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On *-Representations of Partial x-Algebras

Itsuko Ikeda

Abstract

The first purpose of this paper is to study *-subrepresentations of a
x-representation of a partial *-algebra. The second purpose is to charac-
terize invariant positive sesquilinear forms of type I,I,II.

1. Introduction.

In this paper we shall investigate the fundamental properties of *-
representations of partial *-algebras. The study of *-representations of
partial *-algebras and partial O*-algebras were began by Antoine and
Karwouski [1], and have been continued by Antoine, Inoue and Trapani
[2], from the situation of pure mathmatical and the physical applications.
But, the studies of *-subrepresentations and invariant positive sesquilin-
ear forms on partial *-algebras seem to be insufficient, and so we shall
study these points in this paper.

In partial *-algebras, the multiplication is defined only partially and it
dose not have the associative low. And so, to extend arguments that are
considerd in the case of *-algebras, we need to reconsider some conditions.
For example, the quasi-weak commutant C,,(7) is considered instead of
the usual weak commutant Cy(7) of 7.

Let 7 be a *x-representation of a partial *-algebra .A . For each pro-
jection E in Cqy(7), we can define the *-representation 7g of A by

D(7g) := ED(T), mp(z):=T(2)E (z € A).
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To define another *-subrepresentation of 7, we define the notion of rep-
resentable subspaces of D(7) as follows: A subspace 0t of D(7) is said
to be representable if w(A)o C 9. Of course, ED(T) is a representable -
subspace of D(7) for each E € Cyy (7). For a representable subspace ot
of D(7) we put

D(Tryy) = M, .71'[9,,(3:) =(z)y (z€A).

Then T, is a *-representation of A on the Hilbelt space 5t whose full
closure is denoted by 7y, It is natural to consider the following questions:
Let ot be a representable subspace of D(7).

[Q1] When does Ez (:= proj 91) belong to Cyw () ?
[Q2] When does the equation Tp_ = Ty, hold ?

In Section 3 we shall solve the avobe questions.

Each bounded *-representation is decomposed into the direct sum of
cyclic *-representations. We shall consider whether this result holds for
fully closed *-repreaentations of partial *-algebras or not. In case of *-
algebras, using the arguments of T-invariant subspaces, we investigated
this problem [7]. But, in case of partial *-algebras, it’s a problem that
for each £ € D(m), even if 9% is representable, Ex- ¢ Cqw(7) in general,
where 9, := {7 (y)¢; y is the right multiplier of all elements of A }. So,
in Section 4, we define the notion of self-adjoint vectors and obtain the
decomposition theorem: Every self-adjoint representation 7 of a partial
x-algebra is decomposed into

T =T & Ty,

where 7, is a direct sum of self-adjoint cyclic representations of .4 and 7,
is a fully closed *-representation of A which dose not have any non-zero
self-adjoint vector in D(T). |

In Section 5, we shall define the types of self-adjoint representations
7 of partial *-algebras by the types of the von Neumann algebra C, (7).

In Section 6, we shall obtain the results about the characterization
of primary Riesz forms of type I (I, Il) using some order relation in the
space of all Riesz forms on partial *-algebras.
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2. Preliminaries

In this section we state the definitions and the basic properties about
*-representations and invariant positive sesquilinear forms of partial *-
algebras. For more details refer to [2].

. A s called a partial *-algebra if the following conditions are satisfied:
(1) Ais alinear space over C with an involution x*.

(2) Thereis a subset ' of 4 x A such that
(1) (z,y) €T if and only if (y*,2*) € T,
(i) if (z,y),(z,2) €T, then (z,\y + uz) €T, for each A\, u € C,
(iii) for each (z,y),(z,z) €T thereisaz-y,z -z € A such that
(z-y)=y*-z"and 2 - Ay + pz) = Mz - y) + p(z - 2)
for each A\, u € C.
If (z,y) €T, z (resp. y) is called the left multiplier of y (resp. the right
multiplier of z) and denoted by z € L(y) (resp. y € R(z)). And we write .

