On *-Representations of Partial *-Algebras

Itsuko Ikeda

Abstract

The first purpose of this paper is to study *-subrepresentations of a *-representation of a partial *-algebra. The second purpose is to characterize invariant positive sesquilinear forms of type I,II,III.

1. Introduction.

In this paper we shall investigate the fundamental properties of *-representations of partial *-algebras. The study of *-representations of partial *-algebras and partial O*-algebras were began by Antoine and Karwouski [1], and have been continued by Antoine, Inoue and Trapani [2], from the situation of pure mathmatical and the physical applications. But, the studies of *-subrepresentations and invariant positive sesquilinear forms on partial *-algebras seem to be insufficient, and so we shall study these points in this paper.

In partial *-algebras, the multiplication is defined only partially and it dose not have the associative low. And so, to extend arguments that are considerd in the case of *-algebras, we need to reconsider some conditions. For example, the quasi-weak commutant $C_{qw}(\pi)$ is considered instead of the usual weak commutant $C_{w}(\pi)$ of π .

Let π be a *-representation of a partial *-algebra \mathcal{A} . For each projection E in $C_{qw}(\pi)$, we can define the *-representation π_E of \mathcal{A} by

$$\mathcal{D}(\pi_E) := \mathrm{E} \mathcal{D}(\pi), \;\; \pi_E(x) := \pi(x) E \;\; (x \in \mathcal{A} \;).$$

To define another *-subrepresentation of π , we define the notion of representable subspaces of $\mathcal{D}(\pi)$ as follows: A subspace \mathfrak{M} of $\mathcal{D}(\pi)$ is said to be representable if $\pi(\mathcal{A})\mathfrak{M} \subset \overline{\mathfrak{M}}$. Of course, $E\mathcal{D}(\pi)$ is a representable subspace of $\mathcal{D}(\pi)$ for each $E \in C_{qw}(\pi)$. For a representable subspace \mathfrak{M} of $\mathcal{D}(\pi)$ we put

$$\mathcal{D}(\pi_{\lceil_{\mathfrak{M}}}) := \mathfrak{M}, \ \ \pi_{\lceil_{\mathfrak{M}}}(x) := \pi(x)_{\lceil_{\mathfrak{M}}} \ \ (x \in \mathcal{A}).$$

Then $\pi_{l_{\mathfrak{M}}}$ is a *-representation of \mathcal{A} on the Hilbelt space $\overline{\mathfrak{M}}$ whose full closure is denoted by $\pi_{\mathfrak{M}}$. It is natural to consider the following questions: Let \mathfrak{M} be a representable subspace of $\mathcal{D}(\pi)$.

- [Q1] When does $E_{\overline{\mathfrak{M}}}$ (:= proj $\overline{\mathfrak{M}}$) belong to $C_{qw}(\pi)$?
- [Q2] When does the equation $\pi_{E_{\overline{x}}} = \pi_{x}$ hold?

In Section 3 we shall solve the avobe questions.

Each bounded *-representation is decomposed into the direct sum of cyclic *-representations. We shall consider whether this result holds for fully closed *-representations of partial *-algebras or not. In case of *-algebras, using the arguments of π -invariant subspaces, we investigated this problem [7]. But, in case of partial *-algebras, it's a problem that for each $\xi \in \mathcal{D}(\pi)$, even if \mathfrak{M}_{ξ} is representable, $E_{\overline{\mathfrak{M}_{\xi}}} \notin C_{qw}(\pi)$ in general, where $\mathfrak{M}_{\xi} := \{\pi(y)\xi; y \text{ is the right multiplier of all elements of } \mathcal{A} \}$. So, in Section 4, we define the notion of self-adjoint vectors and obtain the decomposition theorem: Every self-adjoint representation π of a partial *-algebra is decomposed into

$$\pi = \pi_1 \oplus \pi_2$$

where π_1 is a direct sum of self-adjoint cyclic representations of \mathcal{A} and π_2 is a fully closed *-representation of \mathcal{A} which dose not have any non-zero self-adjoint vector in $\mathcal{D}(\pi)$.

In Section 5, we shall define the types of self-adjoint representations π of partial *-algebras by the types of the von Neumann algebra $C_{qw}(\pi)$.

In Section 6, we shall obtain the results about the characterization of primary Riesz forms of type I (II, III) using some order relation in the space of all Riesz forms on partial *-algebras.

2. Preliminaries

In this section we state the definitions and the basic properties about *-representations and invariant positive sesquilinear forms of partial *-algebras. For more details refer to [2].

A is called a partial *-algebra if the following conditions are satisfied:

- (1) A is a linear space over C with an involution *.
- (2) There is a subset Γ of $\mathcal{A} \times \mathcal{A}$ such that
 - (i) $(x,y) \in \Gamma$ if and only if $(y^*,x^*) \in \Gamma$,
 - (ii) if $(x, y), (x, z) \in \Gamma$, then $(x, \lambda y + \mu z) \in \Gamma$, for each $\lambda, \mu \in \mathbb{C}$,
 - (iii) for each $(x, y), (x, z) \in \Gamma$ there is a $x \cdot y, x \cdot z \in \mathcal{A}$ such that $(x \cdot y)^* = y^* \cdot x^*$ and $x \cdot (\lambda y + \mu z) = \lambda(x \cdot y) + \mu(x \cdot z)$ for each $\lambda, \mu \in \mathbb{C}$.

If $(x, y) \in \Gamma$, x (resp. y) is called the *left multiplier* of y (resp. the *right multiplier* of x) and denoted by $x \in L(y)$ (resp. $y \in R(x)$). And we write

$$L(\mathcal{A}) := \bigcap_{x \in \mathcal{A}} L(x), \quad R(\mathcal{A}) := \bigcap_{x \in \mathcal{A}} R(x).$$

As usual, \mathcal{D} denotes a dense subspace in a Hilbert space \mathcal{H} , and $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ is the set of all linear operators X such that $\mathcal{D}(X) = \mathcal{D}$ and $\mathcal{D}(X^*) \subset \mathcal{D}$. Then $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ is a partial *-algebra when equipped with the usual sum $X_1 + X_2$, the scalar multiplication λX , the involution $\dagger : X \to X^{\dagger} := X^* \upharpoonright_{\mathcal{D}}$, and the partial multiplication $\square :$ for $X_1, X_2 \in \mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$, such that $X_2 \mathcal{D} \subset \mathcal{D}(X_1^{\dagger *})$ and $X_1^{\dagger} \mathcal{D} \subset \mathcal{D}(X_2^*)$, $X_1 \square X_2 := X_1^{\dagger *} X_2$. A partial O^* -algebra on \mathcal{D} is a partial *-subalgebra of $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$.

