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The adjacency operators of the infinite directed graphs
and the von Neumann algebras generated by partial isometries
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1. Introduction.
A directed graph $G=(V, E)$ is a pair of countable sets $V$ and $E$ . An

element $v\in V$ is called a vertex and an element $(v, u)\in E$ is called an arc
with an initial vertex $v$ and a terminal vertex $u$ . For each vertex $v\in V$

the outdegree $d^{+}(v)$ , the indegree $d^{-}(v)$ and the valency $d(v)$ are defined as
follows ;

$d^{+}(v)=|\{(v, u) ; (v, u)\in E\}|,$ $d^{-}(v)=|\{(u, v) ; (u, v)\in E\}|$

and
$d(v)=d^{+}(v)+d^{-}(v)$

respectively where $|\{\cdot\}|$ means the cardinal number of a set $\{\cdot\}$ . A graph has
bounded valency if there is a constant $\alpha>0$ such that $ d(v)\leqq\alpha$ for every
vertex $v\in V$ . Throughout this paper, we assume that a graph is a directed
graph without multiple arcs and has bounded valency.

Mohar defined an adjacency operator for infinite undirected graphs in [2],
and Fujii, Sasaoka and Watatani defined one for infinite graphs in [1]. An
adjacency operator is in general unbounded, but we treat only bounded adja-
cency operator under the our assumption that a graph has bounded valency.

Let $H$ be the Hilbert space $\ell^{2}(V)$ with the canonical basis $\{e_{v}; v\in V\}$

defined by $e_{v}(u)=\delta_{v,u}$ for $u,$ $v\in V$ .
Let us define a closed operator $A=A(G)$ with the domain $D(A)$ by

$D(A)=\{x=\sum_{v\in V}x_{v}e_{v}\in H$ ; $\sum_{u\in V}|\sum_{(v,u)\in E}x_{v}|^{2}<\infty\}$

$Ax=\sum_{u\in V}\sum_{(v,u)\in E}x_{v}e_{u}$
for $x\in D(A)$ .
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Now, we call $A=A(G)$ the adjacency operator of $G$ . Then we have the
following lemma [1; Theorem 2].

Lemma 1. Let $A$ be the adjacency operator of a graph G. Then, $A$ is
bounded if and only if $G$ has bounded valency.

We firstly show some properties of an adjacency operator which is a par-
tial isometry.

An operator $T$ on a Hilbert space $K$ is a partial isometry if $A^{*}A$ and $AA^{*}$

are projections. In [1], a characterization that an adjacency operator is a
partial isometry was given as follows :

Lemma 2. Let $A$ be the adjacency operator of a graph G. Then, $A$ is a
partial isometry if and only if the connected components of $G$ are one of the
following;

$Q$ , $0-\rightarrow 0-\cdots\cdots-\rightarrow 0-0$ ,$0$ ,

$ 0\rightarrow 0\rightarrow 0\rightarrow\mapsto\cdots\cdots$ , $ 0-0-0-0-\cdots\cdots$ ,

. . . . . $.\rightarrow\mapsto-\cdots\cdots$

2. Results.
An operator $T$ on $K$ is called a power partial isometry if $T^{m}$ is a partial

isometry for $m=1,2$ ,
If we treat the adjacency operator $A=A(G)$ of an infinite directed graph

$G$ and $A$ is a partial isometry, then we can show by considering $Lemma2$

that $A$ is a power partial isometry.

Proposition 3. Let $A$ be the adjacency opemtor of a graph G. If $A$ is
a partial isometry, then $A$ is a power partial isometry.

Proof. By Lemma2, the operator $A$ is represented by the direct sum
in the following ;

$A=\sum_{n=1}^{\infty}\oplus U_{n}$ on $H=\sum_{n=1}^{\infty}\oplus H_{n}$
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where $U_{n}$ is an operator satisfying one of the following conditions ;

(1) $U_{n}=0$ on $H_{n}$ ,

(2) $U_{n}=the$ identity on $H_{n}$ ,

(3) dim $ H_{n}=s<\infty$ and $\{e_{n(k)}\}_{k=1}^{s}$ is a basis for $H_{n}$ , and then

