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ON SOME CR SUBMANIFOLDS WITH PARALLEL MEAN
CURVATURE VECTOR FIELD IN A COMPLEX SPACE FORM

U-HANG KI*, RYOICHI TAKAGI** AND TSUNERO TAKAHASHI

Abstract We study $CR$ submanifolds with nonvanishing parallel mean
curvature vector field immersed in a complex space form.

Introduction One of typical submanifolds of a Kaehlerian manifold is
the so-called $CR$ submanifolds which are defined as follows: Let $M$ be a sub-
manifold of a Kaehlerian manifold $\tilde{M}$ with almost complex structure $J$ . If there
is a differentiable distribution such that it is invariant and the complementary
orthogonal distribution is totally real (cf. [1], [2]). Especially, if each normal
space of $M$ is mapped into the tangent space under the action of $J,$ $M$ is called
a generic submanifold of $\tilde{M}$ . Real hypersurface of a Riemannian manifold are
the most typical example of the generic submanifold ([13]).

Many subjects for $CR$ submanifold were investigated from various different
points of view. In [1, 2, 3, 4, 11] Bejancu, Chen, Kon and Yano studied basic
properties of $CR$ submanifolds $M$ in a Kaehlerian manifold. In particular, under
the assumptions that the second fundamental forms are commutative with the
$f$-structure induced in the tangent bundle, some characterizations and some
classifications of $CR$ submanifolds with parallel mean curvature vector field in
a complex space form were obtained $(\sec[7,8,9,10])$ .

The purpose of the present paper is to study $CR$ submanifolds of a complex
space form with nonvanishing parallel mean curvature vector field under the
assumption that the shape operator in the direction of the mean curvature vector
field is commutative with the $f$-structure induced in the tangent bundle.

1. Preliminaries

Let $\tilde{M}$ be a Kaehlerian manifold of real dimension $2m$ equipped with an
almost complex structure $J$ and a Hermitian metric tensor $G$ . Then for any
vector fields $X$ and $Y$ on $\tilde{M}$ , we have

$J^{2}X=-X$ , $G(JX, JY)=G(X, Y)$ , $\tilde{\nabla}J=0$ ,
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where $\tilde{\nabla}$ denotes the Riemannian connection of $\tilde{M}$ .
Let $M$ be an n-dimensional Riemannian manifold covered by a system of

coordinate neighborhoods $\{U;x^{h}\}$ and isometrically immersed in $\tilde{M}$ by the im-
mersion $i$ : $M\rightarrow\tilde{M}$ . When the argument is local, $M$ need not be distinguished
from $i(M)$ itself. Throughout this paper the indices $i,j,$ $k,$ $\cdots$ run from 1 to $n$ .
We represent the immersion $i$ locally by

$y^{A}=y^{A}(x^{h})$ , $(A=1, \cdots n, \cdots 2m)$

and put $B_{j}^{A}=\partial_{j}y^{A},$ $(\partial_{j}=\partial/\partial x^{j})$ then $B_{j}=(B_{j}^{A})$ are n-linearly independent
local tangent vector fields of $M$ . We choose $2m-n$ mutually orthogonal unit
normals $C_{x}=(C_{x}^{A})$ to $M$ . Hereafter the indices $u,v,w,$ $x,$ $\cdots$ run from $n+1$ to
$2m$ and the summation convention will be used. The immersion being isometric,
the induced Riemannian metric tensor $g$ with components $g_{ji}$ and the metric
tensor $\delta$ with components $\delta_{yx}$ of the normal bundle are respectively obtained:

$g_{ji}=G(BB)$ , $\delta_{yx}=G(C_{y}, C_{x})$ .

By denoting $\nabla_{j}$ the operator of wan der Waerden-Bortolotti covariant dif-
ferentiation with respect to $g$ and $G$ , the equations of Gauss and Weingarten for
the submanifold $M$ are respectively given by

(1.1) $\nabla_{ji}B=A_{ji^{x}}C_{x}$ , $\nabla {}_{i}C_{x}=-A_{jx}^{h}Bh$

where $A_{ji^{x}}$ are components of the second fundamental tensors and the shape
operator $A^{x}$ in the direction of $C_{x}$ are related by

