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§0. Introduction.

In this paper we shall consider a class of algebras of G-invariant smooth
sections of G-vector bundles over G-manifolds with bracket operations for
a compact Lie group G. The class contains the Lie algebras of G-invariant
smooth vector fields on G-manifolds.

Let W be a Riemannian manifold and G be a compact Lie subgroup of
isometries of W. For an integer n, we shall construct an algebra I'S(W) with
a bracket operation which has a universal mapping property. The purpose of
this paper is to investigate the geometric properties of the algebra I'S(W).

Let M be an m-dimensional G-submanifold of W and k be a G-invariant
smooth section of G,(W)|M, where G, (W) is the bundle of n-planes over
W. Then h defines a smooth G-bundle £, over M and a bracket structure
of the set of G-invariant smooth sections I'é(M, k) of £, and induces an
epimorphism (k) : T¢(W) — I'6(M, h). We shall determine the condition
that fi(h) is bracket preserving (see Theorem 2.2). Also, by using ji(h), we
shall describe the conditions for a G-vector bundle £, to be G-involutive and
to be integrable in the case that G is a finite group (see Theorem 2.3 and
Corollary 2.4).

Especially if hps : M — T'S(W) is a map associated to the tangent space
7(M) of M, then fi(hyps) is a bracket preserving epimorphism from I'S (W)
to the Lie algebra 2g(M) of G-invariant smooth vector fields on M. In the
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previous paper [1], we studied that the equivalence classes of the orbit spaces
M/G of smooth closed G-manifolds M are coincide with the isomorphism
classes of Lie algebras X(M/G) of smooth vector fields of the orbit space
M/G. If G is a finite group, then the Lie algebra X(M/G) is isomorphic to
the Lie algebra Xg(M) (see [2], §2). This implies that the smooth structure of
M /G is induced through the bracket preserving homomorphism j(has) from
I'$(W). In [3] we studied that those bracket preserving homomorphisms are
closely related to the Riemannian structure of W.

The author would like to thank the reflee for reading the manuscript in
detail and giving him valuable suggestions. |

§1. Construction of the algebra I'G(W).

Let W be an N-dimensional Riemannian manifold. Let G be a compact
Lie subgroup of isometries of W. For an integer n < N, let ¢,: G,(W) —
W denote the bundle of n-planes over W. Let p,: E,.(W) — G,(W) be
the canonical n-dimensional vector bundle. Let 3Z(W) denote the set of
all smooth maps f: U — Gn(W) such that g, o f = 1y for some open
neighborhood U of x. We use the notation (U, f) for a map f: U — G,(W)
in 3Z(W). Let §;(W) be the set of germs of §%(W) at x. Put

W)= U smmW), &Ww)=U Hw).
z€EW €W
We give the sheaf topology on §,(W) so that §,(W) is a sheaf on W (c.f.
[3], Chapter I, §1).
For (U, f) €3%(W), let T'(U, f) denote the set of smooth sections of the
induced bundle f*p,. Let &;(W) denote the set of sections I'(U, f) for
(U, f) €85(W). Let &,(W) be the set of germs of those I'(U, f) at x. Put

&.(W)= | ex(W), &.(W)= |J &W).

z€EW €W

We give the sheaf topology on &,(W) so that &,(W) is a sheaf on §,(W).
Let f, denote the germ of f at x. and we denote by {s} 4. the germ of s at =
if s € T(U, f). Let pp : 6,(W) — §.(W) be a map given by ¢,({s};.) = fs.
We define a G-action on §,(W) as follows. For (U, f) € 32(W), let
(9-f)y)=9-flg7'-y) for g€G,yeg-U.

Then g - f is an element of §5°(W). We have a G-action on §,(W) given by
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9-fz=(9"fg= for g € G, fz € F2(W).
Also we define a G-action on &,(W) by

(9-3)y)=g-s(¢g7'-y) for g€G,se(U,f),yeg-U.
Then a G-action on &,(W) is given by

9-{s}r. ={9-s}es. for g €G, {s}y, € S{(W). |
Note that the map p,: &,(W) — §.(W) is G-equivariant. Let I'S(W) be
the set of G-equivariant continuous sections of p,. Let C¥ (W) denote the
set of G-invariant smooth functions on W. Then I'§(W) is a CF(W)-module
in the natural way. '

Now we shall define bracket operations on I'(U, f) and T'S(W). Let
(U, f) € 35(W). Note that a section s € I'(U, f) is regarded as a smooth
vector field on U. Define a bracket operation < , > on I'(U, f) by

< s, t > (y) = psw)([s t1(w)) for s,t eI’ (U,f),yeU.