L(A):= () L(z), R(A):= ) R(=z).

z€EA z€EA

As usual, D denotes a dense subspace in a Hilbert space H, and
LY(D,H) is the set of all linear operators X such that D(X) = D and
D(X*) C D. Then L!(D, H) is a partial *-algebra when equipped with the
usual sum X; + X3, the scalar multiplication AX, the involution § : X —
X' := X*[p, and the partial multiplication O : for X;, X, € L1(D,H),
such that X,D C D(X!*) and X!D c D(X3), X,0X, = X"X,. A
partial O*-algebra on D is a partial *-subalgebra of L1(D,H).

A x-representation of a partial *-algebra A is a *-homomorphism of
A into L1(D, H) for some pair D C H, that is, a linear map 7 : A —
LY(D, M) such that,

(i) m(z*) = (z)! for every z € A ;
(ii) for eachy € A ,if z € L(y) then
m(z) € L(m(y)) and 7(z)Om(y) = 7(zy).

The extension of *-representations is defined in the natural way. Let
7y and 7, be two *-representations of a partial x-algebra A in £1(D, H).
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If m1(z) C wo(z) for all z € A, then T, is said to be an eztention of 7,
and this is denoted by 7™, C 5.

As in the case of *-algebras, we can consider some representations for
a given representation. For a x-representation 7 of a partial *-algebra
A , we define the adjoint 7* and the closuer T of T :

DY) = ) D(r(e)), m*(z) = (@) loimy 2 € A.
:nE.A .
D(t) = () D(m(z)), 7(z)=m(z)lpx), = € A.
zeA

If T = w*(resp. ™ = 7) then 7 is called self-adjoint (resp. fully closed) .

For the partial O*-algebra 7(.A) with domain D(7) C H, we can
define some commutants. As stated in Introduction, we deal with the
quasi-weak commutant Coy, () defined as follows:

Con(T) := {C € Cu(T); (CT(2*)E | T(y)n) = (CE | w(zy)n)
(C*m(z*)E | w(y)n) = (C*€ | T(zy)n)
for each z,y € A & n € D(m)},

where Cy () = T(A),, = {C € B(H);(CT(2)¢ | n) = (CE | w(z)n), for
each z € A and &, € D(7)}.

For two *-representations 7, 7, of a partial *-algebra A, we define
the direct sum as follows:

D(m; & T2) = {(&,&); & € D(m,), & € D(m2)}
(71 @ T2)(2) (&1, &2) = (T1(2)&1, T2(2)E2)-

A vector £ € D(T) is said to be cyclic for w if w(R(A))E is dense in
D(7) with respect to the graph topology.

For positive linear functionals of *-algebras, the GNS-construction
generates the *-representation. In order to extend it to partial *-algebras,
we introduce the notion of invariant positive sesquilinear form for which
the GNS-construction is always possible.

A sesquilinear form on A x A is a mapping of A x A into C which is
linear in the first and conjugate linear in the second variable. If o(z,z) >
0 for all z € A, then ¢ is said to be positive. For each positive sesquilinear
form ¢ on A x A, we have

o(z,y) =p(y,2), z,y€A;

| o(z,y) ’< o(z,z)e(y,y) =,y €A,
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and hence we have the subspace N, of A, where

N, =1{z € A;p(zz) =0}
={z € A;p(z,y) =0, for each y € A }.

For each z € A, we denote by A, (z) the coset of the quotient space
A [N, which contains z, and define an inner product on A,(.A) by:

(Ao(2) | 2p(¥)) == o(z,y), z,yE€A.

We denote by M, the Hilbert space obtained by the completion of the
pre-Hilbert space A,(A). A positive sesquilinear form ¢ on A x A is
called invariant if

(1) Ao(R(A))is dense in H,;
(i) e(zy1, y2) = ©(y1,2"y2) for each z € A and y1,y2 € R(A);

(i) @(z1*y1, Z2y2) = ©(v1, (z122)y2)
for each z; € L(A) and y;,y2 € R(A).

Let ¢ is an invariant positive sesquilinear form on A x A. We put
T,o(z)Ap(a) := Ay(za), =z € A,a € R(A).

Then 7, is a *-representation of A on H,, [3]. We call the triple (7, ),
H,) the GNS-construction for ¢. If T, is self-adjoint then ¢ is said to
be a Riesz form.

3. Subrepresentations

In this section we consider the questions [Q1] and [Q2] in Introduction.
Let 7 be a fully closed #-representation of a partial *-algebra .A . For
a projection E in Cqw(7), we define

D(mg) :=ED(m),
Te(z)EE = Em(z), forz € A,€ € D(m).