$A^{x}=(A_{j}^{hx})=(A_{jiy}g^{ih}\delta^{yx})$ , $g^{ji}=(g_{ji})^{-1}$

A submanifold $M$ of a Kaehlerian manifold $\tilde{M}$ is called $CR$ submanifold
of $\tilde{M}$ if there exists a differentiable distribution $D$ : $x\rightarrow D_{x}\subset T_{x}(M)$ on $M$

satisfying the following condition (see $[1],[4],[12]$ ):
(1) $D$ is invariant with respect to $J$ , namely, $JD_{x}=D_{x}$ for each point $x$

in $M$ , and
(2) the complementary orthogonal distribution $D^{\perp}:$ $x\rightarrow D_{x}^{\perp}\subset T_{x}(M)$

is totally real with respect to $J$ , namely, $JD_{x}^{\perp}\subset T_{x}(M)^{\perp}$ for each point $x$ in $M$ .

We put dimD $=h,$ $\dim D^{\perp}=p$ and codimM $=2m-n=q$ . If $p=0$ , then a
$CR$ submanifold $M$ is called an invariant submanifold of $\tilde{M}$ , and if $h=0$ , then
$M$ is called a totally real submanifold of $\tilde{M}$ . If $p=q$ , then a $CR$ submanifold
$M$ is a generic submanifold of $\tilde{M}$ (see [11],[12]).
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In the following, we suppose that $M$ is a $CR$ submanifold of a Kaehlerian
manifold $\tilde{M}$ . Then the transforms of $B_{i}$ and $C_{x}$ by $J$ are respectively represented
in each coordinte neighborhood as follows:

(1.2) $JB_{j}=f_{j}^{h}B_{h}-J_{j}^{x}C_{x}$ , $JC_{x}=J_{x}^{h}B_{h}+Q_{x}^{y}C_{y}$ ,

where we have put $f_{ji}=G(JB_{j}, B_{i}),$ $J_{jx}=-G(JB_{j}, C_{x}),$ $J_{xj}=G(JC_{x}, B_{j})$ ,
$f_{j}^{h}=f_{ji}g^{ih}$ and $J_{j^{x}}=J_{jy}\delta^{yx}$ . From these definitions we verify that $fji+fij=0$

and $J_{jx}=J_{xj}$ .
By the properties of the Kaehlerian structure tensor, it follows from (1.2)

that

(1.3) $f_{j}{}^{t}f_{t}^{h}=-\delta_{j}^{h}+J_{j}^{x}J_{x}^{h}$ ,

(1.4) $Q_{x}^{y}Q_{y}^{z}=-\delta_{x}^{z}+J_{x}{}^{t}J_{t}^{z}$ ,

(1.5) $f_{jt}J^{tz}=0$ , $J_{j}^{x}Q_{x}^{z}=0$ ,

(1.6) $f^{3}+f=0$ , $Q^{3}+Q=0$ .

Equations in (1.6) show that $f$ is an $f$-structure in $M$ and $Q$ is an $f$-structure
in the normal bundle of $M$ .

Differentiating (1.2) covariantly along $M$ and making use of (1.1) and these
equations, we easily find (cf. [10])

(1.7) $\nabla_{j}f_{*}^{h}=A_{ji^{x}}J_{x}^{h}-A_{jx}^{h}J_{i}^{x}$ ,

(1.8) $\nabla_{j}J_{i}^{x}=A_{jt}^{x}f_{i}^{t}-A_{ji^{y}}Q_{y}^{x}$ ,

(1.9) $\nabla_{j}Q_{y}^{x}=A_{jty}J^{tx}-A_{jt}^{x}J_{y}^{t}$ .

We denote by $\tilde{M}^{m}(c)$ a $2m$-dimensional complex space form of constant
holomorphic setional curvature $c$ . Then equations of the Gauss, Codazzi and
Ricci of $M$ are given respectively by

(1.10) $R_{kjih}=\frac{c}{4}(gkhgji-gjhgki^{-\ulcorner}fkhfji-fjhfki-2fkjfih)$

$+Akh^{x_{A-AA}}jixjh^{x}kix$
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(1.11) $\nabla_{k}Aii^{x}-\nabla A=\frac{c}{4}(J^{x}jfki-J^{x}kfji-2J^{x}ifkj)$ ,

(1.12) $R_{jiyx}=\frac{c}{4}(J_{jx}J_{iy}-J_{ix}J_{jy}-2f_{ji}Q_{yx})+A_{jtx}A_{iy}^{t}-A_{itx}A_{jy}^{t}$ ,

where $R_{kjih}$ and $R_{jiyx}$ are components of the Riemannian curvature tensor of
$M$ and those with respect to the connection induced in the normal bundle,
respectively.