$U_{n}e_{n(k)}=e_{n(k+1)}$ $(1 \leqq k\leqq s-1)$ and $U_{n}e_{n(s)}=0$ ,

(4) dim $ H_{n}=s<\infty$ and $\{e_{n(k)}\}_{k=1}^{s}$ is a basis for $H_{n}$ , and then

$U_{n}e_{n(k)}=e_{n(k+1)}$ $(1 \leqq k\leqq s-1)$ and $U_{n}e_{n(s)}=e_{n(1)}$ ,

(5) dim $ H_{n}=\infty$ and $\{e_{n(k)}\}_{k=1}^{\infty}$ is a completely orthonormal basis for $H_{n}$ ,
and then

$U_{n}e_{n(k)}=e_{n(k+1)}$ $(k=1,2, )$ ,

(6) dim $ H_{n}=\infty$ and $\{e_{n(k)}\}_{k=1}^{\infty}$ is a completely orthonormal basis for $H_{n}$ ,
and then

$U_{n}e_{n(1)}=0$ and $U_{n}e_{n(k)}=e_{n(k-1)}$ $(k=2,3, \cdot. )$ ,

(7) dim $ H_{n}=\infty$ and $\{e_{n(k)}\}_{k=-\infty}^{\infty}$ is a completely orthonormal basis for
$H_{n}$ , and then

$U_{n}e_{n(k)}=e_{n(k+1)}$ $(k\in Z)$ .

Then, each subspace $H_{n}$ reduces $A$ .
In the case of (1) (resp. (2)), $U_{n}^{m}=0$ (resp. $U_{n}^{m}=$ the identity) on $H_{n}$

$(m=1,2, \cdots)$ . And so, $U_{n}$ is a power partial isometry on $H_{n}$ .
In the case of (3), $U_{n}^{m}e_{n(k)}=e_{n(k+m)}(1\leqq k\leqq s-m)$ and $U_{n}^{m}e_{n(k)}=0$

$(s-m\leqq k\leqq s)$ . And so $U_{n}$ is a power partial isometry on $H_{n}$ .
In the case of (4) and (7), since $U_{n}$ is a unitary operator on $H_{n},$ $U_{n}$ is a

power partial isometry on $H_{n}$ .
Furthermore, in the cases of (5) and (6), since $U_{n}$ is a unilateral shift on

$H_{n},$ $U_{n}$ is a power partial isometry on $H_{n}$ .
Since each subspace $H_{n}$ reduces $A,$ $A$ is a power partial isometry on $H$

by the above mentioned arguments. This gives the proof of Proposition3.
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As a property for the power partial isometries, Saito [5] showed the fol-
lowing result :

Let $T$ be a power partial isometry on a Hilbert space $K$ which is quasi-
nilpotent. Then the von Neumann algebra $M(T)$ generated by $T$ is of type I
where $M(T)$ means the von Neumann algebra generated by $T$ and the iden-
tity $I$ .

Furthermore, Saito denoted as a remark in [5] that the type of von Neu-
mann algebra generated by a general power partial isometry may be un-
known.

For this remark, we can give an answer for a power partial isometry which
is not necessarily quasi-nilpotent.

In particular, the following theorem is an extension of result obtained by
Saito [5; Theorem3].

Let $U$ be an operator on a Hilbert space $K$ . Then $U$ is called a truncated
shift of index $n(n=1,2, \cdots)$ if $U$ is the operator such that $K$ is the n-fold
direct sum $K=K_{0}\oplus K_{0}\oplus\cdots\oplus K_{0}$ , and $U=0$ if $n=1$ and

$ U\langle f_{1}, f_{2}, \cdots, f_{n}\rangle=\langle 0, f_{1}, f_{2}, \cdots, f_{n-1}\rangle$

if $n>1$ . Then, Saito showed the following result [5; Theorem3].

Let $T$ be the operator represented by the finite direct sum of truncated
shifts

$T=\sum_{k=1}^{r}\oplus U_{n(k)}$ $(1\leqq n(1)<n(2)<\cdots<n(r))$

where $U_{n(k)}$ is a truncated shift of index $n(k)$ . Then the von Neumann algebra
$M(T)$ generated by $T$ is of type I.

