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Abstract
In this paper, we shall consider the integral functional defined on a real Banach space X

given by
F(x) = J'T £(x)du(t) forallx € X,
where fi: X — R U {+oo} is finite at z e X and (7,X, ) is a positive finite measure
space. The purpose of this paper is to show the following formula:
*) 8'([, £@due) < [ 8 fi)dus),
where fi: X — R U {+oo} is nonconvex which is not necessary locally Lipschitzian

at z for all ¢ € 7. This new result (*) is strongly enough to cover the known results in

the convex case as well as the locally Lipschitzian case.
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1. Introduction

Let X be a real Banach space with dual space X" . We shall consider the integral
functional defined on X as the form:
(1.1) F(x)= Lf,(x)dp(t) forall x e X,
where f,: X — RuU {+oo0} is finite at z € X not necessary locally Lipschitz and
(T,X, ) is a position finite measure space such that for each x € X', the mapping

t > f,(x) = f(t,x) is measurable. In this paper, our goal is to characterize the
following inclusion:

(12) S'I[ S, (dudl e [ 8" £,(2)dp),

where 5'F(z) and &' f,(z) denote the generalized gradients of F and f, at z in

Rockafellar sense (see the definition in next section), respectively.
It is known that the formula (1.2) is an important tool to study the theories of

dynamic optimization in calculus of variations and to solve the solutions of nonsmooth

optimal control problem. For example, as f,(-) is locally Lipschitz for each ¢ and
M(T) <o, Aubin and Clarke use the inclusion (1.2) in [1] to obtain some necessary

conditions of solutions in the generalized optimal control problem, and when T is finite,
Rockafellar use (1.2) in [9] to get the Lagrange multiplier rulers in mathematical
programming.

In 1972, Ioffe and Levin [5] characterized (1.2) in the case of convex f£,()
whenever T is countable or X is separable (see [S, p.8]). Moreover if each f£,(:) is
regular, then the equality holds in (1.2). In this case, &' f,()=3f() and (1.2)
becomes
(13) OF(@) =31, f()du(t))= [ 01 (2)dus),

where JF(z)={x e X'|F(y)-F(z)2<x,y—z> forailyeX} stands for the

subdifferential of F" at z, here < x, y > is the dual pair for X" and X.
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Rockafellar in [6] defined the generalized gradient for arbitrary functions, and
proved that (1.2) holds for 7 = {1,2} (cf [6, Theorem 2]) & [8, Theorem 5G]). By

induction, we can obtain that (1.2) holds when T is finite, that is,
(1.4) IS+ 1y 4+ f XD T fi()+ f,(2) +-+6'£,(2),
under the assumptions that each f, is directionally Lipschitzian (see the next section)

at z € X and satisfies the following condition:
n

(1.5) v e X\ (zv) <o} N[ Int{v eX’f,.T(z;v)<oo} + O
i=2

In 1981, Clarke in [2, Theorem 1] extends (1.3) to the case of locally Lipschitzian
f:(:). In this paper, we will establish (1.2) in a more general situation, where the

integrand f, is not necessarily convex as well as not locally Lipschitzian at z. If £, is
regular at z in Rockafellar sense, then the equality holds in (1.2) so is (1.3). In section
2, we describe the generalized directional derivatives in Clarke sense. In section 3, we
establish the inclusion (1.2) without the assumptions of convexity and Lipschitzian,

Finally, we will prove some results concerning generalized gradients of integral
functional on the X-valued subspaces of L°(T; X) whenever p(T) <.

2. Generalized Directional Derivatives and Generalized Gradients

Let N(x) be the family of all neighborhoods at x € X . Let f: X - RuU {+w} be
an extended real-valued function on X. Let epi f = {(x,a) € X x SR| f(x)< a} be the

epigraph of f. In Hiriart-Urruty [4, Definition 6], the generalized directional

derivative of f at x in the direction v, in Rockafellar sense, is give by

. ] +Ad)-a
2.1 "(xv)= su e '
( ) f ( ) VeNI()V)Ne(f.f(x))(y.a)ecﬂfﬁN A A

A>0 Ae(0,1]

For convenience, we use the expression

(2.2) (v,a)dx, —157—



to denote (y,a) eepi f with y — x and a = f(x). Then (2.1) can be written as the

following equivalent form: (cf. Rockafellar [7, §4] and [6, §2])

2.3) /1(x,v)=lip limsup_jnf fy+id)-a

(. a)&x, dev+sB A

where B is the open unit ball centered at 0 in X.