2. Parallel mean curvature vector fleld

$ $ this section we prepare some lemmas for later use.
Let $M$ be an n-dimensional $CR$ submanifold in a complex space form

$\tilde{M}^{2m}(c)$ . A normal vector field $\xi=(\xi^{x})$ is called a parallel section in the normal
bundle if it satisfies $\nabla_{j}\xi^{x}=0$ , and furthermore a tensor field $T$ on $M$ is said to
be parallel in the normal bundle if it is in the normal bundle and $\nabla_{j}T$ vanishes
identically.

In the following, we suppose that the $f$-structure $Q$ in the normal bundle
is parallel. Then (1.9) turns out to be

(2.1) AjryJ $=A^{x}jrJ_{y}^{r}$ .

Remark. Notice that $Q$ vanishes identically if $M$ is a generic submanifold of a
Kaehlerian manifold $\tilde{M}$ . Thus, a generic submanifold of $\tilde{M}$ has always a parallel
$f$-structure in the normal bundle.

Let $H$ be a mean curvature vector field of a $CR$ submanifold $M$ . Namely,
it is defined by

$H=\frac{1}{n}g^{ji}A_{ji}^{x}=\frac{1}{n}h^{x}C_{x}$ ,

which is independent of the choice of the local field of orthonormal frames $\{C_{x}\}$ .
Suppose that the mean curvature vector field $H$ of $M$ is nonzero and is

parallel in the normal bundle. Then we may choose a local field $\{e_{x}\}$ in such a
way that $H=\sigma C_{n+1}=\sigma C_{*}$ , where $\sigma=|H|$ is nonzero constant. Because of
the choice of the local field,the parallelism of $H$ yields

(2.2) $\left\{\begin{array}{ll}h^{x}=0, & x\geq n+2\\h^{*}=n|H & |.\end{array}\right.$

Then by (1.10), the Ricci tensor $S$ of $M$ is given by

(2.3) $S_{ji}=\frac{c}{4}\{(n+2)g;i-3J_{jiz}^{z}J\}+h^{*}Aii^{*}-A_{jrx}A_{i}^{rx}$ .
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Since $Q$ is parallel in the normal bundle, the second equations of (1.5), (1.6) and
(1.8) imply $h^{z}Q_{z}^{x}=0$ , which together with (2.2) gives

(2.4) $Q_{*}^{x}=0$ .

Therefore (1.4) reduces to

(2.5) $J_{jx}J^{j*}=\delta_{x}^{*}$ .

Because the mean curvature vector field is assumed to be parallel, the curvature
tensor $R_{jiyx}$ of the connection in the normal bundle shows that $R_{ji*x}$ vanishes
identically for any index $x$ . Hence the Ricci equation (1.12) yields

(2.6) $A_{jr}^{x}A_{i}^{r*}-A_{ir}^{x}A_{j}^{r*}=\frac{c}{4}(J_{j*}J_{i}^{x}-J_{i*}J_{j}^{x})$

by means of (2.4).
In what follows, we suppose that $M$ is an n-dimensional $CR$ submanifold of

a complex space form with nonvanishing parallel mean curvature vector field $H$

and parallel $f$-structure $Q$ in the normal bundle of $M$ . Furthermore, we assume
that the shape operator $A^{*}$ in the direction of $H$ and $f$-structure $f$ on $M$ is
commutative, i.e., $A^{*}f=fA^{*}$ , which means that

(C) $A_{jr}^{*}f_{i}^{r}+A_{ir}^{*}f_{j}^{r}=0$ .

The condition (C) is globally defined on $M$ because of (2.2).
By transforming by $f_{k}^{i}$ and making use of (1.3), we then have

$A_{ji^{*}}-(A_{jr}^{*}J_{z}^{r})J_{i}^{z}-A_{sr}^{*}f_{j}^{r}f_{i}^{s}=0$

and consequently $(A_{jr^{*}}J_{z}^{r})J_{i}^{z}-(A_{ir^{*}}J_{z}^{r})J_{f^{z}}=0$ . From this and (1.4) we
obtain

(2.7) $A_{jr}^{*}J_{y}^{r}=P_{yz*}J_{j}^{z}$

because of (2.1) and (2.4), where we have defined

(2.8) $P_{yzx}=A_{jix}J_{y}^{j}J_{z}^{i}$ .