Here [s, t] is the bracket of vector fields s and ¢ on U, and py(,) denote the
orthogonal projection from the tangent space 7,(W) of W at y to the n-plane
f(y). Using the above bracket operation, we define a bracket operation < ,
> on I'S(W) by
<s,t>(fs)={<§1>};, for s,t € TS(W), f. € §(W),

where 3,1 are elements of I'(U, f) for some open 1 neighborhood U of = such
that s(f:) = {8},., t(fs) = {t},.. Note that < s,t > =< 3, > .

We say L to be an R-algebra if L is a vector space over the field R

of real numbers with a bilinear operation 8; : L x L — L. By the bracket
operations we can regard I'(U, f) and I'S(W) as R-algebras.

Definition Let L be an R-algebra. We say that a pair (L, uz) has a
property (P) if uy, satisfies the following conditions:

(a) For any (U, f) € §n(W), there exists a homomorphism pur(f): L —
L'(U, f) such that

pL(BL(v1,v2)) =< pr(v1), pr(v2) >  for v, v; € L.

(b) For any (U, f) € (W) and an open set V with V C U, pr(f|V) =
ruyv o pr(f), where ryy: T(U, f) — T'(V, f|V) is the restriction map.

(©) g-pL(f)(v) =pLl(g- f)(v) for g€ G, (U, f) €Fa(W), v € L.

For any (U, f) € F.(W), define an R-algebra homomorphism ji(f) :
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I$(W) — T'(U, f) as follows. For any s € TS(W) and z € U, there ex-
ists § € I'(U, f) such that s(f;) = {3}.. Let 2(f)(s)(z) = 3(z). It is easy to
see that ji(f) is well defined.

Theorem 1.1 (1) The R-algebra (TS(W), 1) has the property (P).
(2) If (L, pL) is a pair which has the property (P), then there ezists a
unique R-algebra homomorphism ¢: L — I'S(W) such that

pflop=upL(f)  for any (U,f) € 3a(W).

Proof. (1) Since s(fz) = {A(f)(s)}y. for s € TZ(W), (U, f) € 3.(W),
z € U, we have that fi(f) is bracket-preserving, and /i satisfies the condition

(a). It is clear that j satisfies the condition (b). If g € G, (U, f) € §.(W),
z € U, then

3((9- fla=) = g-3(fz) = {9 - 2(F)(8)}e-1)g-
Thus
(9-A(f)())Ng - 2) =g B(f)(s)(z) = (g - £)(s)(g - ).
This implies that j has the property (P).
(2) Let (L, pr) be a pair which has the property (P). Put

p(v)(fz) = {p(f)(¥)}s.  for v €L, f. €F5W).
Then for g € G,
9 - (p(v)(fz)) = g - {p(f)(v)},.

= {eL(9- N)(©)}g-n,. = P(v)(9 * fz).

Thus ¢: L — I'S(W) is a well defined homomorphism. If vy,v; € L, f, €
(W), then

so(ﬂL(vl,vz))(fz) = {< sL(£) (@), pL(f)(v:) >}y,

=< p(v1), p(v2) > (f2).
Therefore ¢ is an R-algebra homomorphism.
If »: L — I'S(W) is an R-algebra homomorphism such that

af)oy=pr(f)  forany (U,f) € 3.(W),
then

(NP} = (v)(fz)  for ve L, f. €§(W).
Thus $(v)(fz) = ¢(v)(fz), and this completes the proof of Theorem 1.1.

Corollary 1.2 Any pair (L, p) which has the property (P) is isomorphic
to (TJ(W), &)
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§2. Properties of bracket operations

Let M be an m-dimensional connected smooth closed G-submanifold of
W. Let TS(M) denote the set of smooth G-maps h: M — G,(W) such
that g, o b = 1p7. For h € I'S(M) let &, denote the G-bundle induced from
Pn : Eo(W) — G,(W) by h. Let I'(M, h) denote the set of smooth sections of
the bundle ¢, and let I'?(M, k) denote the subset of I'(M, k) whose elements

are G-invariant.
Take a G-invariant e-tubular neighborhood U, of M in W. Let 7: U,
— M be the natural projection and let

P, yw(u)s Tu(W) - Tvr(u)(w) (u €U, )

denote the parallel translation along the geodesic joining u and 7r(u) Define

a smooth G-map A*: U, — G,(W) by
h(u) = Pyl (h(m(w)))  for ueU..