A *-representation of a partial *-algebra \mathcal{A} is a *-homomorphism of \mathcal{A} into $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ for some pair $\mathcal{D}\subset\mathcal{H}$, that is, a linear map $\pi:\mathcal{A}\to\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$ such that,

- (i) $\pi(x^*) = \pi(x)^{\dagger}$ for every $x \in A$;
- (ii) for each $y \in \mathcal{A}$, if $x \in L(y)$ then $\pi(x) \in L(\pi(y))$ and $\pi(x) \square \pi(y) = \pi(xy)$.

The extension of *-representations is defined in the natural way. Let π_1 and π_2 be two *-representations of a partial *-algebra \mathcal{A} in $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$.

If $\pi_1(x) \subset \pi_2(x)$ for all $x \in \mathcal{A}$, then π_2 is said to be an extention of π_1 and this is denoted by $\pi_1 \subset \pi_2$.

As in the case of *-algebras, we can consider some representations for a given representation. For a *-representation π of a partial *-algebra $\mathcal A$, we define the $adjoint \ \pi^*$ and the $closuer \ \hat{\pi}$ of π :

$$\mathcal{D}(\pi^*) = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\pi(x)^*), \quad \pi^*(x) = \pi(x^*)^* |_{\mathcal{D}(\pi^*)}, \quad x \in \mathcal{A}.$$

$$\mathcal{D}(\hat{\pi}) = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\overline{\pi(x)}), \ \hat{\pi}(x) = \overline{\pi(x)} |_{\mathcal{D}(\hat{\pi})}, \ x \in \mathcal{A}.$$

If $\pi = \pi^*(\text{resp. } \pi = \hat{\pi})$ then π is called *self-adjoint* (resp. fully closed).

For the partial O*-algebra $\pi(A)$ with domain $\mathcal{D}(\pi) \subset \mathcal{H}$, we can define some commutants. As stated in Introduction, we deal with the quasi-weak commutant $C_{qw}(\pi)$ defined as follows:

$$\begin{split} C_{\mathrm{qw}}(\pi) := \{ C \in C_{\mathbf{w}}(\pi); & \quad (C\pi(x^*)\xi \mid \pi(y)\eta) = (C\xi \mid \pi(xy)\eta) \\ & \quad (C^*\pi(x^*)\xi \mid \pi(y)\eta) = (C^*\xi \mid \pi(xy)\eta) \\ & \quad \text{for each } x,y \in \mathcal{A} \ , \xi,\eta \in \mathcal{D}(\pi) \}, \end{split}$$

where $C_{\mathbf{w}}(\pi) = \pi(\mathcal{A})'_{\mathbf{w}} = \{C \in B(\mathcal{H}); (C\pi(x)\xi \mid \eta) = (C\xi \mid \pi(x^*)\eta), \text{ for each } x \in \mathcal{A} \text{ and } \xi, \eta \in \mathcal{D}(\pi)\}.$

For two *-representations π_1, π_2 of a partial *-algebra $\mathcal A$, we define the direct sum as follows:

$$\mathcal{D}(\pi_1 \oplus \pi_2) := \{ (\xi_1, \xi_2); \xi_1 \in \mathcal{D}(\pi_1), \ \xi_2 \in \mathcal{D}(\pi_2) \}$$
$$(\pi_1 \oplus \pi_2)(x)(\xi_1, \xi_2) := (\pi_1(x)\xi_1, \pi_2(x)\xi_2).$$

A vector $\xi \in \mathcal{D}(\pi)$ is said to be *cyclic* for π if $\pi(R(\mathcal{A}))\xi$ is dense in $\mathcal{D}(\pi)$ with respect to the graph topology.

For positive linear functionals of *-algebras, the GNS-construction generates the *-representation. In order to extend it to partial *-algebras, we introduce the notion of invariant positive sesquilinear form for which the GNS-construction is always possible.

A sesquilinear form on $\mathcal{A} \times \mathcal{A}$ is a mapping of $\mathcal{A} \times \mathcal{A}$ into \mathbf{C} which is linear in the first and conjugate linear in the second variable. If $\varphi(x,x) \geq 0$ for all $x \in \mathcal{A}$, then φ is said to be *positive*. For each positive sesquilinear form φ on $\mathcal{A} \times \mathcal{A}$, we have

$$\varphi(x,y) = \overline{\varphi(y,x)}, \quad x,y \in \mathcal{A};$$

$$| \varphi(x,y) |^2 \le \varphi(x,x)\varphi(y,y) \quad x,y \in \mathcal{A},$$

and hence we have the subspace \mathcal{N}_{φ} of \mathcal{A} , where

$$\mathcal{N}_{\varphi} := \{x \in \mathcal{A} ; \varphi(x, x) = 0\}$$

= $\{x \in \mathcal{A} ; \varphi(x, y) = 0, \text{ for each } y \in \mathcal{A} \}.$

For each $x \in \mathcal{A}$, we denote by $\lambda_{\varphi}(x)$ the coset of the quotient space $\mathcal{A}/\mathcal{N}_{\varphi}$ which contains x, and define an inner product on $\lambda_{\varphi}(\mathcal{A})$ by:

$$(\lambda_{\varphi}(x) \mid \lambda_{\varphi}(y)) := \varphi(x,y), \ x,y \in \mathcal{A}.$$

We denote by \mathcal{H}_{φ} the Hilbert space obtained by the completion of the pre-Hilbert space $\lambda_{\varphi}(\mathcal{A})$. A positive sesquilinear form φ on $\mathcal{A} \times \mathcal{A}$ is called *invariant* if

- (i) $\lambda_{\varphi}(R(\mathcal{A}))$ is dense in \mathcal{H}_{φ} ;
- (ii) $\varphi(xy_1, y_2) = \varphi(y_1, x^*y_2)$ for each $x \in \mathcal{A}$ and $y_1, y_2 \in R(\mathcal{A})$;
- (iii) $\varphi(x_1^*y_1, x_2y_2) = \varphi(y_1, (x_1x_2)y_2)$ for each $x_1 \in L(\mathcal{A})$ and $y_1, y_2 \in R(\mathcal{A})$.