Then we have the following property:
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LEMMA 3.1 Let E be a projection in Cyw(7). Then the following
statements hold.

(i) mg is a *-representation of A on EH satisfying
D(mwg) = ED(7) C D(Tg*) C ED(T"),
. wg*(z)é = m*(z)€, forz € A,£ € D(TE*).
(ii) Suppose ED(m) C D(7). Then 7 is fully closed and
E'D(ﬂ'*) = D(WE*).
Furthermore, Tg is self-adjoint if and only if ED(7) = ED(7*).

Proof.  (i)Take an arbitrary y € A and z € L(y). For each £, € D(7)
we have

(me(z*)E€ | Te(y)En) = (Em(z*)¢| 7(y)n)
= (E¢ | Em(zy)n)
= (E¢| me(zy)En).

Similarly, we have
(Te(y)EE | me(z*)En) = (E€ | me(y*z*)En).

Hence we have Tg(y) € L(mg(z)) and, me(z)Ome(y) = Te(zy).

Since
(me(z)EE|En) = (Em(z)]|n)

= (E&| m(z*)n)
= (E&| me(z")E n)

for each z € A and £,n € D(7), we have Tg(z*) C me(z)* for each
z € A . Therefore 7 g is a *-representation of A on EH. .
Let E £ = £ € D(mg*), then for each £ € A and n € D(7), we have
(€| m(a*)n) = (BE | m(z*)n) = (€ | 5(z")En) = (ma(a")€ | n)

So, £ € D(7*) and 7*(z)€ = w*(z)&.

(ii) Suppose ED(m) C D(7). Take an arbitrary E€ = € € D(7g) (=
N{D(7e(z)),z € A}). Let = € A. Then there is a sequence {E§,} C
ED(7) such that E§, — € and 7g(z)E¢, — mg(z)€. Since

WE(w)Efn = 7T*($)E£n = W(m)E&'fH Egn € D(ﬂ-(m))’

we have £ € D(m(z)). Since 7 is fully closed, we have £ € D(7). Then
£ =E¢ € ED(mw)=D(mg), and D(Tg) = D(7g). Therefore g is fully
closed.
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For each ¢ € D(7*), it is easy to show that E{ € D(mg*) and
Te*(z)E€ = Em*(z)€ for z € A,€ € D(7*). Therefore it follows from
(i) that g is self-adjoint if and only if ED(7) = ED(7*). O

Remark. The condition of E € Cg,(7) is that E € C,, = 7(A),, and
ED(m) C D(m). ‘

In case of a *-representation 7T of a *-algebra A, for a 7-invariant
subspace mt(i.e. 7(A)t C 90t), we define the restriction of 7 to 9t. But
in this case, the condition “m-invariant” is too strict. So, if a subspace
90t of the domain D(T) satisfies the condition that m(A)sn C o, om
is called representable and we consider such representable subspaces 9t
instead of 7-invariant subspaces.

Let 9t be a representable subspace. We put

D(71,,) = 9,
T(z)é:=T(2)E, E€mM, z€A.

Then 7y, is a *-representation of .4 on the Hilbelt space 90t whose full
closure is denoted by 7y,. Then 7 is the extention of m,, with H(m,,) C
H(m), i.e.

(3.1) Tan(z)€ = W(2)€ forz € A, € € D(Ty).
And we have the following properties:

LEMMA 3.2. Let 90t be a representable subspace of D(7) and Eg
the projection of H onto mt. Then,

() D(Tar) C ExD(T) C EgD(m*) C D(m®),
(i) 7" (z)Egé = E5m*(z)€ for z € A,£ € D(7).

Proof. = We prove the last relation of inclusion in (i) and (ii) at once.
Let € € D(7*). For each z € A and n € 9, we have

(Ezé | Tan(2)n) = (€| Emm(z*)n) = (£]| 7(z*)n)
= (m(z*)*¢ | Ezn) = (Ex7m(z)¢ [ ).

Hence E5 € € D(y*) and To*(z)E5 € = Eg m*(2)€.0



THEOREM 3.3. Let 90t be a representable subspace of D(7).
I. Consider the following statements.