We notice here that $P_{yzx}$ is symmetric for all indices since we have (2.1). Fur-
thermore we have

(2.9) $P_{xyz}Q_{w}^{z}=0$ .
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Transforming (2.6) by $J_{y^{j}}J_{z}^{i}$ and summing for $j$ and $i$ , we find

(2.10) $P_{wz*}P_{yx}^{w}-P_{wy*}P_{zx}^{w}=\frac{c}{4}(\delta_{y*}J_{z}^{i}J_{ix}-\delta_{z*}J_{yix}^{i}J)$ ,

where we have used (2.5), (2.7) and (2.8). Multiplying $\delta^{yx}$ to this and summing
for $y$ and $x$ , we get

(2.11) $P^{w}P_{wz*}-P_{wy*}P_{z}^{wy}=\frac{c}{4}(1-p)\delta_{z*}$

because of (2.5), where we have defined $P^{x}=P_{z}^{xz}$ , which implies that

(2.12) $P_{xy*}P^{xy*}-P^{z}P_{z**}=\frac{c}{4}(p-1)$ .

When $z=n+1$ in (2.10) we have

$P_{w**}P_{yx}^{w}-P_{wy*}P_{x*}^{w}=\frac{c}{4}(\delta_{y*}\delta_{x*}-J_{y}^{i}J_{ix})$ ,

which together with (2.7) gives

(2.13) $P_{wy*}P_{x*}^{w}P^{xy*}-P_{w**}P_{xy*}P^{xyw}=\frac{c}{4}(P^{*}-P_{***})$ .

For the shape operator $A^{*}$ a function $h(m)$ for any integer $m\geq 2$ is introduced
as follows:

(2.14)
$h_{(m)}=\sum_{i}(A_{ii}^{*})^{m}$

.

Lemma 2.1. The second fun $d$ament$al$ forms of $M$ satisfy

(2.15) $A^{ji*}A_{jiy}=h^{*}P_{y**}+\frac{c}{4}(n-1)\delta_{y*}$ ,

(2.16) $h_{(3)}=h^{*}|P_{z**}|^{2}+\frac{c}{4}(n-2)P_{***}+\frac{c}{4}h^{*}$ ,

where $A_{jiy}$ denotes the second fundamental form in the direction of $C_{y}$ . Proof.
Differentiating (2.7) covariantly along $M$ and making use of (1.8), we find

$(\nabla_{k}A_{jr*})J_{y}^{r}+A_{j*}^{r}(A_{ksy}f_{r}^{s}-A_{kr}^{z}Q_{zy})$

$=(\nabla_{k}P_{yz*})J_{j}^{z}+P_{yz*}(A_{kr}^{z}f_{j}^{r}-A_{kj^{w}}Q_{w}^{z})$ ,
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from which, taking the skew-symmetric part with respect to indices $k$ and $j$ ,

$A_{j*}^{r}A_{ksy}f_{r}^{s}-A_{k*}^{r}A_{jsy}f_{r}^{s}-\frac{c}{4}(J_{k*}f_{j}^{r}-J_{j*}f_{kr}-2J_{r}^{*}f_{kj})J_{y}^{r}$

$=(\nabla_{k}P_{yz*})J_{j}^{z}-(\nabla_{j}P_{yz*})J_{k}^{z}+P_{yz*}(A_{kr^{z}}f_{i^{r}}-A_{jr^{z}}f_{k}^{r})$ ,

where we have used (1.5), (1.11), (2.4) and (2.9). Because of the condition (C)
and (2.5), it follows that we have

(2.17) $A_{sr*}A_{ky}^{s}f_{j}^{r}-A_{sr*}A_{jy}^{s}f_{k}^{r}$

$=(\nabla_{k}P_{yz*})J_{j}^{z}-(\nabla_{j}P_{yz*})J_{k}^{z}+P_{yz*}(A_{kr}^{z}f_{j}^{r}-A_{jr}^{z}f_{k}^{r})+\frac{c}{2}\delta_{y*}f_{jk}$ .

Multiplying $f^{jk}$ and summing for $j$ and $k$ , and taking account of $(1.3),(1.5),(2.7)$

and (2.8), we obtain

$A^{ji*}A_{jiy}-P_{wz*}P_{y}^{wz}=P_{yz*}h^{z}-P_{yz*}P^{z}+\frac{c}{4}\delta_{y*}(n-p)$ .