Let φ is an invariant positive sesquilinear form on $\mathcal{A} \times \mathcal{A}$. We put

$$\pi_{\varphi}(x)\lambda_{\varphi}(a) := \lambda_{\varphi}(xa), \quad x \in \mathcal{A}, a \in R(\mathcal{A}).$$

Then π_{φ} is a *-representation of \mathcal{A} on \mathcal{H}_{φ} [3]. We call the triple $(\widehat{\pi_{\varphi}}, \lambda_{\varphi}, \mathcal{H}_{\varphi})$ the GNS-construction for φ . If $\widehat{\pi_{\varphi}}$ is self-adjoint then φ is said to be a *Riesz form*.

3. Subrepresentations

In this section we consider the questions [Q1] and [Q2] in Introduction. Let π be a fully closed *-representation of a partial *-algebra \mathcal{A} . For a projection E in $C_{qw}(\pi)$, we define

$$\mathcal{D}(\pi_E) := \mathrm{E}\mathcal{D}(\pi),$$

 $\pi_E(x)\mathrm{E}\,\xi := \mathrm{E}\pi(x)\xi, \ \ \mathrm{for} \ x \in \mathcal{A} \ , \xi \in \mathcal{D}(\pi).$

Then we have the following property:

LEMMA 3.1. Let E be a projection in $C_{qw}(\pi)$. Then the following statements hold.

- (i) π_E is a *-representation of \mathcal{A} on $E\mathcal{H}$ satisfying $\mathcal{D}(\pi_E) = E\mathcal{D}(\pi) \subset \mathcal{D}(\pi_E^*) \subset E\mathcal{D}(\pi^*),$ $\pi_E^*(x)\xi = \pi^*(x)\xi, \text{ for } x \in \mathcal{A}, \xi \in \mathcal{D}(\pi_E^*).$
- (ii) Suppose $\mathrm{E}\mathcal{D}(\pi)\subset\mathcal{D}(\pi)$. Then π_E is fully closed and $\mathrm{E}\mathcal{D}(\pi^*)=\mathcal{D}(\pi_E^*)$.

Furthermore, π_E is self-adjoint if and only if $E\mathcal{D}(\pi) = E\mathcal{D}(\pi^*)$.

Proof. (i) Take an arbitrary $y \in A$ and $x \in L(y)$. For each $\xi, \eta \in \mathcal{D}(\pi)$ we have

$$(\pi_E(x^*) \to \xi \mid \pi_E(y) \to \eta) = (\to \pi(x^*) \xi \mid \pi(y) \eta)$$
$$= (\to \xi \mid \to \pi_E(xy) \eta)$$
$$= (\to \xi \mid \pi_E(xy) \to \eta).$$

Similarly, we have

$$(\pi_E(y) \to \xi \mid \pi_E(x^*) \to \eta) = (\to \xi \mid \pi_E(y^*x^*) \to \eta).$$

Hence we have $\pi_E(y) \in L(\pi_E(x))$ and, $\pi_E(x) \square \pi_E(y) = \pi_E(xy)$. Since

$$(\pi_{E}(x) \to \xi \mid \to \eta) = (\to \pi(x) \xi \mid \eta)$$
$$= (\to \xi \mid \pi(x^{*}) \eta)$$
$$= (\to \xi \mid \pi_{E}(x^{*}) \to \eta)$$

for each $x \in \mathcal{A}$ and $\xi, \eta \in \mathcal{D}(\pi)$, we have $\pi_E(x^*) \subset \pi_E(x)^*$ for each $x \in \mathcal{A}$. Therefore π_E is a *-representation of \mathcal{A} on $E\mathcal{H}$.

Let $\mathcal{E} \xi = \xi \in \mathcal{D}(\pi_E^*)$, then for each $x \in \mathcal{A}$ and $\eta \in \mathcal{D}(\pi)$, we have $(\xi \mid \pi(x^*)\eta) = (\mathcal{E} \xi \mid \pi(x^*)\eta) = (\xi \mid \pi_E(x^*)\mathcal{E} \eta) = (\pi_E(x^*)^*\xi \mid \eta)$. So, $\xi \in \mathcal{D}(\pi^*)$ and $\pi^*(x)\xi = \pi_E^*(x)\xi$.

(ii) Suppose $E\mathcal{D}(\pi) \subset \mathcal{D}(\pi)$. Take an arbitrary $E\xi = \xi \in \mathcal{D}(\widehat{\pi_E})$ (= $\cap \{\mathcal{D}(\overline{\pi_E(x)}), x \in A\}$). Let $x \in A$. Then there is a sequence $\{E\xi_n\} \subset E\mathcal{D}(\pi)$ such that $E\xi_n \longrightarrow \xi$ and $\pi_E(x)E\xi_n \longrightarrow \overline{\pi_E(x)}\xi$. Since

$$\pi_E(x) \to \xi_n = \pi^*(x) \to \xi_n = \pi(x) \to \xi_n, \quad \to \xi_n \in \mathcal{D}(\pi(x)),$$

we have $\xi \in \mathcal{D}(\overline{\pi(x)})$. Since π is fully closed, we have $\xi \in \mathcal{D}(\pi)$. Then $\xi = \mathcal{E} \xi \in \mathcal{E} \mathcal{D}(\pi) = \mathcal{D}(\pi_E)$, and $\mathcal{D}(\widehat{\pi_E}) = \mathcal{D}(\pi_E)$. Therefore π_E is fully closed.

