Nihonkai Math. J. Vol.6 (1995), 81-95

Type, cotype constants for L (L_q) , norms of the Rademacher matrices and interpolation

Mikio KATO*, Ken-ichi MIYAZAKI and Yasuji TAKAHASHI**

Abstract. By applying the vector-valued interpolation arguments in [9] to the Rademacher matrices R_n , type t inequalities with 'type t constant' 1 are proved for $L_p(L_q)$ (L_q -valued L_p -space), where t = $\min\{p,q,p',q'\}$, 1/p+1/p'=1/q+1/q'=1; or equivalently, it is shown that $\|R_n: 1_t^n(L_p(L_q)) \to 1_s^{2^n}(L_p(L_q))\| = 2^{n/s}$, where $1 \le s \le t'$, 1/t+1/t'=1. The constant t is optimal as far as the type constant is 1. By a duality argument analogous results are also obtained for cotype inequalities for $L_p(L_q)$. Some previous results by Milman [16], Cobos [5], and Cobos and Edmunds [6] are obtained as corollaries.

1. Introduction

In Kato and Miyazaki [9] (see also [17]), by applying vector-valued interpolation directly to the Littlewood matrices as operators

^{*, **)} supported in part by the Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture (06640322* and 06640263**, 1994).

between $L_p(L_q)$ -valued $l_r^{2^n}$ -spaces, the norms of these matrices are 'completely' determined (cf. [14]), which yields generalized Clarkson's inequalities (high-dimensional Clarkson-Boas-type inequalities) for $L_p(L_q)$ ([9]; cf. [3]): Those for L_p ([8]; cf. [3], [11]), the classical Clarkson's ones ([4]) and their Sobolev space versions by Milman [16] and Cobos [5] are immediate consequences.

In this paper, we apply the interpolation arguments in [9] to the Rademacher matrices to determine the norms of these matrices as operators of $l_t^n(L_p(L_q))$ to $l_s^{2^n}(L_p(L_q))$, where $t=\min\{p,q,p',q'\}$ and $1 \le s \le t'$ (1/t + 1/t' = 1), which yields the type t inequalities for $L_p(L_q)$ with 'type t constant' 1. Here, t is optimal in the sense that if its 'type r constant' is 1, then $r \le t$. A similar treatment of type inequalities for the space B_p and interpolation argument for scalars are found in Maligranda and Persson [14] (see also [15]). By a duality argument analogous results are also obtained for cotype inequalities for $L_p(L_q)$. As corollaries, the previous results on type and cotype for Sovolev spaces by Milman [16] and Cobos [5] are obtained, and those on Besov and Triebel-Sobolev spaces by Cobos and Edmunds [6] are refined.

2. Preliminaries

Let $1 \le p$, $q \le \infty$. Let $L_p(L_q) := L_p(X, M, \mu; L_q)$ be the L_q -valued L_p -space with the norm $\|f\|_{L_p(L_q)} := \text{the } L_p$ -norm of $\|f(\cdot)\|_{q'}$

where $L_q = L_q(Y, N, \nu)$ is the usual L_q -space, and the measure spaces (X, M, μ) and (Y, N, ν) are arbitrary but the former is assumed to be finite (cf., e.g., [7]).

For a Banach space E, let $l_r^n(E)$, $1 \le r \le \infty$, denote the space of E-valued sequences $\{x_j\}$ of length n with the norm $\|\{x_j\}\|$ $l_r^n(E)$:= $(\sum_{j=1}^n \|x_j\|_E^r)^{1/r}$ (the usual modification is required if $r = \infty$).

2. 1. DEFINITION. We define Rademacher matrices $R_n = (r_{ij}^{(n)})$ (2ⁿ×n matrices) recursively as follows:

$$R_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, R_{n+1} = \begin{pmatrix} \frac{1}{1} & R_n \\ \frac{1}{1} & R_n \\ -\frac{1}{1} & R_n \end{pmatrix}$$
 $(n = 1, 2, ...).$

Note that $r_{ij}^{(n)} = r_j((2i-1)/2^{n+1})$, where $r_j(t)$ are the Rademacher functions, that is, $r_j(t) = sgn(sin 2^j \pi t)$.