Even if $T$ is the operator represented by the infinite direct sum of trun-
cated shifts, we show in the following theorem that the von Neumann algebra
$M(T)$ is of type I.

Theorem 4. Let $T$ be the opemtor acting on a Hilbert space $K$ repre-
sented by the infinite direct sum of truncated shifls

$T=\sum^{\infty}\oplus U_{n(k)}$ $(1 \leqq n(1)<n(2)<\cdots<n(k)<\cdots)$

$k=1$
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where $U_{n(k)}$ is a truncated shift of index $n(k)$ . Then the von Neumann algebra
$M(T)$ generated by $T$ is of type I.

Proof. Let $T$ be the infinite direct sum of truncated shifts

$T=\sum_{k=1}^{\infty}\oplus U_{n(k)}$ acting on $K=\sum_{k=1}^{\infty}\oplus K_{n(k)}$

where each $K_{n(k)}$ is the $n(k)$-fold direct sum $K_{n(k)}=K_{0}^{(k)}\oplus K_{0}^{(k)}\oplus\cdots\oplus K_{0}^{(k)}$ .
Then, every $K_{n(k)}$ reduce $T(k=1,2, \cdots)$ . Let $E^{(k)}$ be the projection of $K$

onto $K_{n(k)}$ , then $E^{(k)}$ is an element of the commutant $M(T)^{\prime}$ of $M(T)$ . Since

$ T^{*^{n(1)-1}}T^{n(1)-1}=(E^{(1)}-E_{1}^{(1)})\oplus(E_{12}^{(2)}\oplus O_{11}^{(2)})\oplus\cdots\oplus(E_{12}^{(k)}\oplus O_{11}^{(k)})\oplus\cdots$ ,

where $E_{1}^{(1)}$ is the projection on $K_{0}^{(1)}\oplus O_{0}^{(1)}\oplus O_{0}^{(1)}\oplus\cdots\oplus O_{0}^{(1)}$ and each $O_{11}^{(k)}$

is the zero operator on the $(n(1)-1)$-fold direct sum

$n(1)-1$

$(O_{0}^{(k)}\oplus O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)}\oplus)K_{0}^{(k)}\oplus\cdots\oplus I\iota_{0}^{\nearrow(k)}\sim$

and $E_{12}^{(k)}$ is the projection on the $(n(k)-n(1)+1)$-fold direct sum

$n(k)-n(1)+1$

$\overline{K_{0}^{(k)}\oplus\cdots\oplus K_{0}^{(k)}}(\oplus O_{0}^{(k)}\oplus O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)})$

$(k=2,3, \cdots)$ ,

$ I-T^{*^{n(1)-1}}T^{n(1)-1}=E_{1}^{(1)}\oplus(O_{12}^{(2)}\oplus E_{11}^{(2)})\oplus\cdots\oplus(O_{12}^{(k)}\oplus E_{11}^{(k)})\oplus\cdots$

is an element of $M(T)$ where $O_{12}^{(k)}$ is the zero operator on the $(n(k)-n(1)+1)-$

fold direct sum

$n(k)-n(1)+1$

$\tilde{K_{0}^{(k)}\oplus\cdots\oplus K_{0}^{(k)}}(\oplus O_{0}^{(k)}\oplus O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)})$

and $E_{11}^{(k)}$ is the projection of $K$ onto the $(n(1)-1)$-fold direct sum

$n(1)-1$

$(O_{0}^{(k)}\oplus O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)}\oplus)K_{0}^{(k)}\oplus\cdots\oplus I\iota_{0}^{\nearrow(k)}\sim$
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Furthermore, since

$ TT^{*}=(E^{(1)}-E_{1}^{(1)})\oplus(E^{(2)}-E_{1}^{(2)})\oplus\cdots\oplus(E^{(k)}-E_{1}^{(k)})\oplus\cdots$

where $E_{1}^{t^{k)}}$ is the projection on

$(k=1,2,3, \cdots)$ ,

I-TT* $=E_{1}^{(1)}\oplus E_{1}^{(2)}\oplus E_{1}^{(3)}\oplus\cdots\oplus E_{1}^{(k)}\oplus\cdots$

is an element of $M(T)$ . Thus,
$(I-T^{*^{n(1)-1}}T^{n(1)-1})(I-TT^{*})$

$=\{E_{1}^{(1)}\oplus(O_{12}^{(2)}\oplus E_{11}^{(2)})\oplus\cdots\oplus(O_{12}^{(k)}\oplus E_{11}^{(k)})\oplus\cdots\}$