(i) 4 is self-adjoint.
(i) EgxD(7") = D(Twm).
(iii) ExD(m) = D(Tw).
(iv) EgD(m) C D(7).
(v)  Eg € Cou(m).

Then the following inplications hold :
(i)
§ = (i) = iv) = (v).
(ii)
I. Suppose Eg; € Cqw(7). Then,

Tan C Te— C 'ITE;* CTa', T C WEEGB Ti-g=- C T,

and
T = Tp_® T-p- if and only if E5D(m) C D(7).

IL. In particular, if 7 is self-adjoint and Ex € Cqu(7), then Tg_ and
mr-p_ are self-adjoint and ™ = Tg_ @ W/_g_. Furthermore, Ty, is
self-adjoint if and only if Ty,= Tg_.

Proof. 1. (i) ¢ (ii) Using Lenmma 3.2, it’s easy to show this.

(i1) =(iii) =(iv) These follow from Lenmma 3.2(i) and D(7,,) C D(m).
(iv) =(v) We can prove Eg € Cy(7) by the same way in ([7] Theorem
3.3(ii)). And for each y € A,z € L(y) and &,n € D(7), we have

(Ezm(z*)E | m(y)n) = (Exm*(z*)¢| w(y)n)
= (Tow"(z*)ExE | m(y)n)
= (m(z*)Ezx£ | w(y)n)
= (Ezm(z*)¢ | m(y)n)

= (B¢ | m(zy)n)-
Hence Eg € Cyw (7).
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I and IT are proved by the analogue with ([7] Corollary 3.4 and Theorem
3.3("). O

REMARK 3.4. The converse of Theorem 3.3, I and the equations
in I do not hold. The counter-examples for them are in ([7] EXAMPLE

3.6 and REMARK 3.5(2)).

4. Self-adjoint vectors.

In case of a *-algebra A , if 7 is a closed *-representation of A , then
for each ¢ € D(7), o, = w(A)¢ is a M-invariant subspace of D(7) ,
and so we can define the 7. But this is not true in case of a partial
x-algebra A . So we introduce some notions for a vector £ € D(7). In this
section, we deal with a self-adjoint representation 7 of a partial *-algebra,
A to avoid the complicated arguments.

DEFINITION 4.1.  For a vector £ € D(7), we put 2t := T(R(A))¢E.

¢ is said to be a cyclically representable if w(A)om, C 9n;.

£ is said to be a self-adjoint vector for ™ if € is cyclically representable
and 7y, is self-adjoint.

By THEOREM 3.3, we characterize the self-adjointness of vectors in D(7)
as follows:

COROLLARY 4.2. For each £ € D(m), E; denotes the projection on
H(7) onto 2t;. Then & € D(7) is a self-adjoint vector for 7 if and only
if B¢ € Cy(7) and

E¢D() = N D)

Proof. 1If £ € D(7) is a self-adjoint vector for 7, then by THEOREM
3.3 we have E,D(T) = D(Ty,) and E; € Cqu(T) = Cy(T).
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We show the converse. From the assumptions,
w(A)m, C w(A)ED(T) = E;w(A)D(T) C on,.

Hence £ is cyclically representable and furthermore 7y, is self-adjoint,
becouse of E;D(7) = D(Ty,) and THEOREM 3.3. Il. O

Using this result, we have the following property and its proof is much
same as ([7] THEOREM 4.2).

THEOREM 4.3.  For any self-adjoint representation of .4 , we have the
following decomposition:
T=mT &%) T2

where 7, is a direct sum of self-adjoint cyclic representations of A , and
T4 is a fully closed *-representation of .A which dose not have any non-
zero self-adjoint vector in D(T).

ExXAMPLE 4.4. Evenif A is a x-algebra, there exist a self-adjoint repre-
sentation of A such that any non-zero vector of D(7) is not a self-adjoint
vector for ™ ([7] EXAMPLE 4.4.).

EXAMPLE 4.5. Let D be a dence subspace of a Hilbert space . If the
maximal partial O*-algebra L!(D, H) is self-adjoint, then every non-zero
vector in D is a self-adjoint vector for £1(D, H).