For each $\xi \in \mathcal{D}(\pi^*)$, it is easy to show that $\mathrm{E}\,\xi \in \mathcal{D}(\pi_E^*)$ and $\pi_E^*(x)\mathrm{E}\,\xi = \mathrm{E}\pi^*(x)\xi$ for $x \in \mathcal{A}$, $\xi \in \mathcal{D}(\pi^*)$. Therefore it follows from (i) that π_E is self-adjoint if and only if $\mathrm{E}\mathcal{D}(\pi) = \mathrm{E}\mathcal{D}(\pi^*)$. \square

Remark. The condition of $E \in C_{qw}(\pi)$ is that $E \in C_{w} = \pi(\mathcal{A})'_{w}$ and $E\mathcal{D}(\pi) \subset \mathcal{D}(\pi)$.

In case of a *-representation τ of a *-algebra \mathcal{A} , for a τ -invariant subspace $\mathfrak{M}(\text{i.e. }\tau(\mathcal{A})\mathfrak{M}\subset\mathfrak{M})$, we define the restriction of τ to \mathfrak{M} . But in this case, the condition " π -invariant" is too strict. So, if a subspace \mathfrak{M} of the domain $\mathcal{D}(\pi)$ satisfies the condition that $\pi(\mathcal{A})\mathfrak{M}\subset\overline{\mathfrak{M}}$, \mathfrak{M} is called representable and we consider such representable subspaces \mathfrak{M} instead of π -invariant subspaces.

Let m be a representable subspace. We put

$$\mathcal{D}(\pi_{\lceil_{\mathfrak{M}}}) := \mathfrak{M}, \ \pi_{\lceil_{\mathfrak{M}}}(x)\xi := \pi(x)\xi, \ \ \xi \in \mathfrak{M}, \ \ x \in \mathcal{A} \ .$$

Then $\pi_{\uparrow_{\mathfrak{M}}}$ is a *-representation of \mathcal{A} on the Hilbelt space $\overline{\mathfrak{M}}$ whose full closure is denoted by $\pi_{\mathfrak{M}}$. Then π is the extention of $\pi_{\mathfrak{M}}$ with $\mathcal{H}(\pi_{\mathfrak{M}}) \subset \mathcal{H}(\pi)$, i.e.

(3.1)
$$\pi_{\text{an}}(x)\xi = \pi(x)\xi \text{ for } x \in \mathcal{A}, \xi \in \mathcal{D}(\pi_{\text{an}}).$$

And we have the following properties:

LEMMA 3.2. Let \mathfrak{M} be a representable subspace of $\mathcal{D}(\pi)$ and $E_{\overline{\mathfrak{M}}}$ the projection of \mathcal{H} onto $\overline{\mathfrak{M}}$. Then,

(i)
$$\mathcal{D}(\pi_{\mathfrak{M}}) \subset E_{\overline{\mathfrak{M}}} \mathcal{D}(\pi) \subset E_{\overline{\mathfrak{M}}} \mathcal{D}(\pi^*) \subset \mathcal{D}(\pi_{\mathfrak{M}}^*),$$

(ii)
$$\pi_{\mathfrak{M}}^*(x) \mathcal{E}_{\overline{\mathfrak{M}}} \xi = \mathcal{E}_{\overline{\mathfrak{M}}} \pi^*(x) \xi$$
 for $x \in \mathcal{A}$, $\xi \in \mathcal{D}(\pi^*)$.

Proof. We prove the last relation of inclusion in (i) and (ii) at once. Let $\xi \in \mathcal{D}(\pi^*)$. For each $x \in \mathcal{A}$ and $\eta \in \mathfrak{M}$, we have

$$\begin{array}{lll} (\mathrm{E}_{\overline{\mathfrak{M}}} \, \xi \mid \pi_{\mathfrak{M}}(x^*) \eta) & = (\xi \mid \mathrm{E}_{\overline{\mathfrak{M}}} \, \pi(x^*) \eta) & = (\xi \mid \pi(x^*) \eta) \\ & = (\pi(x^*)^* \xi \mid \mathrm{E}_{\overline{\mathfrak{M}}} \, \eta) & = (\mathrm{E}_{\overline{\mathfrak{M}}} \, \pi^*(x) \xi \mid \eta). \end{array}$$

Hence
$$E_{\overline{\mathfrak{M}}}\xi \in \mathcal{D}(\pi_{\mathfrak{M}}^*)$$
 and $\pi_{\mathfrak{M}}^*(x)E_{\overline{\mathfrak{M}}}\xi = E_{\overline{\mathfrak{M}}}\pi^*(x)\xi.\square$

Theorem 3.3. Let \mathfrak{M} be a representable subspace of $\mathcal{D}(\pi)$.

I. Consider the following statements.

(i) $\pi_{\mathfrak{M}}$ is self-adjoint.

(ii)
$$E_{\overline{\mathfrak{M}}}\mathcal{D}(\pi^*) = \mathcal{D}(\pi_{\mathfrak{M}}).$$

(iii)
$$E_{\overline{u}\overline{n}}\mathcal{D}(\pi) = \mathcal{D}(\pi_{u}\pi)$$
.

(iv)
$$E_{\overline{n}}\mathcal{D}(\pi) \subset \mathcal{D}(\pi)$$
.

(v)
$$E_{\overline{an}} \in C_{qw}(\pi)$$
.

Then the following inplications hold:

(i)

$$\updownarrow$$
 \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v).

(ii)

II. Suppose $E_{\overline{a\pi}} \in C_{qw}(\pi)$. Then,

$$\pi_{\mathfrak{M}} \subset \pi_{E_{\overline{\mathfrak{M}}}} \subset \pi_{E_{\overline{\mathfrak{M}}}}^* \subset \pi_{\mathfrak{M}}^*, \pi \subset \pi_{E_{\overline{\mathfrak{M}}}} \oplus \pi_{I-E_{\overline{\mathfrak{M}}}} \subset \pi^*,$$

and

$$\pi = \pi_{E_{\overline{\alpha}\overline{\alpha}}} \oplus \pi_{I-E_{\overline{\alpha}\overline{\alpha}}}$$
 if and only if $E_{\overline{\alpha}\overline{\alpha}}\mathcal{D}(\pi) \subset \mathcal{D}(\pi)$.

