Nihonkai Math. J.
Vol.6 (1995), 81-95

Type, cotype constants for Lp(Lq), norms of the Rademacher matrices

and interpolation
Mikio KATO*, Ken-ichi MIYAZAKI and Yasuji TAKAHASHI**
Abstract. By applying the vector-valued interpolation arguments

in [9] to the Rademacher matrices Rn’ type t inequalities with ‘type

t constant' 1 are proved for Lp(Lq) (Lq-valued Lp—space), where t

= min{p,q.p'.q}, 1/p + 1/p' = 1/q + 1/d = 1; or equivalently,
sy s . SN 2n _ ,n/s

it is shown that Ian : lt(Lp(Lq)) — ls (Lp(Lq))II—— 2 , where

1 < s < t, 1/t + 1/t' = 1. The constant t is optimal as far as

the type constant is 1. By a duality argument analogous results are
also obtained for cotype inequalities for Lp(Lq). Some previous
results by Milman [16], Cobos [5], and Cobos and Edmunds (61 are

obtained as corollaries.

1. Introduction

In Kato and Miyazaki [9] (see also [171), by applying vector-

valued interpolation directly to the Littlewood matrices as operators
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between Lp(Lq)-valued 1in—spaces, the norms of these matrices are
‘completely' determined (ef. [14]), which yields generalized Clark-
son' s inequalities (high-dimensional Clarkson-Boas-type inequalities)
for Lp(Lq) ([91; cf. [3]1): Those for Lp ([81; cf. [31, [11]), the
classical Clarkson's ones ([4]) and their Sobolev space versions by
Milman [16] and Cobos [5] are immediate consequences.

In this paper, we apply the interpolation arguments in [9] to
the Rademacher matrices to determine the norms of these matrices as
operators of l:(Lp(Lq)) to lsn(Lp(Lq)), where t = min{p,q,p',q' } and
1= s =t (1/t + 1/t' = 1), which yields the type t inequalities
for Lp(Lq) with 'type t constant' 1. Here, t is optimal in the sense
that if its 'type r constant' is 1, then r < t. A similar treatment
of type inequalities for the space Bp and interpolation argument for
scalars are found in Maligranda and Persson [14] (see also [15]).

By a duality argument analogous results are also obtained for cotype
inequalities forst(Lq). As corollaries, the previous results on
type and cotype for Sovolev spaces by Milman [16] and Cobos [5] are
obtained, and those on Besov and Triebel-Sobolev spaces by Cobos and

Edmunds [6] are refined.

2. Preliminaries

Let 1 < p,b g < o©. Let L (L = L (X, M, ; L the L -
e P, q ep(q) p(Mu q)be eq

valued Lp—space with the norm || £ the Lp—norm of IIf(-)IIq,

Lp(Lq)
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where Lq = Lq(Y, N, v ) is the usual Lq—space, and the measure spaces
(X, M, ) and (Y, N, v ) are arbitrary but the former is assumed to be

finite (cf., e. g, [71).

For a Banach space E, let li(E), 1 S r & o0, denote the space

of E-valued sequences {x.} of length n with the norm | {x 1} |l n
J 17(E)
1/r

= (2.‘.1:1 I x‘j ) (the usual modification is required if r = ).

J=1

r
E

2. 1. DEFINITION. We define Rademacher matrices R = (r(n))

)
(2n><n matrices) recursively as follows:
1
. Rn
1 L]
R.] = —1 » Rn+1 = "'_'_' """ ATt (n = 1! 21 )
. R
. n
-1
Note that ri?)= rj((Zi——l)/an), where rj(t) are the Rademacher
functions, that is, r,(t) = sen(sin 29 t).

2. 2. DEFINITION. Let 1 = p < 2. A Banach space E is called

of (Rademacher) type p provided there exists a constant M such that

1
(2.1) S
0

for all finite systems {xj} in E.

n

E rJ(t)x

' 1/p
it = M[E I x. ||p]
J=1

Let 2 < @ < ©. A Banach space E is called of (Rademacher)

cotype q provided there exists a constant M such that
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1

n q 1/q
(2. 2) { I x, I ] <M g
3'21 J 0

n

r.(t)x, || dt
J J

J=1

for all finite systems {xj} in E.
By virtue of Khinchin-Kahane's inequality (see :[1], [131), (2.1)

and (2. 2) may be replaced by

1 n s 1/s n D 1/p
(2. 3) [ s r.(t)x. dt] <M l I x. |l }
0 3«21 J J ,]21 J
and
n q 1/q 1 n s 1/s
(2. 4) Il x. |l ] =M { S r.(t)x, dt]

with any 1 = s < o0, respectively. Let T (E) resp. C (E)

a(s)
denote the smallest constant M satisfying (2. 3) resp. (2. 4) for all

p(s)

(n)
qa(s)

(n)

finite systems {xj} in E; and Tp(s) (E) the smallest

(E) resp. C

constant M satisfying (2. 3) resp. (2. 4) for all n elements in E.