2. 2. DEFINITION. Let $1 \le p \le 2$. A Banach space E is called of (Rademacher) type p provided there exists a constant M such that

(2.1)
$$\int_{0}^{1} \left\| \sum_{j=1}^{n} r_{j}(t) x_{j} \right\| dt \leq M \left\{ \sum_{j=1}^{n} \| x_{j} \|^{p} \right\}^{1/p}$$

for all finite systems $\{x_i\}$ in E.

Let $2 \le q \le \infty$. A Banach space E is called of (Rademacher) cotype q provided there exists a constant M such that

(2.2)
$$\left\{ \sum_{j=1}^{n} \| x_{j} \|^{q} \right\}^{1/q} \leq M \int_{0}^{1} \left\| \sum_{j=1}^{n} r_{j}(t) x_{j} \right\| dt$$

for all finite systems $\{x_i\}$ in E.

By virtue of Khinchin-Kahane's inequality (see [1], [13]), (2.1) and (2.2) may be replaced by

$$(2.3) \qquad \left\{ \int_{0}^{1} \left\| \sum_{j=1}^{n} r_{j}(t) x_{j} \right\|^{s} dt \right\}^{1/s} \leq M \left\{ \sum_{j=1}^{n} \| x_{j} \|^{p} \right\}^{1/p}$$

and

(2. 4)
$$\left\{ \sum_{j=1}^{n} \| x_{j} \|^{q} \right\}^{1/q} \leq M \left\{ \int_{0}^{1} \left\| \sum_{j=1}^{n} r_{j}(t) x_{j} \right\|^{s} dt \right\}^{1/s}$$

with any $1 \le s < \infty$, respectively. Let $T_{p(s)}(E)$ resp. $C_{q(s)}(E)$ denote the smallest constant M satisfying (2.3) resp. (2.4) for all finite systems $\{x_j\}$ in E; and $T_{p(s)}^{(n)}(E)$ resp. $C_{q(s)}^{(n)}(E)$ the smallest constant M satisfying (2.3) resp. (2.4) for all n elements in E.

It is clear that if $1 \leq s_1 \leq s_2$, $1 \leq T_{p(s_1)}(E) \leq T_{p(s_2)}(E)$ and $C_{q(s_1)}(E) \geq C_{q(s_2)}(E) \geq 1$; further $T_{p(s)}(E) = \lim_{n \to \infty} T_{p(s)}^{(n)}(E)$ and $C_{q(s)}(E) = \lim_{n \to \infty} C_{q(s)}^{(n)}(E)$. Note that all Banach spaces are of type 1 and cotype ∞ ; and $T_{1(s)}(E) = C_{\infty(s)}(E) = 1$ for all $1 \leq s < \infty$. Note also that

(2.5)
$$\left\{ \int_{0}^{1} \left\| \sum_{j=1}^{n} \mathbf{r_{j}}(t) \mathbf{x_{j}} \right\|^{s} dt \right\}^{1/s} = \left\{ \frac{1}{2^{n}} \sum_{\theta_{j}=\pm 1}^{n} \left\| \sum_{j=1}^{n} \theta_{j} \mathbf{x_{j}} \right\|^{s} \right\}^{1/s} \\ = \left\{ \frac{1}{2^{n}} \sum_{j=1}^{2^{n}} \left\| \sum_{j=1}^{n} \mathbf{r_{ij}^{(n)}} \mathbf{x_{j}} \right\|^{s} \right\}^{1/s}.$$

Owing to (2.5) type and cotype properties are described by means of the operator norms of the Rademacher matrices (cf. [14]):

2. 3. PROPOSITION. Let E be a Banach space. (i) Let 1 \leq 2. Then, E is of type p if and only if there exist some s, $1 \leq s < \infty$, and a constant M such that

$$\| R_n : 1_p^n(E) \rightarrow 1_s^{2^n}(E) \| \le M2^{n/s}$$
 $(n = 1, 2, ...).$