. $\{E_{1}^{(1)}\oplus E_{1}^{(2)}\oplus E_{1}^{(3)}\oplus\cdots\oplus E_{1}^{(k)}\oplus\cdots\}$

$=E_{1}^{(1)}$

is an element of $M(T)$ . By applying a similar argument for

$I-T^{*^{n(1)-2}}T^{n(1)-2}$ and $I-T^{2}T^{*^{2}}$ ,

we can show that $E_{1}^{(1)}+E_{2}^{(1)}$ is an element of $M(T)$ and so $E_{2}^{(1)}$ is also an
element of $M(T)$ where $E_{s}^{(k)}$ is the projection on

$O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)}\oplus K_{0}^{(k)}\vee^{S}\oplus O_{0}^{(k)}\oplus\cdots\oplus O_{0}^{(k)}$

$(k=1,2,3, \cdots)$ .

Continuing this process, we can show that $E_{1}^{(1)},$ $E_{2}^{(1)},$
$\cdots$ , $E_{n(1)}^{(1)}$ are elements

of $M(T)$ and so $E^{(1)}$ is an element of $M(T)$ . Hence, $E^{(1)}$ is a central element
of $M(T)$ . Next, applying the above process for

$I-T^{*}Tn(2)-1n(2)-1$ and $I-TT^{*}$ ,

$I-T^{*^{\mathfrak{n}\langle 2)-2}}T^{n(2)-2}$ and $I-T^{2}T^{*^{2}}$ ,

since $E_{1}^{(1)},$ $E_{2}^{(1)},$

$\cdots,$
$E_{n(1)}^{(1)}$ are elements of $M(T)$ and $E^{(1)}$ is a central element

of $M(T)$ , we can show that $E_{1}^{(2)},$ $E_{2}^{(2)},$

$\cdots,$
$E_{n(2)}^{(2)}$ are elements of $M(T)$ and so
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$E^{(2)}$ is a central element of $M(T)$ . Continuing this process, we can show that
$E_{1}^{(k)},$ $E_{2}^{(k)},$

$\cdots,$
$E_{n(k)}^{(k)}$ are elements of $M(T)$ and so $E^{(k)}$ is an element of $M(T)$

$(k=1,2, \cdots)$ . Therefore, since every $U_{n(k)}$ is a truncated shift, $M(U_{n(k)})$ is
a von Neumann algebra of type $I_{n(k)}$ and so $M(T)$ is a von Neumann algebra
of type I. Thus, we have the complete proof of Theorem4.

Theorem 5. Let $A$ be the adjacency operator of a graph G. If $A$ is a
partial isometry, then the von Neumann algebra $M(A)$ generated by $A$ is of
type I.

Proof. By Lemma2 and the proof of Proposition3, we can assume
that $A$ has a representation of the direct sum in the following ;

$A=\sum_{n=1}^{6}\oplus U_{n}$ on $H=\sum_{n=1}^{6}\oplus H_{n}$

such that

(1) $U_{1}=0$ on $H_{1}$ ,

(2) $U_{2}=the$ identity on $H_{2}$ ,

(3) $U_{3}$ is the finite or infinite direct sum of truncated shifts with the dif-
ferent indices on $H_{3}$ ,

(4) $H_{4}$ and $H_{5}$ are the infinite dimensional subspaces and $U_{4}$ (resp. $U_{5}$ ) is
a unilateral shift (resp. a backward shift) on $H_{4}$ (resp. $H_{5}$ ),

(5) $U_{6}$ is a unitary operator on $H_{6}$ .

Let $E_{n}$ be the projection of $H$ onto $H_{n}$ . Then, since each $H_{n}$ reduces $A$ ,
$E_{n}$ is an element of the commutant $M(A)^{\prime}$ of $M(A)$ . Furthermore, we show
that each $E_{n}$ is an element of $M(A)$ and so $E_{n}$ is a central element of $M(A)$ .