III. In particular, if π is self-adjoint and $E_{\overline{\mathfrak{M}}} \in C_{qw}(\pi)$, then $\pi_{E_{\overline{\mathfrak{M}}}}$ and $\pi_{I-E_{\overline{\mathfrak{M}}}}$ are self-adjoint and $\pi = \pi_{E_{\overline{\mathfrak{M}}}} \oplus \pi_{I-E_{\overline{\mathfrak{M}}}}$. Furthermore, $\pi_{\mathfrak{M}}$ is self-adjoint if and only if $\pi_{\mathfrak{M}} = \pi_{E_{\overline{\mathfrak{M}}}}$.

Proof. I. (i) \Leftrightarrow (ii) Using Lenmma 3.2, it's easy to show this. (ii) \Rightarrow (iii) \Rightarrow (iv) These follow from Lenmma 3.2(i) and $\mathcal{D}(\pi_{\mathfrak{M}}) \subset \mathcal{D}(\pi)$. (iv) \Rightarrow (v) We can prove $E_{\overline{\mathfrak{M}}} \in C_{\mathbf{w}}(\pi)$ by the same way in ([7] Theorem 3.3(ii)). And for each $y \in \mathcal{A}$, $x \in L(y)$ and $\xi, \eta \in \mathcal{D}(\pi)$, we have

$$(\mathbf{E}_{\overline{\mathfrak{M}}}\pi(x^*)\xi \mid \pi(y)\eta) = (\mathbf{E}_{\overline{\mathfrak{M}}}\pi^*(x^*)\xi \mid \pi(y)\eta)$$

$$= (\pi_{\mathfrak{M}}^*(x^*)\mathbf{E}_{\overline{\mathfrak{M}}}\xi \mid \pi(y)\eta)$$

$$= (\pi(x^*)\mathbf{E}_{\overline{\mathfrak{M}}}\xi \mid \pi(y)\eta)$$

$$= (\mathbf{E}_{\overline{\mathfrak{M}}}\pi(x^*)\xi \mid \pi(y)\eta)$$

$$= (\mathbf{E}_{\overline{\mathfrak{M}}}\xi \mid \pi(xy)\eta).$$

Hence $E_{\overline{u}\overline{n}} \in C_{qw}(\pi)$.

II and III are proved by the analogue with ([7] Corollary 3.4 and Theorem 3.3 (i'). \Box

REMARK 3.4. The converse of Theorem 3.3, I and the equations in II do not hold. The counter-examples for them are in ([7] EXAMPLE 3.6 and REMARK 3.5(2)).

4. Self-adjoint vectors.

In case of a *-algebra \mathcal{A} , if π is a closed *-representation of \mathcal{A} , then for each $\xi \in \mathcal{D}(\pi)$, $\mathfrak{M}_{\xi} := \pi(\mathcal{A})\xi$ is a π -invariant subspace of $\mathcal{D}(\pi)$, and so we can define the $\pi_{\mathfrak{M}_{\xi}}$. But this is not true in case of a partial *-algebra \mathcal{A} . So we introduce some notions for a vector $\xi \in \mathcal{D}(\pi)$. In this section, we deal with a self-adjoint representation π of a partial *-algebra \mathcal{A} to avoid the complicated arguments.

DEFINITION 4.1. For a vector $\xi \in \mathcal{D}(\pi)$, we put $\mathfrak{M}_{\xi} := \pi(R(\mathcal{A}))\xi$. ξ is said to be a cyclically representable if $\pi(\mathcal{A})\mathfrak{M}_{\xi} \subset \overline{\mathfrak{M}_{\xi}}$. ξ is said to be a self-adjoint vector for π if ξ is cyclically representable and $\pi_{\mathfrak{M}_{\xi}}$ is self-adjoint.

By Theorem 3.3, we characterize the self-adjointness of vectors in $\mathcal{D}(\pi)$ as follows:

COROLLARY 4.2. For each $\xi \in \mathcal{D}(\pi)$, E_{ξ} denotes the projection on $\mathcal{H}(\pi)$ onto $\overline{\mathfrak{M}_{\xi}}$. Then $\xi \in \mathcal{D}(\pi)$ is a self-adjoint vector for π if and only if $E_{\xi} \in C_{\mathbf{w}}(\pi)$ and

$$E_{\xi}\mathcal{D}(\pi) = \bigcap_{x \in \mathcal{A}} \mathcal{D}(\overline{\pi(x)}|_{\mathfrak{M}_{\xi}}).$$

Proof. If $\xi \in \mathcal{D}(\pi)$ is a self-adjoint vector for π , then by Theorem 3.3 we have $E_{\xi}\mathcal{D}(\pi) = \mathcal{D}(\pi_{\mathfrak{M}_{\xi}})$ and $E_{\xi} \in C_{qw}(\pi) = C_{w}(\pi)$.

We show the converse. From the assumptions,

$$\pi(\mathcal{A})\mathfrak{M}_{\xi} \subset \pi(\mathcal{A})E_{\xi}\mathcal{D}(\pi) = E_{\xi}\pi(\mathcal{A})\mathcal{D}(\pi) \subset \overline{\mathfrak{M}_{\xi}}.$$

Hence ξ is cyclically representable and furthermore $\pi_{\mathfrak{M}_{\xi}}$ is self-adjoint, becouse of $E_{\xi}\mathcal{D}(\pi) = \mathcal{D}(\pi_{\mathfrak{M}_{\xi}})$ and Theorem 3.3. II. \square

Using this result, we have the following property and its proof is much same as ([7] THEOREM 4.2).

Theorem 4.3. For any self-adjoint representation of \mathcal{A} , we have the following decomposition:

$$\pi = \pi_1 \oplus \pi_2$$

where π_1 is a direct sum of self-adjoint cyclic representations of \mathcal{A} , and π_2 is a fully closed *-representation of \mathcal{A} which dose not have any non-zero self-adjoint vector in $\mathcal{D}(\pi)$.