If fis lower semicontinuous (Ls.c.) at x, then (2.3) is equivalent to

(2.4) ff(x;V)=l£ﬂ)lhmmp inf Sy +Ad)- f(}’)

ylx,  dov+e A
No

where y | x, meansthat y - x aswellas f(y)—> f(x).

A function f: X — R =(—c0,00] is said to be locally Lipschitz at x € X if there
exists a neighborhood ¥ of x and a constant K > 0 such that
(2.5) |/ (%) - ()| < K]fx, — x| for all x,,x, eV .

For any v € X, the generalized directional derivative of f at x in the direction v,

in Clarke sense, is defined by (cf. Clarke [2, Definition 1])

f°(x;v) = limsup SO+ )= f() (admits to0)

yorx 2,
o
(2.6) *
= inf  sup SO+ -f0)
eN(x) o ,1
2>0 Aqo./l]

If a function fis locally Lipschitz at x, then
2.7) ev)= £(x;v) for all v € X.

If f:X > R is convex on X, then the directional derivative of f at x in the direction

v € X is given by

(2.8) F(xv) = hin S ”") ) (admits +o0),
where f is finite at x.
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Remark 2.1. If f: X — R is both convex and locally Lipschitz at x € X, then
(2.9) xv)= fev)= f(x:v) for all v e X.
According to the definition of f " and 7, we define the generalized gradient of f

at x as follows.

Definition 2.1. (cf Rockafellar [6, §2]) Let f:X — R be finite at x. The

generalized gradient of f at x, in Rockafellar sense, denoted by 3" f(x), namely

Rockafellar generalized gradient, is defined by the set
(2.10) S f(x)={zeX| fl(x;v)2<z,v> forallveX},

where <z,v> is dual pair for X* and X. The generalized gradient of f at x, in
Clarke sense, denoted by J5° f(x) namely Clarke generalized gradient, is defined by

the set

(2.11) G f(x)={zeX"| fl(x;v)2<z,v> for all v e X}.

Evidently, the- generalized gradients are weak*-closed subset of X~ .
If fis locally Lipschitz at x, then
(2.12) 3 f(x)=3"f(x)=D.
The subdifferential of f: X — R at x € X is defined by
Of(x)={zeX'| f(¥)-f(x)2<z,y—x> for all y € X}.
If &' f(x)# @ and fis convex, then the generalized gradient of f at x in Rockafellar

sense agrees with the subdifferential of fat x (cf. [7, Theorem 5]), that is,
(2.13) 3 f(x) =3 f(x).

Proposition 2.1. Let f:X >R be finite at the point x € X and let the
generali.éed derivative f T(x;a') be finite in some direction d € X . Then

@ f'(x;0)=0and 7' f1(x;0)= 61" (x;0)=5"f(x).

(b) iff has a continuous derivative at x, then 3' f(x) = {Df(x)},

where Df(x) is the Gateaux derivative at f at x.
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Remark 2.2. Let f:X - R be finite at x € X. The generalized directional
derivative f'(x;) is sublinear and Ls.c. (see Rockafellar [7, Theorem. 2]). Thus in
Proposition 2.1 (a), Jf'(x;v) is the subdifferential of the convex function:
d— fl(x;d) at ve X.

Proof of Proposition 2.1. (a). In Remark 2.2, the function d —» f"(x;d) is

Ls.c. and sublinear. Obviously, f'(x;0)=0. Since f'(x;) is convex, we have

A f(x)={zeX'| f1(x;v)2<z,v> forall v eX}
={z eX'| fT(x;v)—fT(x;O) 2<z,v> for all v e X}
=01 (%0 =3"1"(x;0).

(b). If fhas a continuous derivative at x, it is locally Lipschitz at x, then
fT(x;v)=f’(x;v)=<Df(x),v> for all v € X.
This implies that & £ (x) = {Df (x)}. QE.D.

In this paper, we need Int{v e X| F1(x;v) <o} = @. Since this fact is not

necessary true for arbitrary functions, thus we need to consider functions satisfying this

property. For this reason, we give some definitions as follows.
A function f: X — R is said to be directionally Lipschitzian at x € X in the

direction v € X (cf Rockafellar [6, §2]) if

(2.13) F*(x,v)= lim sup L@ FA) -
(raNz, A
o

We say that f'is directionally Lipschitzian at x if f is directionally Lipschitzian at x for
some direction v € X.