In this case, for any positive integer n

$$\| R_n : 1_p^n(E) \rightarrow 1_s^{2^n}(E) \| = T_{p(s)}^{(n)}(E) 2^{n/s}.$$

(ii) Let 2 \leq q < ∞ . Then, E is of cotype q if and only if there exist some s, 1 \leq s < ∞ , and a constant M such that for the transposed matrix of R_n,

$$\| {}^{t}R_{n} : R_{n}(1_{\alpha}^{n}(E)) \rightarrow 1_{\alpha}^{n}(E) \| \leq M2^{n/s'} \quad (n = 1, 2, ...),$$

where $R_n(1_q^n(E))$ ($\subset 1_s^{2^n}(E)$) is the range of $R_n:1_q^n(E)\to 1_s^{2^n}(E)$. In this case, for any positive integer n

$$\| {}^{t}R_{n} : R_{n}(1_{q}^{n}(E)) \rightarrow 1_{q}^{n}(E) \| = C_{q(s)}^{(n)}(E)2^{n/s'}.$$

In particular, E is of cotype q if there exist some s, $1 \le s$ < ∞ , and an M such that

$$\| {}^{t}R_{n} : 1_{s}^{2^{n}}(E) \rightarrow 1_{q}^{n}(E) \| \leq M2^{n/s'} \quad (n = 1, 2, ...).$$

In this case, $C_{q(s)}(E) \leq M$.

Indeed, (i) is trivial. To see (ii) note that (2.4) is rewritten as

$$\|(x_{j})\|_{q} \le M2^{-n/s} \|R_{n}(x_{j})\|_{1_{s}^{2^{n}}(E)}$$
 for all $(x_{j}) \in 1_{q}^{n}(E)$,

which is equivalent to

3. Type, cotype constants for $L_{p}(L_{q})$ and the norms of the Rademacher matrices

The following lemma is immediate to see by induction.

3.1. LEMMA. Let H be a Hilbert space. Then, for an arbitrary positive integer n and for all x_1, x_2, \ldots, x_n in H,

$$\left\{ \sum_{i=1}^{2^{n}} \left\| \sum_{j=1}^{n} r_{ij}^{(n)} x_{j} \right\|_{H}^{2} \right\}^{1/2} = 2^{n/2} \left\{ \sum_{j=1}^{n} \| x_{j} \|_{H}^{2} \right\}^{1/2}.$$

Hence

$$\| R_{n} : 1_{2}^{n}(H) \rightarrow 1_{2}^{2^{n}}(H) \|$$

$$= \| {}^{t}R_{n} : 1_{2}^{2^{n}}(H) \rightarrow 1_{2}^{n}(H) \| = 2^{n/2}.$$

3. 2. THEOREM. Let 1 < p, $q < \infty$ and let $t = \min\{p, q, p', q'\}$. Then, for any s with $1 \le s \le t'$

(3.1)
$$\|R_n: 1_t^n(L_p(L_q)) \rightarrow 1_s^{2^n}(L_p(L_q)) \| = 2^{n/s}$$
 (n = 1, 2, ...):

In other words, $L_p(L_q)$ is of type t and $T_{t(s)}(L_p(L_q)) = 1$ for all $1 \le s \le t'$.

PROOF. It is enough to show (3.1) for s = t'. Let us show

(3.2)
$$\|R_n: 1_t^n(L_p(L_q)) \rightarrow 1_{t'}^{2^n}(L_p(L_q))\| \le 2^{n/t'}$$
.