It is clear that if 1 = s, = S, 1 = Tp(sl)(E) = Tp(sz)(E)
and Cg g (E) Z C_(_  (E) Z 1; further T, (E) = 1imnwo'rl‘)’(‘;)(ﬁ:)
and Cq(s)(E) = limn-»oocé?;)(E)' Note that all Banach spaces are
of type 1 and cotype o ; and T1(s)(E) = Coo(s)(E) = 1 for all

1 & s < . Note also that
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1 n 1/s 1 n 1/s
(2. 5) [S “ 2 r.(t)x. Sdt] = [— z 2 0.x. S]
oll =17 J 2n6j=:t1 =19
_ [_1__ § Zn)r(n) s]‘/s
2™ =1 J=1 3

Owing to (2. 5) type and cotype properties are described by means

of the operator norms of the Rademacher matrices (ecf. [14]):

2. 3. PROPOSITION. Let E be a Banach space. (i) Let 1 < p
< 2. Then, E is of type p if and only if there exist some s,

1 £ s < o, and a constant M such that

n 2n n/s
: = = 1, ,
I R lp(E) - 1_ (E) I = M2 (n 2 )
In this cése, for any positive integer n
. N 2" _ o(n) n/s
Il R lp(E) — 1s (E) I = Tp(s)(E)Z .

(ii) Let 2 £ q < . Then, E is of cotype q if and only if
there exist some s, 1 < s < oo, and a constant M such that for the

transposed matrix of Rn’

t

. n - 17 n/s'
[ Rn : Rn(lq(E)) lq(E) I = M2

(n =1 2, ...),

n 2n . . .n 2n
where Rn(lq(E)) (C lS (E)) is the range of Rn : lq(E) - ls (E).

In this case, for any positive integer n

t ) n n _ ~(n)
[ S Rn(lq(E)) - lq(E) I = ¢C

/s’
qa(s) )

(E)2"
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In particular, E is of cotype q if there exist some s, 1 < s

< o0, and an M such that

t, .20 n n/s' —
] Rn : lS (E) — lq(E) Il = M2 (n = 1, 2, )
In this case, C (E) = M
a(s)

Indeed, (i) is trivial. To see (ii) note that (2. 4) is rewrit-

ten as
Dol | = m ™SR (x) 0 , for all (x,) € 1%(E),
1™(E) I 19 (E) J a
q s
which is equivalent to
t n/s n
il Ran(X.) Il n = il R (x )l on for all (x.) € 1 (E)
17%(E) 1° (E) J a
q s
. t — Mg . . .
since Ran = 2 N (En is the nXn unit matrix).

3. Type, cotype constants for Lp(Lq) and the norms of the

Rademacher matrices

The following lemma is immediate to see by induction.

3. 1. LEMMA. Let H be a Hilbert space. Then, for an arbitrary

positive integer n and for all x1. x2. c ey xn in H,
n
n (n) 2 1/2 n/2 n > 1/2
Z z ; = 2 E f X, I
Jj=1 H Jj=1

Hence
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n 2"
Il Rn : 12(H) - 12 (1) |l

. . ,2n n _ ,n/2
= || R : 1; (H) — 12(H)_II = 27" .

3. 2. THEOREM. Let‘ 1 < p, g < o and let t = min{p,q,p'.q }.

Then, for any s with 1 < s = t'

n/s

: n — 2" = = .
(3.1) | R : lt(Lp(Lq)) ls (Lp(Lq)) [ 2 (n 1, 2, ...):

In other words, Lp(Lq) is of type t and Tt(s)(Lp(Lq)) = 1 for all

1 £ s s t'.

PROOF. It is enbugh to show (3.1) for s = t'. Let us show

n 2n n/t'
. : — = .
(3. 2) [ Rn lt(Lp(Lq)) 1t' (Lp(Lq)) = 2

(i) Let 1 < pS g=< 2 (t =1p). Ifp = q = 2, Lemma 3.1 gives
the conclusion. So, we assume this is not the case. Put 6 = 2/p'
(0 <6< 1) and 1/q, = (/g — 1/p")/(1/p — 1/p'). Then, since
(1 —6)/1 +6/2 = 1/p, (1 —0)/ +6/2 = 1/p' and (1 — 8 )/q

+0/2 = 1/q, we have
(L1 (qu ), L2(L2) ) (61 = Lp(Lq) with equal norms
by Theorems 5. 1.1 and 5 1.2 of [2]. Further, using Theorem 5. 1.2

(with 5.1.1 and 4. 2. 1) of [2] duplicately, we have

n n __.n .
(l1 (L1 (qu)), 12(L2(L2))[9 ] = 1p(Lp(Lq)) with equal norms,
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n _ 2" .
> (LZ(LZ))[B ] = lp,(Lp(Lq)) with equal norms.