EXAMPLE 4.6. Let D be a dence subspace of a separable Hilbert space
‘H, H ® H the Hilbert space of Hilbert- Schmidt operators on H, and

DRH:={T € HQH;TH C D}.
Let M be a partial O*-algebra on D with the identity operator I. We put

02 M) ={T e HOH; XT € DR H, for each X € M },
m(X)T = XT, for each X € M, T € g,(M).

Then 7 is a *-representation of M and in particular, if M is self-adjoint,
then so is . Furthermore, if £L1(D,H) is self-adjoint, then every £ €
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02(L1(D,H)) is a self-adjoint vector for the self-adjoint representation 7
of L1(D, H).

5. Type of *-representations.

In this section we define the type of fully closed *-représenta,tions of
a partial *-algebra A , and mention a decomposition of them. We begin
with some definitions.

Let A be a partial *-algebra with identity e and 7, 75 a fully closed
*-representations of A. 7, is said to be a *-subrepresentation of T,
if T = (73)an for some To-representable subspace 90t of D(7,). T, is
contained in T, if 7y is unitarily equivalent to some *-subrepresentation
7 of T, and it is denoted by 7, < 5.

To make clear the essential part of argument, we treat with suit-
able *-representations. We denote by RepA the set of all fully-closed
*-representations T of A such that C,,(7)D(7) C D(7), and denote by
Rep* A the set of all self-adjoint representations of A . It is clear that
Rep*A C RepA. For m € RepA, we denote by Repm the set of all
fully-closed *-subrepresentations 7 of ™ such that Cy (7)D(T) C D(T)
and denote by Rep*T the set of all self-adjoint subrepresentations of 7.
Then {7g; E € Cqw(m™)} C Repm. In fact, let ™ be in RepA and E
- a projection in Cyu(7), then by LEMMA 3.1. (ii), g is a fully-closed
*-representation of 4 and furthermore

(4- 1) CqW(WE) = CqW(W)E’

and so Cow(Tg)D(Tg) C D(TE).

By THEOREM 3.3, we have the following result for the relation of Rep7r
and Rep*Tr. |

PROPOSITION 5.1.  For each ™ € Rep A, Rep*m C Repm. In particu-
lar, if 7 is self-adjoint then Rep*m = RepTr.
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DEFINITION 5.2. Let 7, m, and 73 in RepA . If each non-trivial
T, € Repm, and T, € RepT, are inequivalent, then 7, and 7r, are said
to be disjoint and denoted by 7; § ..

If the von Neumann algebra (Cqw (7))’ is a factor (resp. of type I, of
type I, of type Il) then 7 is said to be a factor representation (resp. of
type I, of type II, of type II).

By ([8] THEOREM 3.4), (4.1) and PROPOSITION 4.1, we have the
following

ProPOSITION 5.3. Let ™ be in RepA. Then there uniquly exist
mutually orthogonal projections Ey, Ey, Eqy in Coy(7) N (Coyy (7)) such
that Er+ Ep+ Epp = I, W, (resp. ’/TE'H,WE”I) is in Repm and it is of
type I (resp. type I, type II).

6. Type of invariant positive sesquilinear forms.

Let A be a partial *-algebra with an identity e and R(A x A) the
set of all Riesz forms on A x A. For ¢ € R(A x A) and a € R(A) we
put

©.(z,y) := p(za,ya) for z,y € A.

Then it is easily shown that ¢, is an invariant positive sesquilinear form
on A x A. We denote by R,, the set of all Riesz forms ¥ on A x A for
which there exists a net {a,} in R(A ) such that

lime,,(z,9) = ¢¥(2,9)  and  limg, ,,(5,2)=0

foreach z,y € A.

DEFINITION 6.1. Let ¢,¢ € R(A x A). We write ¥ < ¢ when R, C
R,, and ¥ ~ ¢ when Ry, = R,,.

It is clear that (R(A x A), <) is an orderd set.
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PROPOSITION 6.2. Let ¢,9 € R(A x A). Then the following state-
ments are equivalent.

i) ¥=<o

(i) 9 eRrR,.

(lll) Ty < Ty

(iv) There exists an element £ of D(7,) such that
P(z,y) = (T, (2)€ | T, (y)€) forall z,y € A .

