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ABSTRACT. Given a linear partial differential operator $L$ of order $m$ with
$c^{m}$-coefficients and a distribution $T$ on an open set $\Omega$ of $R^{n}$ , a necessary and
suMcient condition is derived for the existence of a function $f\in L^{p}(\Omega),$ $1<$

$ p<\infty$ , such that $Lf=T$ in the sense of distribution.

1. Introduction

Suppose $B$ is a reflexive Banach space, $E$ a locally convex space and $T:B\rightarrow E$

a linear map (continuous or not). We obtain a necessary and sufficient condition so
that given $g\in E$ , there exists $f\in B$ such that $Tf=g$ .

This result is applied to the problem of finding a solution of $f\in L^{p}(\Omega)$ , $1<$

$ p<\infty$ and $\Omega$ open in $R^{n}$ , for the differential equation $Lf=T$ where $L$ is a partial

differential operator of order $m$ with $c^{m}$-coeflicients and $T$ is a distribution defined
on $\Omega$ .

2. A Preliminary result in a Hilbert space

Proposition 1. Let $T$ be a bounded linear operator on a Hilbert space $H$ . Then

given $g\in H$ , there exists an $f\in H$ such that $Tf=g$ if and only if $\sup_{||u||=1}\frac{|(g,u)|}{||T\star u||}$ is

finite.
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Proof:

1) Suppose $Tf=g$ . Then for any $u\in H$, $|(g,u)|=|(Tf,u)|=|(f, T^{\star}u)|\leq$

IIfllll $ T^{\star}u\Vert$ .

2) Conversely, suppose $|(g,u)|\leq c\Vert T^{\star}u\Vert$ for every $u\in H$ .

Consider now the linear functional $\lambda$ defined on Ran $T^{\star}$ as follows:

For $v=T^{\star}u$ , $\lambda(v)=(g, u)$ . This definition does not depend on the particular

choice of $u$ and $|\lambda(v)|\leq c||T^{\star}u||=c||v||$ .

Hence $\lambda$ is a bounded linear functional on Ran $T^{\star}$ and it can be extended as a

continuous linear functional on the whole of $H$ . Let us denote this extension also

by $\lambda$ .

Consequently, there exists an $f\in H$ such that $\lambda(x)=(f,x)$ for every $x\in H$ .

In particular, for every $u\in H,$ $\lambda(T^{\star}u)=(f, T^{\star}u)=(Tf, u)$ . But $T^{\star}u\in RanT^{\star}$

and hence $\lambda(T^{\star}u)=(g, u)$ .

Thus, $(Tf,u)=(g,u)$ for every $u\in H$ and hence $Tf=g$ .

3. Adjoint family in topological vector spaces.

Definition 1: Let $E_{1}$ and $E_{2}$ be two topological vector spaces; $E_{1}^{\prime}$ and $E_{2}^{\prime}$ are their

topological dual spaces. Let $T:E_{1}\rightarrow E_{2}$ and $S:E_{2}^{\prime}\rightarrow E_{1}^{\prime}$ be two linear operators

(continuous or not) defined on some subspaces of $E_{1}$ and $E_{2}^{\prime}$ respectively, such that

$(Tx, y)=(x, Sy)$ for $x\in DomT$ and $y\in DomS$ . Then $(E_{1}, E_{2};T,S)$ is called an

adjoint family.

Theorem 1. Let $(B, E;T, S)$ be an adjoint family where $B$ is a reflexive Banach

space and $E$ is a topological vector space whose topological dual $E^{\prime}$ separates points

of E. (Examples: $ E=l^{p},0<p<\infty$ or $E$ is any locally convex space). Suppose

that Dom $T$ is $B$ and Dom $S$ is a $\sigma(E^{\prime}, E)$-dense subspace in $E^{\prime}$ .

–166–



Then, given $gEE$ , there exists an $fEB$ such that $Tf=g$ if and only if

$|(g, u)|\leq c\Vert Su\Vert$ for every $ u\in$ Dom $S$ .

When a solution to the equation $Tf=g$ exists, it is unique if and only if Ran $S$

is dense in $B^{\prime}$ .

Proof:

1) Let $Tf=g$

Then, for $u\in DomS,$ $|(g,u)|=|\{f,$ $Su$ ) $|\leq||f||\Vert Su\Vert$ .

2) Suppose now that $g\in E$ is given and $|(g,u)|\leq c\Vert Su\Vert$ for every $u\in DomS$ .