(i) Let 1 (t = p). If <math>p = q = 2, Lemma 3.1 gives the conclusion. So, we assume this is not the case. Put $\theta = 2/p'$ (0 < θ < 1) and $1/q_0 = (1/q - 1/p')/(1/p - 1/p')$. Then, since $(1 - \theta)/1 + \theta/2 = 1/p$, $(1 - \theta)/\infty + \theta/2 = 1/p'$ and $(1 - \theta)/q_0 + \theta/2 = 1/q$, we have

$$(L_1(L_{q_0}), L_2(L_2))_{\theta} = L_p(L_q)$$
 with equal norms

by Theorems 5. 1. 1 and 5. 1. 2 of [2]. Further, using Theorem 5. 1. 2

(with 5. 1. 1 and 4. 2. 1) of [2] duplicately, we have

$$(1_1^n(L_1(L_{q_0})), 1_2^n(L_2(L_2))_{[\theta]} = 1_p^n(L_p(L_q))$$
 with equal norms,

$$(1_{\infty}^{2^{n}}(L_{1}(L_{q_{0}})), 1_{2}^{2^{n}}(L_{2}(L_{2}))_{[\theta]} = 1_{p'}^{2^{n}}(L_{p}(L_{q}))$$
 with equal norms.

By easy calculation we have

(3.3)
$$M_1 = \| R_n : 1_1^n(L_1(L_{q_0})) \rightarrow 1_{\infty}^{2^n}(L_1(L_{q_0})) \| = 1$$

and by Lemma 3.1

$$(3.4) M2 = || Rn : 12n(L2(L2)) \rightarrow 122n(L2(L2)) || = 2n/2.$$

Therefore, we obtain

$$\|R_n: 1_p^n(L_p(L_q)) \rightarrow 1_{p'}^{2^n}(L_p(L_q)) \| \le M_1^{1-\theta} M_2^{\theta} = 2^{n/p'}$$

by Theorem 4. 1. 2 of [2] with (3. 3) and (3. 4).

(ii) Let $1 < q < p \le 2$ (t = q). Put $\theta = 2/q'$ (0 < $\theta < 1$) and $1/p_0 = (1/p - 1/q')/(1/q - 1/q')$. Then, $(1 - \theta)/1 + \theta/2$ = 1/q, $(1 - \theta)/\infty + \theta/2 = 1/q'$ and $(1 - \theta)/p_0 + \theta/2 = 1/p$. Since

$$(L_{p_0}(L_1), L_2(L_2))_{[\theta]} = L_{p}(L_q)$$
 with equal norms,

we have by

$$M_3 = \| R_n : 1_1^n (L_{p_0}(L_1)), 1_{\infty}^{2^n} (L_{p_0}(L_1)) \| = 1$$

and (3.4),

$$(3.5) \quad \| R_n : 1_q^n(L_p(L_q)) \rightarrow 1_{q'}^{2^n}(L_p(L_q)) \| \leq M_3^{1-\theta} M_2^{\theta} = 2^{n/q'},$$
 or (3.2) with $t = q$.

(iii) In the case where 1 < q \le 2 < p and q < p' (t = q), we have (3.5) in the same way as the previous case (ii).

(iv) Let $1 < q \le 2 < p$ and p' < q (t = p'). Let $\theta = 2/p$ and $1/q_0 = (1/q - 1/p)/(1/p' - 1/p)$. Then, $(1 - \theta)/\infty + \theta/2 = 1/p$, $(1 - \theta)/1 + \theta/2 = 1/p'$ and $(1 - \theta)/q_0 + \theta/2 = 1/q$. Therefore, we have by Theorem 5. 1. 2 of [2]

$$(L_{\infty}^{0}(L_{q_0}), L_{2}(L_{2}))_{[\theta]} = L_{p}(L_{q})$$
 with equal norms,

where $L^0_{\infty}(L_{q_0})$ stands for the completion in $L_{\infty}(L_{q_0})$ of the simple functions (with support of finite measure). Consequently, by

$$M_{\mu} = \| R_{n} : 1_{1}^{n} (L_{\infty}^{0}(L_{q_{0}})), 1_{\infty}^{2^{n}} (L_{\infty}^{0}(L_{q_{0}})) \| = 1$$