By (2.2) and (2.11), we arrive at (2.15).
When $y=n+1$ in (2.17) we see, using the condition (C), that

(2.18) $2A_{sr*}A_{k*}^{s}f_{j}^{r}-P_{z**}(A_{kr}^{z}f_{j}^{r}-A_{jr}^{z}f_{k}^{r})$

$=(\nabla_{k}P_{z**})J_{j}^{z}-(\nabla_{j}P_{z**})J_{k}^{z}+\frac{c}{2}f_{jk}$ .

On the other hand, we have $A_{kt*}f^{jt}J^{kz}=0$ by virtue of (1.5) and (2.7).
Thus, transforming (2.18) by $A_{t*}^{k}f^{jt}$ , we get

$h_{(3)}-(A_{sr*}J_{w}^{r})A^{ks*}(A_{kt*}J^{wt})$

$=P_{z**}A_{ji}^{z}A^{ji*}-P_{z**}(A_{kr}^{z}J^{wr})(P_{yw*}J^{ky})+\frac{c}{4}(h^{*}-P^{*})$ ,

where we have used (1.3), (2.7) and (2.14). If we take account of (2.8), (2.13)
and (2.15), then we obtain (2.16). We have completed the proof of Lemma 2.1.

Now, the mean curvature vector field being parallel in the normal bundle,
the restricted Laplacian for $A^{*}$ is given by

(2.18) $\triangle A_{ji^{*}}=S_{jr}A_{i}^{r*}-Rki^{ih}A^{kh*}-\frac{c}{4}\nabla_{k}(J_{j*}f_{i}^{k}+2J_{i*}f_{j}^{k})$ .

From (2.15) we have

(2.19) $h_{(2)}=h^{*}P_{***}+\frac{c}{4}(n-1)$ .
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Lemma 2.2. $h_{(2)}$ is a $h$armonic function. Proof. By means of (1.5), (1.11)
and (2.5), we find

$(\nabla_{k}A_{ji^{*}})J_{*}^{i}=J_{*}^{i}\nabla_{i}A_{kj^{*}}+\frac{c}{4}f_{kj}$ ,

which together with (1.3), (2.8) and (C) implies that

(2.20) $J_{*}^{i}(\nabla kAji^{*})A^{kr*}f_{r}^{j}=\frac{c}{4}(h^{*}-P^{*})$ .

By definition, we have $P_{***}=A_{ji^{*}}J_{*}^{j}J_{*}^{i}$ , which implies that

$\nabla_{k}P_{***}=(\nabla_{k}A_{ji^{*}})J_{*}^{j}J_{*}^{i}$

because of (1.5) and (2.4). Thus, it is seen that

$\Delta P_{***}=(\Delta A_{ji^{*}})J_{*}^{j}J_{*}^{i}+2(\nabla_{k}A_{ji^{*}})J_{*}^{i}A_{kr}f^{jr}$

and hence

(2.21) $\triangle P_{***}=S_{js}J_{*}^{j}(A_{i}^{s*}J^{i*})-R_{kjih}A^{kh*}J_{*}^{j}J_{*}^{i}$

$-\frac{3}{4}J_{*}^{j}J_{*}^{i}\nabla_{k}(J_{j*}f_{i}^{k})-\frac{c}{2}(h^{*}-P^{*})$

with the aid of (2.18) and (2.20).
On the other hand, we have from (2.3) and (2.7)

$S_{ji}J_{*}^{j}A_{r}^{i*}J_{*}^{r}=P_{z**}J_{*}^{j}J^{zi}\{\frac{c}{4}(n+2)g_{ji}-\frac{3}{4}cJ_{j}^{w}J_{iw}+h^{*}A_{ji}^{*}-A_{j}^{rx}A_{irx}\}$ ,

which together with (2.5), (2.7) and (2.8) yields

(2.22) $S_{ji}J_{*}^{j}A_{r}^{i*}J_{*}^{r}=\frac{c}{4}(n-1)P_{***}+h^{*}|P_{z**}|^{2}-P_{z**}P_{wx*}P^{xzw}$ .