If f is Ls.c. at x, then (2.14) is equivalent to
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(2.15) S (x,v)=limsup S +/h;:) —f(y).
erxf
Wl

Remark 2.3. Let f: X —» R be finite at x € X . Iffis directionally Lipschitzian
at x € X, Rockafellar proved in [7, Theorem 3] (cf Clarke [3, Theorem 2.9.5]) that

veX| fr(x;v)<w}=Int{veX| fT(x;y)<o} and

(2.16)
Frev)=fT(x;v) forall velnt{v e X| f1(x;v) <}

A function f'is regular at x in Rockafellar sense, namely Rockafellar regular, if

is finite at x and

(2.17) /' (x;v) = liminf J(x ”“j)‘ S pralvex.
Ao

In Clarke [3, Definition 2.3.4], a function f is said to be regular at x if the one-sided

directional derivative

onon e JXFAW) = f(x) .
(2.18) S'(xv)=lin 2 exists and
f'(x;v)= f(x;v) forallvelX.
Actually, if fis locally Lipschitz at x, then (2.17) coincides with (2.18). We state this

fact as the following proposition.

Proposition 2.2. Let f: X —» R be locally Lipschitz at a point x € X . Then f

is Rockafellar regular at x if and only if f is regular at x.
Proof: (Necessity) Let fbe Rockafellar regular at x. Then

fT(x;v)=1i1‘191_>i31ff(x+l‘Z)_f(x) for all v e X.

Ado
Since fis locally Lipschitz at x, f Y(x;v) = f °(x;v) exists for all v € X . This shows
that
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Fv)= £ (i) = limipg LEE2DZSE)

Ao

The right hand side of the above equality becomes

£ () <limjng TET NS )

A
< limaup L&+ =10

Slil‘}l_glff(x-’-}';’)_f(x) =f°(x;V).

ado

It follows that

f’(x;v)=l.i1nf(x+2'v)_f(x) exists and f'(x;v) = f °(x;v) forall v e X.
ado A
Hence fis regular at x.
(Sufficiency) Let f be regular at x. Then f'(x;v)= f °(x;v) exists for all v € X.
We will show that

fT(x;v)=1i1‘31_,ilvlff(x+'h;)_f(x).

FRY]

Since fis locally Lipschitz at x, f'(x;v)= f°(x;v)= f'(x;v) forall v e X and

!vi—l’le.f'(x+/'L\;")—f(1c')|Sh-i131 Kjw-v|=0
o

where K is a Lipschitzian constant. That is,

| S(x+Aw)- f(x) _f(x+1v)—f(x)) —o:
Wy A A >

Ado

lim L G+ W) — f(x) =lifnf(x+'1v)_f(x);
w—v A’ ado /1

Ao

FTGev)=f1(xv).
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Hence fis regular at x in Rockafellar sense. Q.E.D.

3. Integral Functionals on a Banach Space

In order to get a rigorous formulation in the differential inclusion (1.2), we need

the following assumptions and definitions.

Assumption 3.1. Let z e X and let the generalized directional derivative
7£1(z;9) of f£(-) at z satisfy the following conditions:

(). Forany v eX, f'(z;v) is measurable in .

(@ii). f£(-) is continuous at z for all 7 eT .
(iii). ,"(z;0)=0 forall 1 €T and (\Int(Dom f, (z;)) = D,
. ter .
where Domf,T(z;-) ={v eX| j;T(z;v) < o0}.
Definition 3.1. An integrand f:X — R U {40} is said to be locally pseudo

Lipschitzian at zeX in the direction veX if there exist W eN(v),

K, e [(T;R"), K, e }(T;R"*) and a real number A >0 such that

@.1) LA P JE) < g (ol + Ka(e),

for all 1eT,weW,Ae(0,1] and x € B,(z), where B, (z)={x eX! |x—2| <&} for

some g>0.

Remark 3.1. If f: X > R is Ls.c. as well as locally pseudo Lipschitzian at
z € X in the direction v € X, then by the definition 3.1, the inequality (3.1) implies
that
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£ @) = limsup LI < g )+ 5,00,

xz_,

w—ry
Ado

so that f, is directionally Lipschitzian at z € X in the direction v e X (see (2.15)).
The converse of this result may not be true. Indeed the locally pseudo Lipschitzian
implies that £(z;v) is bounded above by a I'-finction K,(f)|v]+K,(f), but the

directionally Lipschitzian does not satisfy this condition.