2" 2
(loo(L1(qu)), 1
By easy calculation we have

. S ¢! - 2" _
(3.3) Moo= IR, : I(L (L)) — 1o (L (L )l =1

and by Lemma 3. 1

_ . 2n _ .n/2
(3. 4) M2 = lan : 12(L2(L2)) - 12 (LZ(LZ))" = 2 .
Therefore, we obtain
n 2" 1— 6.0 n/p'
R : (L (L — 1 L (L =M M = 2
[ n p( p( q)) p.( p( q))ll 1 >

by Theorem 4. 1.2 of [2] with (3. 3) and (3. 4).

(ii) Let 1 < g< p = 2 (t =gq). Put 6= 2/q" (0 <0< 1)
and 1/p, = (1/p — 1/a')/(1/a = 1/q'). Then, (1 —6)/1 +6/2
= 1/q, (1 —0)/© +60/2 = 1/q" and (1 —9)/p0 +6/2 = 1/p

Since

(Lpo(L1)’ LZ(LZ))[B ] = Lp(Lq) with equal norms,

we have by

— - n 2“ —
M, = IR 1] (Lpo(L1))’ loo(Lpo(L1))Il—— 1
and (3. 4),
n 2n 1—-6_ 0 n/q
. R : 1 (L (L - 1 L (L =M M = 2 ,
(3.5) | N q( p( q)) q.( p( q))II 3 >

or (3.2) with t = q.



(ifi ) In the case where 1 < g £ 2 < pand q < p' (t = q),
we have (3.5) in the same way as the previous case (ii).

(iv) Let 1 < g=2< pandp < q (t = p'). Let 6= 2/p
and 1/q, = (1/a — 1/p)/(1/p' — 1/p). Then, (1 —0)/® +0/2
= 1/p, (1 —6)/1 +6/2 = 1/p' and (1 — 0 )/q0 +60/2 = 1/a

Therefore, we have by Theorem 5. 1.2 of [2]

0 _ .
(Lco (qu ) L2(L2))[6 ] = Lp(Lq) with equal norms,

0 .
here L L tands f th leti in L L of the simpl
whe oo(qo)sans or e completion i 00(010) imple

functions (with support of finite measure). Consequently, by

_ o .n ,.0 2n 0 _
M4 = | Rn : 11 (Loo(qu)). 1°°(L°°(qu)) =1
and (3. 4), we obtain
n 2n 1— 6.0 n/p
R S L - 1 L (L =M M = 2 .
I N p,( p(Lq)) D ( p( q)) Il y >

(v) Let 2 < p, q < o (¢t = min(p', q' )). Then, we have

n 2
Il R 1 (Lp(Lq)) 1o (Lp(Lq)) I
_ t . .2 _ 1B

A

N
ja}
S
Rt

where the inequality on t-'Rn is obtained analogously to (i) and (ii)
with Lemma 3. 1. (Note here that Lq, has the Radon—-Nikodym property

and the measure space (X, M, p ) is finite; ef. [7], esp., p.98).
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(vi) The proof of the case 1 < p = 2 < q (t = min(p, a))
goes in the same way as (v ) by using the analogous results on t-'Rn
to (iii) and (iv).

Equality is attained in (3.2) with (f, 0, ..., 0) € lz(Lp(Lq))

(f + 0). This completes the proof.

3.3. COROLLARY. Let 1 < p, q < o and let t

min{p,q,p'.q }.

Then, for any s with t < s < oo,

t . 22" n , _ ,n/s' _
Il Rn : 1s (Lp(Lq)) d lt‘ (Lp(Lq))ll = 2 (n =1, 2, ...),
. 1 L =
and hence Lp(Lq) is of cotype t' and Ct‘ (s)(Lp( q)) 1 for all

t £ s < oo.

This is a direct consequence of the above theorem and Proposi-

tion 2. 3 (use duality).

3. 4. REMARKS. (i ) The constant t = min{p, q, P'.q } in Theorem
3.2 is optimal under the condition that ‘the type constant' is 1,
that is, if Tr(s)(Lp(Lq)) = 1 with some s, then r < t: Note here
that Lp(Lq) is of type m = min{p, q, 2} (ef. [12], p.348; [1]1, [13]);
and m is optimal as far as only ‘type' is under consideration, where
Lp and Lq are assumed to be of infinite dimension. Note also that
t=mifp s<q, andt < mifp > q.

(ii ) The constant t' in Theorem 3.2 is optimal for t in general;
that is, if T (E) = 1 with some s for a Banach space E pf type t,

t(s)
then s < t'.
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(iii ) The constants t' and t in Corollary 3.3 are optimal in the

analogous meanings to (i ) and (ii).