and (3.4), we obtain

$$\begin{split} \|\,R_n\,:\, 1_{p'}^n\,(L_p(L_q))\,\,\to\,\, 1_p^{2^n}\,(L_p(L_q))\,\,\|\,\,&\leq\,\, M_{\downarrow \!\!\!\! \downarrow}^{1\,-\,\,\theta}\,M_2^{\,\theta}\,\,=\,\, 2^{n/p}. \\ \\ (\,v\,) \quad \text{Let}\,\,2\,\,<\,\,p,\,\,\,q\,\,<\,\,\infty\,\,\,(\,t\,\,=\,\,\min(\,p'\,\,,\,\,\,q'\,\,)\,). \quad \text{Then, we have} \\ \\ \|\,R_n\,:\,\, 1_t^n\,\,(L_p(L_q))\,\,\to\,\, 1_{t'}^{2^n}\,(L_p(L_q))\,\,\|\,\, \\ \\ &=\,\,\|\,^tR_n\,:\,\, 1_t^{2^n}\,(L_{p'}\,\,(L_{q'}\,\,))\,\,\to\,\, 1_{t'}^n\,\,(L_{p'}\,\,(L_{q'}\,\,)\,)\,\,\|\,\, \\ \\ &\leq\,\, 2^{n/t'}\,. \end{split}$$

where the inequality on $^{t}R_{n}$ is obtained analogously to (i) and (ii) with Lemma 3.1. (Note here that L_{q} , has the Radon-Nikodym property and the measure space (X, M, μ) is finite; cf. [7], esp., p.98).

(vi) The proof of the case 1 \leq 2 < q (t = min(p, q')) goes in the same way as (v) by using the analogous results on tR_n to (iii) and (iv).

Equality is attained in (3.2) with (f, 0, ..., 0) $\in l_t^n(L_p(L_q))$ (f \neq 0). This completes the proof.

3. 3. COROLLARY. Let 1 < p, $q < \infty$ and let $t = \min\{p, q, p', q'\}$. Then, for any s with $t \le s < \infty$,

$$\| {}^{t}R_{n} : 1_{s}^{2^{n}}(L_{p}(L_{q})) \rightarrow 1_{t'}^{n}(L_{p}(L_{q})) \| = 2^{n/s'}$$
 (n = 1, 2, ...),

and hence $L_p(L_q)$ is of cotype t'and $C_{t'(s)}(L_p(L_q)) = 1$ for all $t \le s < \infty$.

This is a direct consequence of the above theorem and Proposition 2.3 (use duality).

- 3. 4. REMARKS. (i) The constant $t = \min\{p, q, p', q'\}$ in Theorem 3. 2 is optimal under the condition that 'the type constant' is 1, that is, if $T_{r(s)}(L_p(L_q)) = 1$ with some s, then $r \le t$: Note here that $L_p(L_q)$ is of type $m = \min\{p, q, 2\}$ (cf. [12], p. 348; [1], [13]); and m is optimal as far as only 'type' is under consideration, where L_p and L_q are assumed to be of infinite dimension. Note also that t = m if $p \le q'$, and t < m if p > q'.
- (ii) The constant t' in Theorem 3.2 is optimal for t in general; that is, if $T_{t(s)}(E) = 1$ with some s for a Banach space E of type t, then $s \le t'$.

(iii) The constants t' and t in Corollary 3.3 are optimal in the analogous meanings to (i) and (ii).

PROOF. (i) Assume $T_{r(s)}(L_p(L_q))=1$ for some $1\leq s<\infty$. Then, noting that the 2-dimensional spaces l_p^2 and l_q^2 are isometrically imbedded into $L_p(L_q)$, we have

$$(3.6) \quad \left\{ \frac{1}{2} (\|\mathbf{x} + \mathbf{y}\|^{s} + \|\mathbf{x} - \mathbf{y}\|^{s}) \right\}^{1/s} \leq (\|\mathbf{x}\|^{r} + \|\mathbf{y}\|^{r})^{1/r}$$

for all x and y in l_p^2 and also in l_q^2 . (Here the underlying measure spaces X and Y are assumed to be non-trivial, which means the existence of two disjoint measurable sets of finite positive measure.)