If f, is locally Lipschitz at z in the sense that for a function X e I'(T;R*), then
3.2) l.(5) - £:(s,)| S K@)|s,—s,|  for all 5,5, €B, (z),and ¢ €T,
where 77> 0. It follows that £, is also locally pseudo Lipschitzian at z in any direction
veX ifwetake W=v+1B, K (t)=K(t) and K,(t)=0 for all t €7 and choose

A= & =7 in definition 3.1. That is (3.1) holds.

2(Jvn) 2

The converse of this result is not true, for example, if we define RO R by

, forall ¢ e[1,2].

j;={t«/; if x=20

0 if x<0
Then by the definition of the generalized directional derivative, it is easily to get

N ) if v>0

0;v)= .

/i (Ov) {O if v<0
This shows that Dom f,'(0;))= {v €®| f,'(0;v) <0} =(—0,0) and f is locally
pseudo Lipschitzian at z =0 in any direction v e(—0,0) for all ¢ €[1,2]. Indeed,

taking K (¢)= K,(¢)=0 for all ¢ €[1,2] in definition 3.1, we have

S (x +ﬂ-‘;:) ~Ji(¥) <0 for all w € Int(Dom f,' (0;-)) = (—, 0).

This shows that £, is locally pseudo Lipschitzian at 0 in any direction v €(—,0) for

all # €[1,2]. But £, is not locally Lipschitz at 0.
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Remark 3.2. A function f: X — R is locally Lipschitz at x, if and only if fis
directional Lipschitzian at x, with v =0 (see (2.15)). That is 0 € Int(Dom(f T(x(,;-)))

(see Remark 2.3).

In this section, we will extend Moreau-Rockafellar theorem from finite sums of

functions like (1.4) to the integral functional form like (1.2) over a positive finite
measure space (7,X uy). To this end, for each xeX we let the mapping

teT — f(x)= f(t,x) be measurable for each r €T .
Now we let £,(-) be finite at z € X and define
g(v) = J'T £z vydu(r) for all v € X.
By Assumption 3.1 (i), we obtain that for any v € X, f,'(z;v) is measurable in 7. This

implies that g is well defined. Moreover, we need the following assumptions.

Assumption 3.2. Either the normal cone N, (0) contains only one element

{0} or Domg = Dom f,T(z;v) on a set ScT of positive measure, where

Domg ={v €|g(v) <o} and N, (0)={{ X"

<¢,v><0 for all ve Domg}.

Now we come to our main theorem which we state as follows:

Theorem 3.1. Let f() be locally pseudo Lipschitzian at z € X in any
direction v e Int(Dom( f,T(z;-))) for all teT. Suppose that f'(z;) satisfies

Assumptions 3.1 and 3.2. If (a) T is countable or (b) X is separable, then we have
(3:3) ([, £2Mun) < [, &' fi@rdute).

If each f(-) is Rockafellar regular at z and there exist 1 >0 and functions
K,,K, € L(T;R) satisfying the inequality

(3.4) f'(”’l‘/’l)'f:(z) > K, (0)|v]|+ K, (¢) for all A €(0,A),teT,veX,

then F is Rockafellar regular at z and the equality in (3.3) holds.
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Remark 3.3. The inclusion of (3.3) is explained as follows: To every ¢ in
J"F(z)c X" there corresponds a mapping ¢ — £, from 7'into X~ with £, ed f(z)

for a.a. ¢t €T such that the mapping ¢ 5><¢,,v > is summable and

<{,v>=L<§’,,v>dp(t) for all v e X.

Proof of Theorem 3.1. Define F: X - R U {3w} by
F(x)= J'Tj;(x)d,u(t) for all x € X.
First, we will show that
(3.5 Ff(z;v)s Lff(z;v)d,u(t) for all v € X.
Without loss of generality, we can assume that v € Dom j:?(z;-) for almost all
t €T, otherwise, L FN(z;v)du(t)=0 and (3.5) holds. Since integrals over sets of