By the way, using (1.10) and (2.15) we obtain

(2.23) $R_{kjih}A^{kh*}=\frac{c}{4}\{h^{*}g_{ji}+(n-2)A_{ji}^{*}+3A^{kh*}f_{jh}f_{ik}\}$

$+h^{*}P_{z**}A_{ji}^{z}-A_{jh^{x}}A_{kix}A^{kh*}$

Thus, if we take account of (1.5), (2.5), (2.7) and (2.8), then we can get

(2.24) $R_{kjih}A^{kh*}J_{*}^{j}J_{*}^{i}=\frac{c}{4}\{h^{*}+(n-2)P_{***}\}+h^{*}|P_{z**}|^{2}-P_{xw*}P_{y*}^{x}P^{wy*}$
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Substituting (2.22) and (2.24) into (2.21) and making use of (2.13), we see
that $\triangle P_{***}=0$ and hence $\triangle h(2)=0$ because of (2.19). This completes the
proof of Lemma 2.2.

Because of (1.7) and (1.8), we have

$A^{ji*}\nabla_{k}(J_{j*}f_{1}^{k})=A^{ji*}A_{kr}^{*}f_{j}^{r}f_{1}^{k}+A^{ji*}J_{j*}(A_{ir}^{x}J_{x}^{r}-h^{*}J_{i*})$

$=A^{ji*}A_{jr}^{*}(\delta_{i}^{r}-J_{i}^{z}J_{z}^{r})+P^{z}P_{z**}-h^{*}P_{***}$

$=h_{(2)}-\frac{c}{4}(p-1)-h^{*}P_{***}$ ,

where we have used (1.3), $(2.7),(2.8),(2,12),(2.14)$ and (C). Therefore we obtain

(2.25) $A^{ji*}\nabla_{k}(J_{j*}f_{i}^{k})=\frac{c}{4}(n-p)$

with the aid of (2.19).
On the other hand, by using (2.6) we have

$A_{j}^{rx}A_{irx}A^{is*}A_{s}^{j*}=A_{j}^{rx}A^{sj*}\{A_{isx}A_{r}^{i*}+\frac{c}{4}(J_{r}^{*}J_{sx}-J_{s}^{*}J_{rx})\}$ ,

which joined with (2.5), (2.7), (2.8) and (2.12) yields

(2.26) $A_{j}^{rx}A_{irx}A^{is*}A_{s}^{j*}=A_{j}^{rx}A_{isx}A^{js*}A_{r}^{i*}+(\frac{c}{4})^{2}(p-1)$ .

Lemma 2.3. For the shape operator $A^{*}$ we $h$ave

(2.27) $A^{ji*}\triangle A_{ji^{*}}=-\frac{1}{8}c^{2}(n-p)$ .

Proof. Multiplying (2.3) with $A^{js*}A_{\theta}^{i*}$ and making use of (2.5), (2.7) and
(2.14), we find

$S_{ji}A^{js*}A_{s}^{i*}=\frac{c}{4}(n+2)h_{(2)}-\frac{3}{4}cP_{yz*}P^{yz*}+h^{*}h_{(3)}-A_{j}^{rx}A_{irx}A^{js*}A_{s}^{i*}$ ,

or, usinng (2.12), (2.16), (2.19) and (2.26)

(2.28) $S_{ji}A^{js*}A_{s}^{i*}=\frac{c}{2}nh^{*}P_{***}+(\frac{c}{4})^{2}(n+2)(n-1)-\frac{3}{4}cP^{z}P_{z**}-\frac{c^{2}}{4}(p-1)$

$+(h^{*})^{2}|P_{z**}|^{2}+\frac{c}{4}(h^{*})^{2}-A_{jr}^{x}A_{isx}A^{js*}A^{ir*}$
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By (2.23) we have

$R_{kjih}A^{kh*}A^{ji*}=\frac{c}{4}\{(h^{*})^{2}+(n-2)h_{(2)}+3A^{ji*}A^{kh*}f_{jh}f_{ik}\}$

$+h^{*}P_{z**}A^{jiz}A_{ji*}-A_{jr}^{x}A_{isx}A^{js*}A^{ir*}$

$=\frac{c}{4}\{(h^{*})^{2}+(n-2)h_{(2)}+3(h_{(2)}-P_{yz*}P^{yz*})\}$

$+(h^{*})^{2}|P_{z**}|^{2}+\frac{c}{4}(n-1)h^{*}P_{***}-A_{jr}^{x}A_{isx}A^{js*}A^{ir*}$ ,

where we have used (1.3), (2.1), (2.5), (2.15) and (C). Therefore, it follows that
we obtain

(2.29) $R_{kjih}A^{kh*}A^{ji*}=\frac{c}{4}(h^{*})^{2}+\frac{c}{2}nh^{*}P_{***}+(\frac{c}{4})^{2}(n-2)(n-1)$

$+3(\frac{c}{4})^{2}(n-p)-\frac{3}{4}cP^{z}P_{z**}+(h^{*})^{2}|P_{z**}|^{2}$

$-A_{jr}^{x}A_{isx}A^{js*}A^{ir*}$

Multiplying (2.18) with $A^{ji*}$ and summing for $j$ and $i$ , and substituting
(2.25), (2.28) and (2.29) into this, we arrive at (2.27). Hence, Lemma 2.3 is
proved.