Put x = (1, 0), y = (0, 1) and also x = (1, 1), y = (1, -1) in (3.6). Then we have $r \le \min\{p, q\}$ and $r \le \min\{p', q'\}$, or $r \le t$.

(ii) Let E be a Banach space of type t and let $T_{t(s)}(E) = 1$ with some s. Then, the inequality (3.6) with t instead of r holds for any x and y in E. Put here x = y. Then, we have $s \le t'$.

(iii) is seen analogously to (i) and (ii).

The same are true for L and Sobolev spaces $W_p^k(\Omega)$ (cf. [5], [16]), where Ω is an arbitrary domain in \mathbb{R}^n :

- 3. 5. COROLLARY. Let 1 \infty and let t = min{p, p'}. Let E be one of L , $1_p^N(L_p)$ and $W_p^k(\Omega)$. Then,
 - (i) E is of type t and $T_{t(s)}(E) = 1$ for any s with $1 \le s \le t'$,
- (ii) E is of cotype t' and $C_{t'(s)}(E)=1$ for any s with t $\leq s$ $<\infty$.

Here, t and t' are optimal in the senses stated in Remark 3.4.

PROOF. We have (i) and (ii) immediately by Theorem 3.2 (note that $W_p^k(\Omega)$ is imbedded isometrically into $1_p^N(L_p)$ with a suitable positive integer N). To see that t (resp. t') is optimal in (i) (resp. (ii)) in the sense of Remark 3.4 (i), one has only to observe that 1_p^2 is isometrically imbedded into $W_p^k(\Omega)$: In fact, take an f in $W_p^k(\Omega)$ with support (in Ω) small enough and $\|f\|_{p,k} = 1$. Let g be a translate of f whose support is disjoint with that of f. Then, the correspondence: $(\xi, \eta) \to \xi f + \eta g$ from 1_p^2 into $W_p^k(\Omega)$ is an isometry. The constants t' in (i) resp. t in (ii) are also optimal in the sense of Remark 3.4 (ii) by Remark 3.4 (ii) and (iii).

3. 6. REMARK. Theorem 3. 2 and Corollary 3. 3 hold without the assumption of finiteness of the measure space (X, M, μ). In fact, for any σ -finite measure μ on M we can take another (finite) measure $\bar{\mu}$ on M such that $L_p(X, M, \mu; L_q)$ is isometrically isomorphic to $L_p(X, M, \bar{\mu}; L_q)$ (for example, put $\bar{\mu}(A) := \sum_{n=1}^{\infty} 2^{-n} \mu(X_n)^{-1} \mu(A \cap X_n)$, where $X = \sum_{n=1}^{\infty} X_n$, $0 < \mu(X_n) < \infty(X_n \in M)$. Then, the correspondence: $f \to \sum_{n=1}^{\infty} 2^{n/p} \mu(X_n)^{1/p} \chi_{X_n} f$ is an isometry from $L_p(X, M, \mu; L_q)$ onto $L_p(X, M, \bar{\mu}; L_q)$, where χ_{X_n} is the characteristic function of χ_n .) If μ is an arbitrary positive measure on M, we have only to note that the supports of any f_1, f_2, \ldots, f_n in $L_p(X, M, \mu; L_q)$ are σ -finite.

Now, we improve Cobos and Edmunds' results ([6]) on Besov spaces $B_{p,q}^{S}$ and Triebel-Sobolev spaces $F_{p,q}^{S}$ (s is a real number):

- 3. 7. COROLLARY. Let 1 < p, $q < \infty$ and let $t = \min\{p, q, p', q'\}$. Let E be one of $B_{p, q}^{S}$ and $F_{p, q}^{S}$. Then;
 - (i) E is of type t and $T_{t(s)}(E) = 1$ for any s with $1 \le s \le t'$,
- (ii) E is of cotype t' and $C_{t'(s)}(E)=1$ for any s with t $\leq s$ $<\infty$.