Since

$E_{1}=I-\sum_{n=2}^{6}\oplus U_{n}^{*}U_{n}$ and

$E_{1}$ and $E_{2}$ are elements of $M(A)$ .

$E_{2}=(I-\sum_{n=3}^{6}\oplus U_{n}^{*}U_{n})-E_{1}$ ,
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Now, since $U_{3}^{*^{m}}U_{3}^{m}$ and $U_{5}^{*^{m}}U_{5}^{m}$ (resp. $U_{4}^{*^{m}}U_{4}^{m}$ and $U_{6}^{*^{m}}U_{6}^{m}$ ) converge to
$0$ as $ m\rightarrow\infty$ in the weak topology (resp. equal to the identity for every
$m=1,2$ , $\cdot$ . . on $H_{4}$ and $H_{6}$ respectively), $E_{4}+E_{6}$ is an element of $M(A)$
and so $E_{3}+E_{5}$ is also an element of $M(A)$ .

Furthermore, $U_{5}^{m}U_{5}^{*^{m}}=E_{5}$ for every $m=1,2$ , $\cdot$ . . and $U_{3}^{m}U_{3}^{*^{m}}\rightarrow 0$ as
$ m\rightarrow\infty$ in the weak topology. Thus, $E_{5}$ and so $E_{3}$ are elements of $M(A)$ .
By a similar argument, since $U_{6}^{m}U_{6}^{*}=E_{6}m$ for every $m=1,2$ , $\cdot$ . . and
$U_{4}U_{4}^{*}m\rightarrow 0$ as $ m\rightarrow\infty$ in the weak topology. Thus, $E_{6}$ and so $E_{4}$ are
elements of $M(A)$ .

Since $M(AE_{1})=\mathbb{C}E_{1},$ $M(AE_{2})=\mathbb{C}E_{2}$ and $M(AE_{6})$ acting on $H_{1},$ $H_{2}$

and $H_{6}$ respectively are abelian, these von Neumann algebras are of type I
where $\mathbb{C}$ is the complex number field. Furthermore, since $U_{4}$ and $U_{5}$ are
unilateral shift, $M(AE_{4})$ and $M(AE_{5})$ are von Neumann algebras of type I
on $H_{4}$ and $H_{5}$ respectively. And furthermore, the von Neumann algebra
$M(AE_{3})$ acting on $H_{3}$ is of type I by Theorem4. Therefore,

$M(A)=\sum_{n=1}^{6}\oplus M(AE_{n})$

is a von Neumann algebra of type I. We get the complete proof of Theorem5.

3. Remarks and Example.
We showed in the previous section the following; if the adjacency operator

$A$ of a graph is a partial isometry, then the von Neumann algebra generated
by $A$ is of type I. Thus, we have a following remark.

Remark 1. Saito showed in [4] that for a certain von Neumann algebra
$M$ the following properties are equivalent ;

(a) $M$ has a single generator.
(b) $M$ is generated by one partial isometry.

Precisely certain von Neumann algebra mentioned above means an AF-von
Neumann algebra, of type $II_{1}$ , of type $II_{\infty}$ or type III. But, if we consider a
generator by the restriction in the adjacency operators of a graph, then we
can’t get a similar result to Saito’s result by our Theorem 5.
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Next, we shall give an example in which we consider a generator of von
Neumann algebra of type I except the partial isometries.

Example. We consider an example of graph $G=(V, E)$ as below ;

. . . . . $.-0-0-0\rightarrow 0\rightarrow 0\rightarrow\cdots\cdots$

$v_{5}$ $v_{3}$ $v_{1}$ $v_{2}$ $v_{4}$

Put $e_{n}$ the element $e_{v_{n}}$ of the Hilbert space $H=\ell^{2}(V)$ , then the adjacency
operator $A=A(G)$ with respect to $G$ is determined by the following ;

$e_{1}\rightarrow e_{2}+e_{3}$ , $e_{2n}\rightarrow e_{2(n+1)}$ , $e_{2n+1}\rightarrow e_{2(n+1)+1}$ $(n\geq 1)$ .