PROOF. (i) Assume Tr (Lp(Lq)) = 1 for some 1 < s < o0,

(s)

Then, noting that the 2-dimensional spaces 112) and lz are isometrically

imbedded into Lp(Lq). we have

(3.6) =(Ix + yI® +1x = y1*n"° = (=™ +0y0 DT

for all x and y in 112; and also in 1(2{. (Here the underlying measure
spaces X and Y are assumed to be non-trivial, which means the exist-
ence of two disjoint measurable sets of finite positive measure. )
Put x = (1, 0), vy = (0, 1) and also x = (1, 1), y = (1,-1) in
(3.6). Then we have r < min{p, gl and r < min{p',q }, orr = ¢t.
(ii ) Let E be a Banach space of type t and let Tt(s)(E) = 1 with
some s. Then, the inequality (3.6) with t instead of r holds for any
x and y in E. Put here x = y. Then, we have s = t'.

(iii ) is seen analogously to (i ) and (ii).

The same are true for Lp and Sobolev spaces WI}:(Q) (cf. [51],

[16]), where Q is an arbitrary domain in R®:

3.5. COROLLARY. Let 1 < p < o and let t = min{p, p'}. Let
E be one of L, lN(L ) and Wk(Q ). Then,
P P P p

(i) E is of type t and T (E) = 1 for any s with 1 = s = t',

t(s)

(ii) E is of cotype t' and Ct‘ (S)(E) = 1 for any s with t = s
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Here, t and t' are optimal in the senses stated in Remark 3. 4.

PROOF. We have (i) and (ii ) immediately by Theorem 3.2 (note
that Wl;(Q) is imbedded isometrically into lg(Lp) with a suitable
positive integer N). To see that t (resp. t') is optimal in (i)
(resp. (ii )) in the sense of Remark 3.4 (i ), one has only to observe
that 112) is isometrically imbedded into wi:(o): In fact, take an f in
W‘l;(Q) with support (in Q) small enough and || £ || D, k = 1. Let g be
a translate of f whose support is disjoint with that of f. Then, the
correspondence: (&, n) - &f + ng from li into W‘:(Q) is an isome-

try. The constants t' in (i ) resp. t in (ii ) are also optimal in

the sense of Remark 3. 4 (ii) by Remark 3. 4 (ii) and (iii).

3.6. REMARK. Theorem 3. 2 and Corollary 3.3 hold without the as-
sumption of finiteness of the measure space (X, M, u ). In fact, for
any o0 —finite measure y on M we can take another (finite) measure

I on M such that Lp(x. M, o1 ; Lq) is isometrically isomorphic to

~ . L oo _-n -1
Lp(x, M, 0 ; Lq) (for example, put fi (A): =3 2 T un (Xn) n (AN Xn),

n=1

o o)
where X _En=1xn’ 0 < ¢u (xn) < oo (Xn € M). Then, the corre-

spondence: f — 2::‘12n/pu (Xn)1/px f is an isometry from Lp(X, M,

Xn
JT Lq) onto Lp(X. M, ii; Lq). where xxn is the characteristic func-
tion of Xn. ) If g is an arbitrary positive measure on M, we have
only to note that the supports of any f1, fz, e fn in Lp(X, M,

Lq) are ¢ —-finite.
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Now, we improve Cobos and Edmunds' results ([6]) on Besov spaces

B> and Triebel-Sobolev spaces F> (s is a real number):

oI | b, q

3. 7. COROLLARY. Let 1 < p, q < o and let t = min{p,q,p',q }.

s

Let E be one of B> _and F Then;
P, qQ P, q
(i) E is of type t and Tt(s)(E) = 1 for any s with 1 = s = ¢t',
(ii) E is of cotype t' and Ct' (s)(E) = 1 for any s with t = s

Indeed, Bs and Fo are isometrically imbedded into 1 (L (Bn))
P, q q q p

s 3

and Lp(an; lq), respectively, where on R" the Lebesgue measure is

equipped (see [61). Therefore, owing to Remark 3.6 (especially for

Fs ), these assertions (i ) and (ii ) are direct consequences of

P, g
Theorem 3. 2 and Corollary 3. 3.

3. 8. REMARK. In Cobos and Edmunds [6], for the spaces E = B; q
and F°> it is shown that (i ) T ,, ,(E) = 1 under the condition
a P p(p')

1< p=<2andp < q = p ([6], Theorem 1); (ii) C (E) =1

p(p')
under the condition 2 < p < o and p = q = p ([6], Theorem 2).

We finally note that the first- and third-named authors [10]
have recently characterized those Banach spaces with type (or cotype)

constant 1 as those satisfying Clarkson—-Boas-type inequalities.
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