measure zero are zero, we can assume that v e Dom _f;T (z;-) forall teT.
Let v e Dom f,T (z;-) . We prove (3.5) holds by the following two cases.
Case 1: Let v € Int(Dom j;T (z;)) for allt eT. Since f,(-) is continuous on X
and y(T)< oo, F(-) is also continuous on X. Like in (2.4), we recall the notations:
x|z, meansthat x — z and F(x)— F(z);
x\z, meansthat x>z and f,(x)—> £,(z);
and B,(v) denotes the neighborhood {w € X|jw—-v| <&} =v+eB,
where B is the unit open ball of X centered at origin 0.
Note that by assumption 3.1(i) f,?(z;-) is measurable in 7. If T is countable, then
f,T (z;-) is clearly measurable in 7.
By the hypotheses that f,(-) is locally pseudo Lipschitzian at z € X in any
direction v e Int(Dom(f,(z;))) for all ¢ €T, it is directional Lipschitzian at z € X in
any direction v e Int(Dom( j;T(z;-))) for all ¢t €T (see Remark 3.1). Then from the

assumption 3.1(ii) and the expresion (2.16), we would have that
[, @vydutey= [ £ (z:v)dp()
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=..' hmsupf‘(x_’_lw)—f(x)dp(t)
Ty, A
o
(3.6) > limsup | L+ W)= F ) 4 )
ws, °T A
o

The last inequality follows from Fatou's lemma. Indeed, since f, is locally pseudo
Lipschitzian at z € X in the direction v € X for all ¢ €T, there exist B, (v) € N(v),

K, e IN(T;R"), K, e [(T;R*) and a real number A >0 such that

3.7 L DDZIE < g (o)l + K0 < K-+ )+ Ko ),
for all w € B, (v),A €(0,1],x € B,(z) with some &> 0.

This shows that the right-hand side of (3.7) is bounded above by an integrable function

which are independent of w,xand A. So Fatou's lemma is applicable and so (3.6) holds.

From (3.6), we obtain
J, 1 vadutoy > timeup [ LEX 2 =SB

w—rv
alo

F(x+Aw)-F(x)

= lim su

xdz, A
ado
I .o F(x+Aw)-F(x) .t
2 lgglhras‘:lp wglfw 2 = F (z;v).
ado

Hence (3.5) holds for all v € Int(Dom f,T(z;-)) for all t €T.
Case 2: Let v e Dom f,T(z;-) for all t €e7. By the assumption 3.1 (iii) there
exists a vector v, €Int(Dom [ (z;")) for all ¢ e T. Then by the convexity of @z,
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we have that for all 4 €[0,1), v, =(1-A)v,+Av, eInt(Domf,T(z;-)) forall teT.

From the Case 1, we obtain,

Fl(zv) < [ £7 @va)du)
(3.8) =[ 1 @A-2)v, +Av)du()
| <= [ £ @vo)du) + 4 [ £ (zv)ducs)

Since F'(z;) is Ls.c., letting liminf in the two sides of (3.8), we obtain
Al

L N zv)dut) 2 ]jxf_’i};fFT (z;v,)2 Fl(z;v).

Hence (3.5) holds for v € Dor'n f,?(z;-) for all ¢ € T . This shows that (3.5) holds for all

velX.
Define function g: X —» R U {+w0} by
(3.9) g(v) = L N zvydu(r) forallveX.

Then g is a convex function on X that is not identically equal +co since g(0)=0. By
(3.5), we have
(3.10) F'(z;v)<g(v) forallveX.

Since F'(z;)) is Is.c. and sublinear, thus if F'(z;0)=0, then F'(z;0)=—c0.
This implies that ' F(z) = &, and so Theorem 3.1 holds in this case.

So we can set F'(z;0) =0, and by Proposition 2.1, we have

J'F(z) = 6'F'(z;0) = &F(z,0).

It follows from (3.10) that
(3.11) F' (2;0) < 3&(0).

From (3.7), it is immediately that

sup f,'(z;w) < K, (2)-(V]|+ m) + K, (2).

weB, (v)
Since f,T(z; -) is convex and /s.c. on X, it follows from Ioffe-Levin theorem (cf. [5,

Theorem 3, p.38]) that

28(0) = [ ;' (z;0)du(t) + A0),
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where A(0) = N,

By Assumption 3.2 and Ioffe-Levin theorem (cf. [5, Theorem 3 & Remark, p.28]), we

obtain

08(0)= [ 8, (z;0)du(s).
From (3.11) and Proposition 2.1, it yields

J'F(2)c g0 < [ 01 (z:0)du(t) = [ 8" f,(2)au().
Therefore (3.3) is proved.