Thus, the operators $A^{*}A$ and $AA^{*}$ are of the following form;

$A^{*}A$ : $e_{1}\rightarrow 2e_{1}$ , $e_{n}\rightarrow e_{n}$ $(n\geq 2)$

and

$AA^{*}$ : $e_{1}\rightarrow 0$ , $e_{2}\rightarrow e_{2}+e_{3}$ , $e_{3}\rightarrow e_{2}+e_{3}$ , $e_{n}\rightarrow e_{n}$ $(n\geqq 4)$ .

And so $A$ is not a partial isometry.
Now, define the projections $P_{[e_{n}}{}_{]}P_{[e_{n}+e_{n+1}}{}_{],[e_{n},e_{n+1}}P{}_{]}P_{[e_{n},e_{n+1},e_{n+2},\cdots]}$ (resp.)

on the one dimensional subspace $[e_{n}]$ and $[e_{n}+e_{n+1}]$ , the two dimensional
subspace $[e_{n}, e_{n+1}]$ and the infinite dimensional subspace $[e_{n}, e_{n+1)}e_{n+2}, \cdots]$

(resp.). Then $A^{*}A=2P_{[e_{1}]}+P_{[e_{2},e_{3},e_{4},\cdots]}$ and $AA^{*}=P_{[e_{2},e_{3}]}+P_{[e_{4},e_{5},e_{6},\cdots]}$ .
Furthermore, since $(A^{*}A)^{2}=4P_{[e_{1}]}+P_{[e_{2},e_{3},e_{4},\cdots]},$ $P_{[e_{1}]}$ and $P_{[e_{2},e_{3},e_{4},\cdots]}$ are el-
ements of $M(A)$ . By a similar way, we can show that $P_{[e_{2},e_{3}]}$ and $P_{[e_{4},es,e_{6},\cdots]}$

are elements of $M(A)$ .
On the other hand, since

$(\frac{1}{\sqrt{2}}AP_{[e_{1}])^{*}}(\frac{1}{\sqrt{2}}AP_{[e_{1}])}=\frac{1}{2}AP_{[e_{1}]}A^{*}=P_{[e_{2}+e_{3}]}$ ,

$P_{[e_{2}+e_{3}]}$ is an element of $M(A)$ and $\frac{1}{\sqrt{2}}AP[e_{1}]$ is a partial isometry with the

initial projection $P[e_{1}]$ and the final projection $P[e_{2}+e_{3}]$ . Thus, the projection
$P_{[e_{2}-e_{3}]}$ is also an element of $M(A)$ because $P_{[e_{2},e_{3}]}$ and $P_{[e_{2}+e_{3}]}$ are elements of
$M(A)$ . Now, since we can show by an elementary computation that $P_{[e_{2}+e_{3}]}$ is
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not a central element of the von Neumann algebra $P[e_{2},e_{3}]M(A)P_{[e_{2},e_{3}]},$ $M(A)$
contains the matrix units with respect to $\{P[e_{2}+e_{3}], P[e_{2}-e_{3}]\}$ and so with re-
spect to $\{P_{[e_{2}]}, P_{[e_{3}]}\}$ . Hence, $M(A)$ contains the matrix units with respect to
$\{P_{[e_{1}]}, P_{[e_{2}]}, P_{[e_{3}]}\}$ . By repeating a similar argument, we can show that $M(A)$
contains the matrix units with respect to $\{P[e_{1}], P_{[e_{2}]}, P_{[e_{3}]}, P_{[e_{4}]}, P_{[e_{5}]}\}$ ,
. . . . . ., $\{P_{[e_{1}]}, \cdots, P_{[e_{2n}]}, P_{[e_{2n+1}]}\}$ . Thus, we can get the property $M(A)=$
$B(H)$ and so the conclusion of this example.

Remark 2. We showed the generator of von Neumann algebra of type
I in the previous part. But we don’t know whether an adjacency operator
generates a von Neumann algebra of type II or type III. This is a problem
that we must consider after this. In general case, Pearcy [3] firstly showed
that there exists a partial isometry $V$ (resp. $W$ ) generating a von Neumann
algebra of type $II_{1}$ (resp. $II_{\infty}$ ). But, if we consider this Pearcy’s result in
the adjacency operators, we can’t expect a similar result by considering our
previous result (i.e. Theorem 5).
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