By a similar argument, since U Uy" = Eg for every m = 1, 2, --- and
U, U™ -0 as m — oo in the weak topology. Thus, E¢ and so E, are
elements of M(A).

Since M(AE,) = CE,, M(AE,) = CE, and M(AE;) acting on H,, H,
and Hg respectively are abelian, these von Neumann algebras are of typel
where C is the complex number field. Furthermore, since Uy and Us are
unilateral shift, M(AFE,) and M(AEs) are von Neumann algebras of typel
on H, and Hs respectively. And furthermore, the von Neumann algebra
M(AFE3) acting on Hj is of typel by Theorem 4. Therefore,

M(A) = zsj ®M(AE,)

n=1

is a von Neumann algebra of type I. We get the complete proof of Theorem 5.

3. Remarks and Example.

We showed in the previous section the following ; if the adjacency operator
A of a graph is a partial isometry, then the von Neumann algebra generated
by A is of type I. Thus, we have a following remark.

Remark 1. Saito showed in [4] that for a certain von Neumann algebra
M the following properties are equivalent ;

(a) M has a single generator.

(b) M is generated by one partial isometry.

Precisely certain von Neumann algebra mentioned above means an AF-von
Neumann algebra, of type II,, of type I, or type III. But, if we consider a
generator by the restriction in the adjacency operators of a graph, then we
can’t get a similar result to Saito’s result by our Theorem 5.
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Next, we shall give an example in which we consider a generator of von
Neumann algebra of type I except the partial isometries.

Example. We consider an example of graph G = (V, E) as below ;

...... ——(Q—Q+———— P Q)———> > ¢+ ¢ s - .

Vs V3 (%1 (%) V4

Put e, the element e, of the Hilbert space H = ¢*>(V), then the adjacency
operator A = A(G) with respect to GG is determined by the following ;

€e; — e+ €3, €n —> €2(nt1);  €2n+1 7 €2(n+1)+1 (n21).

Thus, the operators A*A and AA* are of the following form ;
A*A e > 2¢, e, e, (n=2)
and
AA* : e =0, e —eytes, e3s—eyte, e, e, (n=4).

- And so A is not a partial isometry.

Now, define the projections P}, Pen+enii]> Flensenti]s Fleniens1ienszy-] (T€SP-)
on the one dimensional subspace [e,] and [e, + €,41], the two dimensional
subspace [e,, €,41] and the infinite dimensional subspace [en, €n41, €nta, - - -]
(resp.). Then A*A = 2P[e;] + P[62,63,e4,...] and AA* = P[ez,es] + P[e4,es,ee,---]-
Furthermore, since (A*A)? = 4P, + Py es,e4,-» Flea] a0d Ple, 5,4 ,-] are el-
ements of M(A). By a similar way, we can show that P, .,) and P, ., c,-]
are elements of M (A).

On the other hand, since

1 (1 1 .
| (72‘““3[6”) (EAP[“]) = 3 AR A" = Pesran,

1 D :
Ple,4¢5) 1s an element of M(A) and EAP[Q] 1s a partial isometry with the

initial projection Pp,; and the final projection P,1.,. Thus, the projection
P, e is also an element of M(A) because Py, c,) and Fe, 4.;) are elements of
M(A). Now, since we can show by an elementary computation that P, ;) is
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not a central element of the von Neumann algebra Pleyes M (A) P, ey, M(A)
contains the matrix units with respect to {Ple,qes], Pley—es)} and so with re-
spect to { P,), Ple,)}. Hence, M(A) contains the matrix units with respect to
{Pes]> Bes]> Ples)}- By repeating a similar argument, we can show that M(A)
contains the matrix units with respect to {F,, P,), Ples)s Plesy Plesi}s
...... » {Plex)y ~*+ Pleanls Pleznsr)}- Thus, we can get the property M(A) =
B(H) and so the conclusion of this example.

Remark 2. We showed the generator of von Neumann algebra of type
I in the previous part. But we don’t know whether an adjacency operator
generates a von Neumann algebra of type II or type III. This is a problem
that we must consider after this. In general case, Pearcy [3] firstly showed
that there exists a partial isometry V (resp. W) generating a von Neumann
algebra of type II; (resp. Il.). But, if we consider this Pearcy’s result in
the adjacency operators, we can’t expect a similar result by considering our
previous result (i.e. Theorem 5).
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