EXAMPLE 4.4. Even if \mathcal{A} is a *-algebra, there exist a self-adjoint representation of \mathcal{A} such that any non-zero vector of $\mathcal{D}(\pi)$ is not a self-adjoint vector for π ([7] EXAMPLE 4.4.).

EXAMPLE 4.5. Let \mathcal{D} be a dence subspace of a Hilbert space \mathcal{H} . If the maximal partial O^* -algebra $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is self-adjoint, then every non-zero vector in \mathcal{D} is a self-adjoint vector for $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$.

EXAMPLE 4.6. Let \mathcal{D} be a dence subspace of a separable Hilbert space \mathcal{H} , $\mathcal{H} \otimes \overline{\mathcal{H}}$ the Hilbert space of Hilbert-Schmidt operators on \mathcal{H} , and

$$\mathcal{D} \otimes \overline{\mathcal{H}} := \{ T \in \mathcal{H} \otimes \overline{\mathcal{H}}; T\mathcal{H} \subset \mathcal{D} \}.$$

Let $\mathcal M$ be a partial O^* -algebra on $\mathcal D$ with the identity operator I. We put

$$\sigma_2(\mathcal{M}) := \{ T \in \mathcal{H} \otimes \overline{\mathcal{H}}; XT \in \mathcal{D} \otimes \overline{\mathcal{H}}, \text{ for each } X \in \mathcal{M} \},$$

 $\pi(X)T := XT, \quad \text{for each } X \in \mathcal{M}, T \in \sigma_2(\mathcal{M}).$

Then π is a *-representation of \mathcal{M} and in particular, if \mathcal{M} is self-adjoint, then so is π . Furthermore, if $\mathcal{L}^{\dagger}(\mathcal{D}, \mathcal{H})$ is self-adjoint, then every $\Omega \in$

 $\sigma_2(\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H}))$ is a self-adjoint vector for the self-adjoint representation π of $\mathcal{L}^{\dagger}(\mathcal{D},\mathcal{H})$.

5. Type of *-representations.

In this section we define the type of fully closed *-representations of a partial *-algebra $\mathcal A$, and mention a decomposition of them. We begin with some definitions.

Let \mathcal{A} be a partial *-algebra with identity e and π_1, π_2 a fully closed *-representations of \mathcal{A} . π_1 is said to be a *-subrepresentation of π_2 if $\pi_1 = (\pi_2)_{\mathfrak{M}}$ for some π_2 -representable subspace \mathfrak{M} of $\mathcal{D}(\pi_2)$. π_1 is contained in π_2 if π_1 is unitarily equivalent to some *-subrepresentation π of π_2 , and it is denoted by $\pi_1 < \pi_2$.

To make clear the essential part of argument, we treat with suitable *-representations. We denote by $Rep\mathcal{A}$ the set of all fully-closed *-representations π of \mathcal{A} such that $C_{qw}(\pi)\mathcal{D}(\pi)\subset\mathcal{D}(\pi)$, and denote by $Rep^s\mathcal{A}$ the set of all self-adjoint representations of \mathcal{A} . It is clear that $Rep^s\mathcal{A}\subset Rep\mathcal{A}$. For $\pi\in Rep\mathcal{A}$, we denote by $Rep\pi$ the set of all fully-closed *-subrepresentations τ of π such that $C_{qw}(\tau)\mathcal{D}(\tau)\subset\mathcal{D}(\tau)$ and denote by $Rep^s\pi$ the set of all self-adjoint subrepresentations of π . Then $\{\pi_E; E\in C_{qw}(\pi)\}\subset Rep\pi$. In fact, let π be in $Rep\mathcal{A}$ and E a projection in $C_{qw}(\pi)$, then by LEMMA 3.1. (ii), π_E is a fully-closed *-representation of \mathcal{A} and furthermore

$$(4.1) C_{qw}(\pi_E) = C_{qw}(\pi)_E,$$

and so $C_{qw}(\pi_E)\mathcal{D}(\pi_E) \subset \mathcal{D}(\pi_E)$.

By Theorem 3.3, we have the following result for the relation of $Rep\pi$ and $Rep^s\pi$.

PROPOSITION 5.1. For each $\pi \in Rep A$, $Rep^s \pi \subset Rep \pi$. In particular, if π is self-adjoint then $Rep^s \pi = Rep \pi$.

DEFINITION 5.2. Let π , π_1 and π_2 in $Rep\mathcal{A}$. If each non-trivial $\tau_1 \in Rep\pi_1$ and $\tau_2 \in Rep\pi_2$ are inequivalent, then π_1 and π_2 are said to be disjoint and denoted by $\pi_1 \ \delta \ \pi_2$.

If the von Neumann algebra $(C_{qw}(\pi))'$ is a factor (resp. of type I, of type II) then π is said to be a factor representation (resp. of type II, of type II).

By ([8] THEOREM 3.4), (4.1) and Proposition 4.1, we have the following

PROPOSITION 5.3. Let π be in $Rep\mathcal{A}$. Then there uniquly exist mutually orthogonal projections E_I , E_{II} , E_{III} in $C_{qw}(\pi) \cap (C_{qw}(\pi))'$ such that $E_I + E_{II} + E_{III} = I$, π_{E_I} (resp. $\pi_{E_{II}}$, $\pi_{E_{III}}$) is in $Rep\pi$ and it is of type I (resp. type II, type III).