- Then (U, k') € §%(W) for u € U. For s € I'(M, k), put

sh(u) = Pu",lr(u)(s(w(u))) for ue U,.

Then s* € T'(U., AY).
Now define a bracket operation < , > on I'?(M, k) by

<s,t>(z)=<sth>(z) for s,t€®(M,h), € M.
Let p(h): TS(W) — I'’(M, k) be a map defined by
a(h)(s)(z) = a(hM)(s)(z)  for s €TF(W),z € M.
Proposition 2.1 ji(h) is epimorphic.

Proof. Let £ be a real valued G-invariant smooth function on W such
that

f(u) =1 if [lu-x(u)|| <e/3,

=0 if lu- w(w)]| > 2¢/3.
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For any s € T'9(M, k), (U, f) € 34(W) (y € U.) put
$1(2) = py»y(€(2)s!(2)) ifz€U.NU.
Then s/ € T(U. NU, f). Define

i(fy) = {s'}, foryel.
= 0 for y ¢ U,
Then 3 is a well deﬁned section of p,. Since

Porw)(V) =g -Psp)(g™t-v) for g€ G, v €p;i(g- f(¥)),

we see that 3 € I'S(W) and i(h)(8) = s. This completes the proof of
Proposition 2.1.

Let G, (z € M) denote the isotropy subgroup of G at z, and put
h(z)®* ={veh(z);g-v=v for g€ G,.}.

Theorem 2.2 The homomorphism ji(h) is bracket preserving if and only if
h(z)C= is contained in 7,(M) for z € M.

Proof. Assume that h(z)% is contained in 7,(M) for z € M. If 3, t € |
I'S(W) and = € M, there exist 3, € I'(U, h*) such that

s(hl) = {3}y, t(RY) = {&}.-

<3,t>(h")={<§,f>}hg for z € M.
Since h(z)C+ is contained in 7,(M) for z € M,

a(h)(s)(z), a(h)(t)(z) € 7=(M).

Then

Then, for z € M,

A(h)(< s, t >)(z)

a(AY)(< s, t >)(z)
<3,i> (2)

Pu)([3, ()
Pr)([2(R)(s), A(R)(t)](2))
< a(h)(s), a(R)(t)> (z).

Thus j(h) is bracket preserving.
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Conversely, assume that k(q)C is not contained in 7,(M) for some ¢ €
M. Then there exists s € I'G(M, k) such that s(q) is not a vector in 7,(M)
for some ¢ € M. By the differentiable slice theorem (c.f. [5], Chapter I, §1.3),
we have a G-invariant neighborhood of ¢ in W which is G-equivariantly
diffeomorphic to a differentiable G-bundle G xg, (S; X v4(M)) over G/G,.
Here S, is a linear slice at ¢ in M and v,(M) is the normal space of M in W
at q. Then we have a local coordinate system

{1y 00y Tmy Y10y ooy YN-m} (dimW = N)
of W on an open neighborhood V; of ¢ in U,/3 such that

1) zi(g) =0(1<i<m), y;(¢) =0(1<j<N—m)

(2) Theset Vo = {p €V ; y1(q) = ... =yn-m(q) =0 } together with the
restriction of {z,...,z;m} to Vo form a local chart on M at x.

(3) z;(v) = zi(wr(v)) for veW,i=1,..,m.
(4) yi(g-v) =y;(v) (1 <j <L) forgeG,ifv,g-veEW,

where £ is the dimension of the fixed point set v,(M)% of the normal space
vq(M) under the isotropy subgroup G, of G at q.

Then the section s is described on V; as follows:

Sa )2
s = ai(Z1y ooy Tmy Y1y oy YN=m ) 53—
et b y*+mH ? ? axi
N-m o
+ E bj(:rl,...,a:m,yl,...,yN_m)T.
i=1 Y;

Since h(g)%¢ is not contained in 7,(M), there exists a number k (1 < k < £)
with b;(0) # 0. As in the proof of Proposition 2.1, we have § € I'S(W) such
that

i(fy) ={s'}s, for yeW, f, € 5o(W).