Finally, we show that the equality in (3.3) holds if £, is Rockafellar regular at z.
Indeed, from (3.5) and the regularity of #, at z in Rockafellar sense, we obtain

F'(@v) < [ £ (zv)du)

[t A=

ado

2) go).

By (3.4), the difference quotient function is bounded below by an integrable function,

thus Fatou's lemma is applicable and the last expression reduces to

ado

=1il£>i9fF(z+lj)—F(z)

Ad0

hinhmsu inf F(z+w) - F(z) FT(z;v) for all v e X.

xlz, Wev+sB A
alo

From the above result, this shows that F is regular at z in Rockafellar sense and
(3.12) F'(z;v)= ij,T(z;v)d,u(t) forall v e X.

Next for any ¢, €5'f,(z) for almost all te7, it corresponds an element
¢ = L<§,,v>d,u(t) € X~ such that for any v € X,
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F'(z;v) = L £ (z;v)du(t)
> L< ¢, v>du(t)=<{,v >,
This shows that ¢ € 5' F(z) and hence the proof is complete.

Q.E.D.

Corollary 3.2. (Clarke [2, Theorem 1]) Suppose that f,:X — R satisfies the

Jfollowing conditions:

(i). For each x € X, the function t — f,(x) is measurable.

(ii). For some K € L'(T;R") and V € N(z), one has

|7,(x)- £, OV < K(@t)-|x— | forall x,y eV and teT.

Then
(3.13) 0°F@ = 0| f@dut) < [,5°7,@duto).
If f.(-) is regular at z for all t €T, then F is regular at z and the equality in (3.13)

holds. _

Proof: Since f:X — R is locally Lipschitz at z, by (3.2) and (2.12), f; is also
locally pseudo Lipschitzian at z in any direction v e X and 5°f,(z) = ' Jf.(z). Note
that Assumption 3.1, Assumption 3.2 and the hypotheses in Theorem 3.1 are satisfied,
so that (3.13) holds.

Let f, be regular at z. Then F is regular at z in which F is locally Lipschitz at z.
By Proposition 2.2 and Theorem 3.1, the equality holds in (3.13).

Q.E.D.

Now, we give an example to explain that Theorem 3.1 holds for a non locally
Lipschitzian function . It will show that Theorem 3.1 extends the Clarke's result (like

Corollary 3.2).
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Example: Define f:% — R by

tx if x>0
x) = , forall # €[1,3].
Then by definition, it is easy to get
fT(O) © if v>0
) =
£ 0 if v<o.

This shows that Dom f£'(0;) = (—0,0] and f, is also locally pseudo Lipschitzian at
z=0 in any direction v e(—,0) for all ¢ €[1,3]. Indeed, taking K (¢) = K,(¢)=0
for all ¢ €[1,3] in definition 3.1, we have

f,(x+b;)—f,(x) <0 for all w e(—0,0).

This shows that f, is locally pseudo Lipschitzian at 0 in any direction w €(-0,0) for
all ¢ €[1,3]. But £, is not locally Lipschitz at 0.

Clearly, we see that Assumption 3.1, Assumption 3.2 and the hypotheses in
Theorem 3.1 are satisfied at z=0. Now to compute the formula (3.3), by the

definition of generalized gradient, we obtain

4fx if x>0
0

F(x)= ff:(x)dt={ £ r <0

if x=20

1 o0

S F(O,v) = ]
0 if x <O.

It follows that 5"F(0) =[0,c0) < [| & ,(0)dt = [ [0,w)dt = [0,0). That is,

5" F(0)=[0,0) = [ 8" £,(0)dt = [0, 00)dt .
In fact, f,(-) is regular at z =0 in Rockafellar sense. This shows that the equality
holds in (3.3) whenever f,(-) is regular at z = 0 in Rockafellar sense.

Q.E.D.
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4. Integral functionals on L”(T; X)

In this section, we let (7,Z, 4) be a positive finite measure space and let X be a
separable Banach space. L”(T;X) denotes the space of essentially bounded
measurable functions from 7 into X. Now let Y be a closed subspace of L”(T;X) and

consider the integral functional F defined on Y by the following form:
4.1) F(x)= L F.(x())duAt) forall xeY.
Here like in section 3, for each x € X', the mapping ¢ — f,(x) satisfies the

following assumptions:

Assumption 4.1. Let z €Y and let the generalized directional derivative
f, (z(2);-) of f(-) at z satisfy the following conditions:

(i). Forany ve X, f, (z();v) is measurable in ¢.