6. Type of invariant positive sesquilinear forms.

Let \mathcal{A} be a partial *-algebra with an identity e and $\mathcal{R}(\mathcal{A} \times \mathcal{A})$ the set of all Riesz forms on $\mathcal{A} \times \mathcal{A}$. For $\varphi \in \mathcal{R}(\mathcal{A} \times \mathcal{A})$ and $a \in \mathcal{R}(\mathcal{A})$ we put

$$\varphi_a(x,y) := \varphi(xa,ya) \text{ for } x,y \in \mathcal{A}.$$

Then it is easily shown that φ_a is an invariant positive sesquilinear form on $\mathcal{A} \times \mathcal{A}$. We denote by \mathcal{R}_{φ} the set of all Riesz forms ψ on $\mathcal{A} \times \mathcal{A}$ for which there exists a net $\{a_{\alpha}\}$ in $R(\mathcal{A})$ such that

$$\lim_{\alpha} \varphi_{a_{\alpha}}(x,y) = \psi(x,y) \qquad \text{and} \qquad \lim_{\alpha,\beta} \varphi_{a_{\alpha}-a_{\beta}}(x,x) = 0$$

for each $x, y \in A$.

DEFINITION 6.1. Let $\varphi, \psi \in \mathcal{R}(\mathcal{A} \times \mathcal{A})$. We write $\psi \prec \varphi$ when $\mathcal{R}_{\psi} \subset \mathcal{R}_{\varphi}$, and $\psi \sim \varphi$ when $\mathcal{R}_{\psi} = \mathcal{R}_{\varphi}$.

It is clear that $(\mathcal{R}(\mathcal{A} \times \mathcal{A}), \prec)$ is an orderd set.

Proposition 6.2. Let $\varphi, \psi \in \mathcal{R}(\mathcal{A} \times \mathcal{A})$. Then the following statements are equivalent.

- (i) $\psi \prec \varphi$.
- (ii) $\psi \in \mathcal{R}_{\varphi}$.
- (iii) $\pi_{\psi} \leq \pi_{\varphi}$.
- (iv) There exists an element ξ of $\mathcal{D}(\pi_{\varphi})$ such that $\psi(x,y) = (\pi_{\varphi}(x)\xi \mid \pi_{\varphi}(y)\xi)$ for all $x,y \in \mathcal{A}$.

Proof. (i) \Rightarrow (ii) \Rightarrow (iv). This is trivial.

(iv) \Rightarrow (iii). Since π_{φ} is self-adjoint, it follows that $\mathfrak{M}_{\xi} := \pi_{\varphi}(R(\mathcal{A}))\xi$ is π_{φ} -representable. By the assumption (iv), $(\pi_{\varphi})_{\mathfrak{M}_{\xi}} \sim \pi_{\psi}$ and so $(\pi_{\varphi})_{\mathfrak{M}_{\xi}} \in \operatorname{Rep}^{s} \pi_{\varphi}$. Therefore $\pi_{\psi} \leq \pi_{\varphi}$.

(iii) \Rightarrow (i). Take an arbitrary $\psi' \in R_{\psi}$. Since the implication (ii) \Rightarrow (iii) holds and $\pi_{\psi} \leq \pi_{\varphi}$, we have $\pi_{\psi'} \leq \pi_{\varphi}$. Hence there exists a π_{φ} -representable subspace \mathfrak{M} in $\mathcal{D}(\pi_{\varphi})$ such that $\pi_{\psi'} \sim (\pi_{\varphi})_{\mathfrak{M}}$, that is, there exists an isometry U of $\mathcal{H}_{\psi'}$ onto $\overline{\mathfrak{M}}$ such that $U\mathcal{D}(\pi_{\psi'}) = \overline{\mathfrak{M}}$ and $\pi_{\psi'}(x)\xi = U^*\pi_{\varphi}(x)U\xi$ for each $x \in \mathcal{A}$ and $\xi \in \mathcal{D}(\pi_{\psi'})$. Hence we have

$$\psi'(x,y) = (\pi_{\varphi}(x)U\lambda_{\varphi}(e) \mid \pi_{\varphi}(y)U\lambda_{\varphi}(e))$$

for each $x,y\in\mathcal{A}$, which impleis $\psi'\in\mathcal{R}_{\varphi}$. Therefore $\mathcal{R}_{\psi}\subset\mathcal{R}_{\varphi}$. \square

DEFINITION 6.3. Let $\varphi, \psi \in R(\mathcal{A} \times \mathcal{A})$. If $R_{\psi} \cap R_{\varphi} = \{0\}$, then φ and ψ are said to be *disjoint* and denoted by $\varphi \ \ \psi$.

If for some $\gamma > 0$, $\psi(x,x) \leq \gamma \varphi(x,x)$ for each $x \in \mathcal{A}$, then ψ is said to be dominated by φ , and denoted by $\psi \leq \gamma \varphi$. If each ψ in $\mathcal{R}(\mathcal{A} \times \mathcal{A})$ with $\psi \leq \varphi$ has the form $\psi = \gamma \varphi$ for some scalar γ , then φ is said to be pure. If π_{φ} is a *-representation of typeI (resp. \mathbb{I}, \mathbb{I}), then φ is said to be of typeI (resp. \mathbb{I}, \mathbb{I}).

PROPOSITION 6.4. Let $\varphi, \psi \in \mathcal{R}(\mathcal{A} \times \mathcal{A})$. Then the following state-

ments hold.

- (i) $\varphi \lor \psi$ if and only if $\pi_{\varphi} \lor \pi_{\psi}$.
- (ii) φ is pure if and only if $\pi_{\varphi}(\mathcal{A})'_{\mathbf{w}} = CI$.
- (iii) φ is uniquly decomposed into $\varphi = \varphi_I + \varphi_{II} + \varphi_{III}$, where φ_I (resp. φ_{II} , φ_{III}) is a Riesz form on $\mathcal{A} \times \mathcal{A}$ of type I (resp. II,III).

Proof. (i). This follows from Proposition 6.2.

(ii). It is easily shown that $\psi \leq \gamma \varphi$ if and only if $\psi = \varphi_C$ for some $C \in C_w(\pi_\varphi)$, that is, $\psi(x,y) = \varphi_C(x,y) := (C\lambda_\varphi(x) \mid \lambda_\varphi(y))$ for each $x,y \in \mathcal{A}$, which implies the statement (ii).