Let V; be a G,-invariant open neighborhood of ¢ in W such that the
closure V, of V; is contained in V;. There exists §; € CF(W) such that
Jr = yr on V. Put ' '

i(f,) =(@)3(f,) for yeW, f, € F(W).
Then { € T'G(W), and we see that, for u € UesNVy,
A(RY)(3)(u) = $'(u),
A(RY)(E) () = Ja(u)s!(u).
Thus
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A(R)(< 3, 1>)(g) =< s, g - s > (g) = s(4x)(q)s"(q)-
Since the (m + k)-th component of s*(§x)(q)s*(q) is bx(0)?, we have

a(h)(< 3, 1>)(g) # 0.
Since i(h)(£) = 0 on a neighborhood of ¢ in M,

< a(h)(3), a(R)(E) > (g) =0.
This completes the proof of Theorem 2.2.

Let Xg(M) denote the Lie algebra of G-invariant smooth vector fields on
M. Let hp: M — G,,(W) denote a G-map given by

hm(z) =1,(M)  for =z € M.

Note that Xg(M) = I'S(M, hy). For b € T$(M), let §(k) : TS(W) —
Xg(M) be a homomorphism defined by .

1(h)(3)(2) = Phr(x)(B(R)(s)(z))  for z € M, s € TS(W).

We say that h is G-involutive if h(z)® is contained in 7,(M) for any
z € M and
[s, ] € TS(M,h)  for any s,t € T(M,h).

Theorem 2.3 (1) (k) = 0 if and only if h(x)®= is contained in the normal
space v(M) at z in W for any z € M.

(2) Assume fj(h) # 0. Then #j(h) is bracket preserving if and only if h
s G-involutive. :

Proof. (1) Assume #j(h) = 0. Let z € M. For any v € h(z)®=, there
exists s € I'(M, h) such that s(z) = v. By Proposition 2.1, there exists
3 € TJ(W) such that i(h)(3) = s. Then #(h)(3)(z) = Php(z)(v) = 0, and
v € v(M). Conversely assume that h(z)® is contained in v,(M) for any
z € M. Since g(h)(s)(x) € h(z)% for s € TS(W), = € M, we have #(h) = 0.

(2) I a(h) is bracket preserving, then it follows from Theorem 2.2 that
7i(h) is bracket preserving if and only if & is G-involutive. Assume that (k) #
0 and (k) is not bracket preserving. Since M is connected, from Theorem
2.2 there exist a point ¢ € M and a vector v € h(g)% such that v ¢ 7,(M)
and v ¢ v,(M). We can choose s € T'S(M, k) such that s(q) = v.

Let {Z1,...,Zm,¥1.,...,yN—m } be a local coordinate system as in the proof
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of Theorem 2.2. Then s is described on a neighborhood of ¢ as follows:

e d
s = ;ai(wl’""zm’yl""’yN_m)ax,-
N-m o
+ Z bj(xl,""xm’yla"'7yN—m)T-
=1 Y;

Since s(q) ¢ 7,(M) and s(q) ¢ v4(M), there exist a number ¢ (1 < ¢ < m)
with a;(0) # 0 and a number k (1 < k < £) with bi(0) # 0. With the same
argument as in the proof of Theorem 2.2, we define 3 and #. Then we have

a(R)(< 8, £ >)(q) = s*(Fx)(9)s*(9)-
Note that the i-th component of s(§i)(q)s!(q) is bx(0)a;(0). Thus

H(h)(< 3, £ >)(q) #0.

Since f(h)(t) = 0 on a neighborhood of ¢ in M,

<ii(h)(3), 4(R)(F) > (g) = 0.
This completes the proof of Theorem 2.3.
h is said to be integrable if the induced bundle £ is integrable.

Corollary 2.4 If G is a finite group and 7j(h) # 0, then 7j(h) is bracket-
preserving if and only if h is integrable.

Proof. Assume that #(h) is bracket preserving. By Theorem 2.3, we see
that
<s, t>=[s,t] for s,t € T(M,h).
Put M, = {:c € M ; G, = {1}}. Let s,t € I'(M, h). For z € Mo, there exist
s1, t1 € TC(M,h) such that s; = s a.nd ty =tona nelghborhood V of z in
M. Then forz € V

<s,t>(x) =<8, > (z) = [s, _tl](:c) = [s, t](z).

Since M, is open dense in M, we see that < s, t >= [s, t]. Then, by
Frobenius’theorem (c.f. [5], Theorem 2.4.5), k is integrable. If k is integrable,
then 7j(h) is bracket preserving by Theorem 2.3 (2), and Corollary 2.4 follows.
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