Proof. (i) =(ii) =(iv). This is trivial. |

(iv)=>(iii). Since 7, is self-adjoint, it follows that 91, := 7, (R(A ))¢
is T,-representable. By the assumption (iv), (7,)m, ~ Ty and so
(TTy)ane € Rep*m,. Therefore my < 7.
(iii) =(i). Take an arbitrary ¢’ € Ry. Since the implication (ii) =>(iii)
holds and my < 7,, we have my < 7,. Hence there exists a 7,-
representable subspace 9t in D(7,) such that my: ~ (7,)4, that is,
there existes an isometry U of Hys onto 9 such that UD(7y) = 9t and
Ty(z)€ = U*T,(z)UE for each z € A and € € D(7y:). Hence we have

Y'(2,9) = (Te(2)U Ay (€) | To(y)UAp(e))

for each z,y € A, which impleis ¢’ € R,,. Therefore R, C R,,. O

DEFINITION 6.3. Let ¢, € R(A x A). If R, N R, = {0}, then ¢ and
¥ are said to be disjoint and denoted by ¢ & .

If for some vy > 0, ¥(z,z) < yp(z, z) for each z € A, then ¥ is said
to be dominated by ¢, and denoted by ¥ < yp. If each ¢ in R(A x A)
with ¢ < ¢ has the form ¢ = ¢ for some scalar +, then ¢ is said to be
pure. If T, is a *-representation of typel (resp. ILII), then ¢ is said to
be of typel (resp. I,II). |

PROPOSITION 6.4. Let ¢,9 € R(A x .A). Then the following state-

— 55 —



ments hold.

(i) ¢ & ¢ifandonlyif m, § Ty.

(i) ¢ is pure if and only if 7,(A), = CI.

(iii) ¢ is uniquly decomposed into ¢ = ¢; + @y + @y, where

¢ (resp. @, o) is a Riesz form on A x A of type I (resp. IL) .

Proof. (i). This follows from PROPOSITION 6.2.

(i1). It is easily shown that ¥ < ¢ if and only if ¥ = ¢, for some
C € Cyu(T,), that is, ¢¥(z,y) = @c(z,y) := (CAs(z) | Ao(y)) for each
z,y € A, which implies the statement (ii).

(iii). By PROPOSITION 5.3, there uniquly exists a projection Ej (resp.
En, Enr) in Cy(m) such that (7,)g, (resp. (Ty)Ey, (Ty)Ey) of type 1
(resp. I, ) and Ey + Ey + Egy = I. We now put

$r = Pr;, P =PeEp Pmr = PEm>

then the statement (iii) holds for this ¢, @, . O

DEFINITION 6.5. A Riesz form ¢ on A x A is said to be primary if 7,
is a factor. Let R,(A x A) denote the set of all primary Riesz forms on
A x A.

PROPOSITION 6.6. Let ¢ € R(A x A). Then the following statements
are equivalent.

(i) ¢ is primary.
(i) =R, does not have any non-zero disjoint form.
(iii) (R,, <) is a totally orderd set.

Proof. (i) = (iii) =(ii). This follows from PROPOSITION 6.2 and
([3] CoROLLARY 5.1.4, 5.1.5).

(i) =(i). Suppose ¢ is not primary. Then there exists a projection
E € Cy(m,) such that E #£0 and E # I. For z,y € A, we put

P1(z,y) =(7l',(a:)E')\¢(e) | 7F¢(y)E)\¢(e)),
Ya(z,y) =(To(z)(I — E)Ay(e) | To(y)(I — E)A,(e))-
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Then it follows from PROPOSITION @QQQ that v, ¢, € R(A x A) and
Tpr ~ (Tp)E & (My)1-E ~ Ty,
which implies ¢¥; § ¥, by PRoPoOsITION 6.4. This is a contradiction. O

Using PROPOSITION 6.2, 6.4, 6.6, we can state the characterization of

primary Riesz form of type I (II,Il) and the proofs are similar to those of
([8] THEOREM 4.10).

THEOREM 6.7. Let ¢ € R,(A x A). Then the following statements
hold.

(i) ¢is of type I if and only if there exists a pure Riesz form
¥ on A x A such that ¢ < o.

(ii) ¢is of type I if and only if any Riesz form 1 on A x A with
1 <  is not minimal. .

(iii) ¢ is of type II if and only if it is maxmal and minimal in
(Rp(A x A), <) and it is not pure.

These results are an extention of those to the case of partial *-algebras.
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