3. Theorems

Theorem 3.1. Let $M$ be an n-dimensional $CR$ submanifold of a complex
space form $\tilde{M}^{2m}(c)$ with nonvanishing parallel mean curvature vector field. If
the f-structure $Q$ in the normal bundle is $p$arallel, and if $A^{*}f=fA^{*}$ , then

(3.1) $|\nabla A^{*}|^{2}=\frac{1}{8}c^{2}(n-p)$ ,

or $eq$uivalently

(3.2) $\nabla kA_{ji^{*}}=-\frac{c}{4}(J_{j*}fki+J_{i*}f_{kj})$ ,

where $A^{*}$ is the shape operator in the direction of the mean curvature vector
field of $M$ .

Proof. Let us put

$T_{jik}=\nabla kAji^{*}+\frac{c}{4}(Jj*fki+J_{i*}fkj)$ .

Then we have, by the equation of Codazzi (1.11)

$|T_{jik}|^{2}=|\nabla_{k}A_{ji^{*}}|^{2}-\frac{1}{8}c^{2}(n-p)\geq 0$ .
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Therefore, $T$ vanishes identically if and only if $|\nabla A^{*}|^{2}=\frac{1}{8}c^{2}(n-p)$ .
Generally we have

$\frac{1}{2}\triangle h_{(2)}=A^{ji*}\triangle A_{ji}^{*}+|\nabla A^{*}|^{2}$ .

Thus we have our assertion by Lemma 2.2 and 2.3.

From Remark, we have

Corollary 3.2. Let $M$ be an n-dimensional generic submanifold of a
complex space form $\tilde{M}^{2m}(c)$ with nonvanishing parallel mean curvature vector
field. If $A^{*}f=fA^{*}$ , then we have (3.1) and (3.2).

Theorem 3.1 and Corollary 3.2 are the generalizations of theorems in [5, 6,
7, 8, 9, 10].

Theorem 3.3. Under the same assumptions as those in Theorem 3.1, each
eigenvalue of $A^{*}$ is constant.

Proof. Applying $(A^{ji*})^{m}$ to (3.2) and using the condition (C), we have
$(\nabla_{k}A_{ji^{*}})(A^{ji*})^{m}=0$ for any integer $m\geq 2$ and consequently $h_{(m)}=const$ . on
$M$ . Thus all eigenvalues of $A^{*}$ are constant, which proves the required result.

For any point $x$ in $M$ we can choose a local orthonormal frame field $\{E_{i}\}$ so
that the shape operator $A^{*}$ is diagonalizable at that point $x$ , say $A_{ji^{*}}=\lambda_{j}\delta_{ij}$ .
We denote by $\sigma_{ji}$ the sectional curvature of $M$ spanned by $E_{j}$ and $E_{i}$ . Then by
(2.28) and (2.29) we have

$\sum_{j,i}(\lambda_{j}-\lambda_{i})^{2}\sigma_{ji}=\frac{1}{8}c^{2}(n-p)\geq 0$

because of (3.1). Thus, if $\sigma_{ji}\leq 0$ , then $c(n-p)=0$ , and therefore $\nabla A^{*}=0$ by
virtue of (3.1). Moreover, we have $c=0$ or $n=p$ . If $n=p$ , then $f=0$ and $M$

is totally real. Thus we have

Theorem 3.4. Let $M$ be an n-dimensional $CRsu$bmanifold of a complex
space form $\tilde{M}^{2m}(c)$ with nonvanishing parallel mean curvature vector field and
parallel f-struct$ureQ$ in the normal bun $dle$ . If $A^{*}f=fA^{*}$ , and if the sectional
curvature of $M$ is nonpos $i$ tive, then the $sh$ape operator $A^{*}in$ the direction of the
mean curvature vector field is $p$arallel. Moreover, $M$ is totally real or $\tilde{M}^{2m}(c)$

is complex Euclidean.
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