Indeed, $B_{p,q}^{s}$ and $F_{p,q}^{s}$ are isometrically imbedded into $l_{q}(L_{p}(\mathbb{R}^{n}))$ and $L_{p}(\mathbb{R}^{n}; l_{q})$, respectively, where on \mathbb{R}^{n} the Lebesgue measure is equipped (see [6]). Therefore, owing to Remark 3.6 (especially for $F_{p,q}^{s}$), these assertions (i) and (ii) are direct consequences of Theorem 3.2 and Corollary 3.3.

3. 8. REMARK. In Cobos and Edmunds [6], for the spaces $E = B_{p,q}^S$ and $F_{q,p}^S$ it is shown that (i) $T_{p(p')}(E) = 1$ under the condition $1 and <math>p \le q \le p'$ ([6], Theorem 1); (ii) $C_{p(p')}(E) = 1$ under the condition $2 \le p < \infty$ and $p' \le q \le p$ ([6], Theorem 2).

We finally note that the first- and third-named authors [10] have recently characterized those Banach spaces with type (or cotype) constant 1 as those satisfying Clarkson-Boas-type inequalities.

ACKNOWLEDGEMENT. The authors thank Professor K. Hashimoto for his helpful comments.

References

- [1] B. Beauzamy, Introduction to Banach spaces and their geometry, 2nd Ed., North Holland, Amsterdam-New York-Oxford, 1985.
- [2] J. Bergh and J. Löfström, Interpolation spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [3] R. P. Boas, Some uniformly convex spaces, Bull. Amer. Math. Soc., 46 (1940), 304-311.
- [4] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396-414.
- [5] F. Cobos, Clarkson's inequalities for Sobolev spaces, Math.

 Japon., 31 (1986), 17-22.
- [6] F. Cobos and D. E. Edmunds, Clarkson's inequalities, Besov spaces and Triebel-Sobolev spaces, Z. Anal. Anwendungen, 7 (1988), 229-232.
- [7] J. Diestel and J. J. Uhl, Jr., Vector measures, Math. Surveys no. 15, Amer. Math. Soc., Providence, R. I., 1977.
- [8] M. Kato, Generalized Clarkson's inequalities and the norms of the Littlewood matrices, Math. Nachr., 114 (1983), 163-170.
- [9] M. Kato and K. Miyazaki, On generalized Clarkson's inequalities for $L_{D}(\mu; L_{G}(\nu))$ and Sobolev spaces, to appear in Math. Japon.
- [10] M. Kato and Y. Takahashi, Type, cotype constants and Clarkson's inequalities for Banach spaces, to appear in Math. Nachr.
- [11] M. Koskela, Some generalizations of Clarkson's inequalities,
 Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. Fiz., no.

- 634-677 (1979), 89-93.
- [12] J. Kuelbs, Probability on Banach spaces, Marcel Dekker, New York-Basel, 1978.
- [13] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II,

 Springer-Verlag, Berlin-Heidelberg-New Nork, 1979.
- [14] L. Maligranda and L. E. Persson, On Clarkson's inequalities and interpolation, Math. Nachr., 155 (1992), 187-197.
- [15] L. Maligranda and L. E. Persson, Inequalities and interpolation, Collect. Math., 44 (1993), 181-199.
- [16] M. Milman, Complex interpolation and geometry of Banach spaces,
 Ann. Mat. Pura Appl., 136 (1984), 317-328.
- [17] K. Miyazaki and M. Kato, On a vector-valued interpolation theoretical proof of the generalized Clarkson inequalities, Hiroshima Math. J., 24 (1994), 565-571.

Department of Mathematics Kyushu Institute of Technology Tobata, Kitakyushu 804, Japan,

Department of Mathematics Fukuyama University Fukuyama 729-02, Japan,

Department of system engineering Okayama Prefectural University Soja 719-11, Japan

Received November 11, 1994