(iii). By Proposition 5.3, there uniquly exists a projection E_I (resp. E_{II}, E_{III}) in $C_{\mathbf{w}}(\pi)$ such that $(\pi_{\varphi})_{E_I}$ (resp. $(\pi_{\varphi})_{E_{II}}, (\pi_{\varphi})_{E_{III}}$) of type I (resp. II, III) and $E_I + E_{II} + E_{III} = I$. We now put

$$\varphi_I := \varphi_{E_I}, \quad \varphi_{II} := \varphi_{E_{II}}, \quad \varphi_{III} := \varphi_{E_{III}},$$

then the statement (iii) holds for this $\varphi_I, \varphi_{II}, \varphi_{III}$. \square

DEFINITION 6.5. A Riesz form φ on $\mathcal{A} \times \mathcal{A}$ is said to be *primary* if π_{φ} is a factor. Let $\mathcal{R}_{p}(\mathcal{A} \times \mathcal{A})$ denote the set of all primary Riesz forms on $\mathcal{A} \times \mathcal{A}$.

PROPOSITION 6.6. Let $\varphi \in \mathcal{R}(\mathcal{A} \times \mathcal{A})$. Then the following statements are equivalent.

- (i) φ is primary.
- (ii) \mathcal{R}_{φ} does not have any non-zero disjoint form.
- (iii) $(\mathcal{R}_{\varphi}, \prec)$ is a totally orderd set.

Proof. (i) \Rightarrow (ii) \Rightarrow (ii). This follows from Proposition 6.2 and ([3] COROLLARY 5.1.4, 5.1.5).

(ii) \Rightarrow (i). Suppose φ is not primary. Then there exists a projection $E \in C_w(\pi_\varphi)$ such that $E \neq 0$ and $E \neq I$. For $x, y \in \mathcal{A}$, we put

$$\psi_1(x,y) = (\pi_{\varphi}(x)E\lambda_{\varphi}(e) \mid \pi_{\varphi}(y)E\lambda_{\varphi}(e)),$$

$$\psi_2(x,y) = (\pi_{\varphi}(x)(I-E)\lambda_{\varphi}(e) \mid \pi_{\varphi}(y)(I-E)\lambda_{\varphi}(e)).$$

Then it follows from Proposition @@@ that $\psi_1, \psi_2 \in \mathcal{R}(\mathcal{A} \times \mathcal{A})$ and

$$\pi_{\psi_1} \sim (\pi_{\varphi})_E \ \ (\pi_{\varphi})_{I-E} \sim \pi_{\psi_2},$$

which implies $\psi_1 \ \delta \ \psi_2$ by Proposition 6.4. This is a contradiction. \square

Using Proposition 6.2, 6.4, 6.6, we can state the characterization of primary Riesz form of type I (II,III) and the proofs are similar to those of ([8] Theorem 4.10).

THEOREM 6.7. Let $\varphi \in \mathcal{R}_p(\mathcal{A} \times \mathcal{A})$. Then the following statements hold.

- (i) φ is of type I if and only if there exists a pure Riesz form ψ on $\mathcal{A} \times \mathcal{A}$ such that $\psi \prec \varphi$.
- (ii) φ is of type II if and only if any Riesz form ψ on $\mathcal{A} \times \mathcal{A}$ with $\psi \prec \varphi$ is not minimal.
- (iii) φ is of type III if and only if it is maxmal and minimal in $(\mathcal{R}_p(\mathcal{A} \times \mathcal{A}), \prec)$ and it is not pure.

These results are an extention of those to the case of partial *-algebras.

ACKNOWLEDGEMENTS

The author thanks Professor A.Inoue for his instruction and many helpful discussions concerning this work.

REFERENCES

[1] J.-P. Antoine and W.Karwowski, Partial *-algebras of closable operators in Hilbelt space, Publ. Res. Inst. Math. Soc., Kyoto Univ., 21(1985),205-236.

- [2] J.-P. Antoine, A. Inoue and C. Trapani, Partial *-algebras of closable operators I. The basic theory and the abelian case.; II. States and representations of partial *-algebras, Publ. Res. Inst. Math. Soc., Kyoto Univ., 26(1990),359-395; 27(1991),399-430.
- [3] J. DIXMIER, C*-algebras, North-Holland Math. Publ.,1982.
- [4] I.M.GELFAND and N.YA.VILENKIN, Generalized Functions Vol.4, Academic Press, New York, 1964.
- [5] S.P.GUDDER and W.SCRUGGS, Unbounded representations of *-algebras, Pacific J. Math. 70(1977),369-382.
- [6] S.P.GUDDER and R.L.HUDSON, A noncommutative probability theory, Trans. Amer. Math. Soc. 245(1978),1-41.
- [7] I.IKEDA and A.INOUE, Invariant subspaces for unbounded *-representations of *-algebras, Proc. Amer. Math. Soc. 116(1992),737-745.
- [8] I.IKEDA and A.INOUE, On types of positive linear functionals of *-algebras, Academic Press, New York, London 173(1993), 276-288.
- [9] A.INOUE and K.TAKESUE, Self-adjoint representations of polynomial algebras, Trans. Amer. Math. Soc. 280(1983), 393-400.
- [10] P.E.T.JORGENSEN and R.T.MOORE, Operator Commutation Relations, Reidel Dordrecht.Boston, 1984.
- [11] R.V.Kadison, States and representations, Trans. Amer. Math. Soc. 103(1961), 304-319.
- [12] R.V.Kadison and J.R.Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press, New York, 1983.
- [13] R.T.Powers, Self-adjoint algebras of unbounded operators I, Commun. Math. Phys. 21(1971),85-124.
- [14] K.Schmüdgen, Unbounded Operator Algebras and Representation Theory, Birkhäuser Verlag Basel.Boston.Berlin,1990.
- [15] K.Schmüdgen, A note on commuting unbounded self-adjoint operators affiliated to properly infinite von Neumann algebras II, Bull. London Math. Soc. 18(1986), 287-292.
- [16] S.STRĂTIRĂ and L.ZSIDÓ, Lectures on von Neumann Algebras, Abacus Press, Tunbridge Wells, 1971.

Itsuko Ikeda
Graduate school of
Department of Applied Mathmatics
Faculty of Science
Fukuoka University
Fukuoka, 814-01
Japan

Received September 24, 1993