(ii)). f(-) is continuous at z forall 7 7T .
(iii). £;'(z(¢);0)=0 forall t €T and (") Int(Dom f,' (z(1);)) = D,
tel

where Dom j;T(z(t); J={veX | ‘/;1(z;v) < 00},

Nowwelet zeY and f: X — R be finite at z(¢) e X forall t €T and define
g(v) = L £ @0);v)dut) for all v € X.
By the Assumption 4.1 (i), we obtain that for any v € X, f,f (z(¢);v) is measurable in

t. This implies that g is well defined. To obtain our another main theorem, we need the
following assumption.

Assumption 4.2. Either the normal cone N,__, ,(0) contains only one element
{0} or Domg = Dom f,’(z(t);v) on a set ScT of positive measure, where
Domg ={v €|g(v) <o} and N, (0)={, e X"
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Theorem 4.1. Let f,(\) be locally pseudo Lipschitzian at z(t)e X in any
direction v eInt(Dom(f,'(z(t);))) for all teT and let f,T(z(t);-) satisfy
Assumptions 4.1 and 4.2. If X is separable, then
(“42) ([ S enau) < [ 8 f(aenauc)

Furthermore, if each f,(-) is Rockafellar regular at z(t) € X and there exist 1> 0
and functions K,,K, € L'(T;R) satisfying the inequality |

(4.3) ff(z”‘;)"f'(z) > KO+ K@) for all 4 (0,31t €T, v e X,

then F is Rockafellar regular at z and the equality holds in (4.2).

Remark 4.1. The inclusion of (4.2) is explained as follows: To every ¢ in
J'F(z)c X* there corresponds a mapping 7—>¢, from 7 into X* with
<, ea"Tf;(z(t)) for almost all 7 €7 such that the mapping ¢ —»<¢,,v> is summable
and
(4.4) <¢v>= jT <¢, v(t)>du(t)  forallve?.

Proof of Theorem 4.1. Let ¢ € 3"F(z) and let v be any element of X. Then
by Assumption 4.1, we see that the mapping ¢ — f,lr (z(t);v) is measurable in 7.

In fact, the proof of Theorem 4.1 is similar to the proof of Theorem 3.1, and we
deduce the following inequality
“.5) <¢v><F(zv) = L L@ v(e)du(t)  forall vey.

Now we define
h(v) = [.g,((0)du(r), where g,()=£"(z(t);).
Since g,(-) is convex on X, A(-) is also convex on Y. From the expression (4.5), it

implies that ¢ belongs to the subdifferential of integral functional v — J'T g,(v())du(t)

at v=20.
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Note that the requirement of [S, Theorem 3, p.28] are satisfied, so that we can
obtain the existence of a function ¢ — ¢, such that the mapping r ><¢,,v> is
summable, and

<§,v>=jr<§,,v(t)>dp(t) forallvey,

such that £, e g,(0) for almostall 7 eT.

Since g, (0)= & for all ¢ €T, this implies £,"(z(¢);0) =0 for all # € T . Then by
Proposition 2.1, we obtain g (0)=3f,"(z(t);0)=J" f,(2(¢)) for all ¢ eT. Hence
¢, €3 £,(z(£)) . This shows that (4.2) holds.

Finally, we shows that the equality in (4.2) holds if f, is regular at z in

Rockafellar sense as well as the inequality (4.3) hold.
If £, is regular at z(¢) € X in Rockafellar sense, from (4.5), we obtain

F'(zv) < j FACOR Q70

‘W—)V

By (4.3), it shows that the difference quotient function is bounded below by an

integrable function, thus Fatou's lemma is applicable and the last expression deduces to

w—ry
ado

< timint [ LEQ DI GO

F(z + Aw) - F(z)

= liminf
w—v A’
ado
hthmsu inf Fi+iw)- F(z) FT(z;v) for all veY.
xi: wev+eB )’
uo

This shows that F is regular at z in Rockafellar sense and
4.7 F'(@v)= [ £ @sv@)dur)  forall vey.
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Now for amy ¢, €d f,(z())c X° for almost all re7, we define

(= L< ¢, >du(t). Then by (4.7), we have

F'(zv) = [ £ @@ ) dur)

2 [ <4, (1) >du(e)
=<¢,v> forallveY c L*(T; X).
This shows that ¢ € 5' F(z(¢)) and the proof is complete.

QED.
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