Let $F=$ { $v\in B^{\prime}$ , where $v=Su$ for some $u\in E^{\prime}$ }.

Then, as in the proof of Proposition 1, we note that the linear functional $L(v)=$

$(g, u)$ defined on $F$ extends as a bounded linear functional $L$ on the whole of $B^{\prime}$

(using Hahn-Banach theorem, see Schaefer [1]).

Thus LE $B^{\prime\prime}=B$ since $B$ is reflexive. Identify $L$ with an $f\in B$ to write

$L(x)=(f, x)$ for every $x\in B^{\prime}$ .

But, if $u\in DomS,$ $L(Su)=(g,u)$ since $Su\in F$ .

Thus, for every $ u\in$ Dom $S,$ $(g, u)=(f, Su)=(Tf,u)$ . Since Tf-g E $E$ vanishes

on a dense set of $E^{\prime}$ , (Tf-g, $y$ ) $=0$ for every $y\in E$‘ and since $E$‘ separates points

of $E$ , $Tf- g=0$ in $E$ .

Uniqueness: Let us suppose now that $Tf=g$ has a solution $fEB$ for a given

$g\in E.$ $We’ 11$ show that the solution is unique if and only if Ran $S$ is dense in $B^{\prime}$ .

1) Suppose Ran $S$ is not dense in $B^{\prime}$

Then, by Hahn-Banach theorem, there exists $h\in B$ , $h\neq 0$ and $h$ (Ran $S$) $=$

$0$ , i.e. $(h, Su)=0$ for $uE$ Dom $S$ . This means that (Th, $u$ ) $=0$ and then as shown

earlier $Th=0$ .
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Hence, $T(f+h)=Tf=g$ which means that the solution is not unique.

2) Conversely, suppose Ran $S$ is dense in $B^{\prime}$ .

Suppose $Tf_{1}=g=Tf_{2}$ .

Then $(T(f_{1}-f_{2}),u)=0$ for every $u\in Dom$ S. i.e. $(f_{1}-f_{2}, Su)=0$ . Since

Ran $S$ is dense in $B^{\prime}$ , this $implie8$ that $f_{1}-f_{2}=0$ in $B$ .

4. An application

Let $\Omega$ be an open set in $p*n\geq 1$ . Let $L=\Sigma_{|k|\leq m}a_{k}(x)\partial^{k}$ be a linear partial

differential operator of order $m$ , with $a_{k}(x)\in c^{m}(\Omega)$ .

Let $\mathcal{D}(\Omega)$ be the family of $c^{\infty}$-functions with compact support in $\Omega$ and $\mathcal{D}(\Omega)$

the space of distributions in $\Omega$ . $\mathcal{D}(\Omega)$ is a locally convex space (see Treves [2]).

Let $L^{\star}u=\Sigma_{|k|\leq m}(-1)^{|k|}\partial^{k}(a_{k}(x)u)$ be the adjoint operator; this satisfies the

condition $(LT,\varphi)=(T,L^{\star}\varphi)$ for $T\in \mathcal{D}(\Omega)$ and $\varphi\in \mathcal{D}(\Omega)$ .

For the reflexive Banach space $L^{p}(\Omega)$ , $ 1<p<\infty$ , denote the norm by $||\cdot||_{p}$

and let $\frac{1}{p}+\frac{1}{q}=1$ .

${\rm Re} call$ that for $f\in L^{p}(\Omega),$ $Lf\in y(\Omega)$ and that two distributions $T$ and $S$ are

said to be equal if and only if $(T,\varphi)=(S,\varphi)$ for every $\varphi\in \mathcal{D}(\Omega)$ .

With these notations, the following theorem is an immediate consequence of

Theorem 1.

Theorem 2: Let $L$ be a linear partial differential operator of order $m$ with $c^{m_{-}}$

coefficients defined on an open set $\Omega$ in $R^{n}$ . Then given $T\in \mathcal{D}(\Omega)$ there exists an

$f\in L^{p}(\Omega),$ $ 1<p<\infty$ , such that $Lf=T$ if and only if $|T(\varphi)|\leq||L^{\star}\varphi||_{q}$ for every

$\varphi\in \mathcal{D}(\Omega)$ .
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When such a solution exists, it is unique if and only if $L^{\star}(\mathcal{D}(\Omega))$ is dense in
$L^{q}(\Omega)$ .
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