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\S 0. Introduction.

In this paper we shall consider a class of algebras of G-invariant smooth
sections of G-vector bundles over G-manifolds with bracket operations for
a compact Lie group $G$ . The class contains the Lie algebras of G-invariant
smooth vector fields on G-manifolds.

Let $W$ be a Riemannian manifold and $G$ be a compact Lie subgroup of
isometries of $W$ . For an integer $n$ , we shal construct an algebra $\Gamma_{n}^{G}(W)$ with
a bracket operation which has a universal mapping property. The purpose of
this paper is to investigate the $g\infty metric$ properties of the algebra $\Gamma_{n}^{G}(W)$ .

Let $M$ be an m-dimensional G-submanifold of $W$ and $h$ be a G-invariant
smooth section of $G_{n}(W)|M$ , where $G_{n}(W)$ is the bundle of n-planes over
$W$ . Then $h$ defines a smooth G-bundle $\xi_{h}$ over $M$ and a bracket structure
of the set of G-invariant smooth sections $\Gamma^{G}(M, h)$ of $\xi_{h}$ and induces an
epimorphism $\hat{\mu}(h)$ : $\Gamma_{n}^{G}(W)\rightarrow\Gamma^{G}(M, h)$ . We shall determine the condition
that $\hat{\mu}(h)$ is bracket preserving (see Theorem 2.2). Also, by using $\hat{\mu}(h)$ , we
shal describe the conditions for a G-vector bundle $\xi_{h}$ to be G-involutive and
to be integrable in the case that $G$ is a finite group (see $Th\infty rem2.3$ and
Corolary 2.4).

Especially if $h_{M}$ : $M\rightarrow\Gamma_{m}^{G}(W)$ is a map associated to the tangent space
$\tau(M)$ of $M$ , then $\hat{\mu}(h_{M})$ is a bracket preserving epimorphism from $\Gamma_{m}^{G}(W)$

to the Lie algebra $X_{G}(M)$ of G-invariant smooth vector fields on $M$ . In the
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previous paper [1], we studied that the equivalence classes of the orbit spaces
$M/G$ of smooth closed G-manifolds $M$ are coincide with the isomorphism
classes of Lie algebras $X(M/G)$ of smooth vector fields of the orbit space
$M/G$ . If $G$ is a finite group, then the Lie algebra $X(M/G)$ is isomorphic to
the Lie algebra $X_{G}(M)$ (see [2], \S 2). This implies that the smooth structure of
$M/G$ is induced through the bracket preserving homomorphism $\hat{\mu}(h_{M})$ from
$\Gamma_{\mathfrak{n}}^{G}(W)$ . In [3] we studied that those bracket preserving homomorphisms are
closely related to the Riemannian structure of $W$ .

The author would like to thank the reflee for reading the manuscript in
detail and giving him valuable suggestions.

\S 1. Construction of the algebra $\Gamma_{n}^{G}(W)$ .
Let $W$ be an N-dimensional Riemannian manifold. Let $G$ be a compact

Lie subgroup of isometries of $W$ . For an integer $n\leq N$ , let $ q_{\mathfrak{n}}:G_{n}(W)\rightarrow$

$W$ denote the bundle of n-planes over $W$ . Let $p_{\mathfrak{n}}:E_{\mathfrak{n}}(W)\rightarrow G_{n}(W)$ be
the canonical n-dimensional vector bundle. Let $\Psi_{\mathfrak{n}}(W)$ denote the set of
al smooth maps $f:U\rightarrow G_{\mathfrak{n}}(W)$ such that $q_{n}of=1_{U}$ for some open
neighborhood $U$ of $x$ . We use the notation $(U,f)$ for a map $f:U\rightarrow G_{n}(W)$

in $\Psi_{\mathfrak{n}}(W)$ . Let $f\hat{f}_{n}^{x}(W)$ be the set of gems of $\Psi_{\mathfrak{n}}(W)$ at $x$ . Put

$S_{\mathfrak{n}}(W)=\bigcup_{x\in W}r_{\mathfrak{n}}(W)$
,

$\hat{S}_{\mathfrak{n}}(W)=\bigcup_{x\epsilon W}\hat{s}_{n}^{l}(W)$ .

We give the sheaf topology on $\hat{S}_{\mathfrak{n}}(W)$ so that $\hat{S}_{\mathfrak{n}}(W)$ is a sheaf on $W$ (c.f.
[3], Chapter $I$, \S 1).

For $(U, f)\in r_{n}(W)$ , let $\Gamma(U,f)$ denote the set of smooth sections of the
induced bundle $f^{*}p_{n}$ . Let $6_{n}^{l}(W)$ denote the set of sections $\Gamma(U,f)$ for
$(U,f)\in\Psi_{n}(W)$ . Let 6 $x\mathfrak{n}(W)$ be the set of germs of those $\Gamma(U,f)$ at $x$ . Put

$6_{\mathfrak{n}}(W)=\bigcup_{x\in W}6_{\mathfrak{n}}^{x}(W)$
,

$\hat{6}_{\mathfrak{n}}(W)=\bigcup_{x\epsilon W}\hat{6}_{\mathfrak{n}}^{l}(W)$ .

We give the sheaf topology on $\hat{6}_{\mathfrak{n}}(W)$ so that $\hat{6}_{n}(W)$ is a sheaf on $f\hat{f}_{n}(W)$ .
Let $f_{x}$ denote the germ of $f$ at $x$ . and we denote by $\{s\}_{f}$. the germ of $s$ at $x$

if $s\in\Gamma(U,f)$ . Let $\rho_{n}$ : $\hat{6}_{n}(W)\rightarrow\hat{S}_{\mathfrak{n}}(W)$ be a map given by $q_{\mathfrak{n}}(\{s\}_{f}.)=f_{l}$ .
We define a G-action on $ff_{n}(W)$ as follows. For $(U,f)\in r_{\mathfrak{n}}(W)$ , let

$(g\cdot f)(y)=g\cdot f(g^{-1}\cdot y)$ for $g\in G,$ $y\in g\cdot U$ .
Then $g\cdot f$ is an element of $S_{\mathfrak{n}}^{g\cdot x}(W)$ . We have a G-action on $\delta_{n}(W)$ given by
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$g\cdot f_{x}=(g\cdot f)_{g\cdot x}$ for $g\in G,$ $f_{x}\in \mathfrak{F}_{n}^{x}(W)$ .
Also we define a G-action on $6_{n}(W)$ by

$(g\cdot s)(y)=g\cdot s(g^{-1}\cdot y)$ for $g\in G,$ $s\in\Gamma(U, f),$ $y\in g\cdot U$.
Then a G-action on $\hat{6}_{n}(W)$ is given by

$g\cdot\{s\}_{f}$. $=\{g\cdot s\}_{g\cdot f}$. for $g\in G,$ $\{s\}_{f}$. $\in 6_{n}^{x}(W)$ .
Note that the map $\rho_{n}:6_{n}(W)\rightarrow S_{n}(W)$ is G-equivariant. Let $\Gamma_{n}^{G}(W)$ be
the set of G-equivariant continuous sections of $\rho_{n}$ . Let $C_{G}^{\infty}(W)$ denote the
set of G-invariant smooth functions on W. Then $\Gamma_{n}^{G}(W)$ is a $C_{G}^{\infty}(W)$-module
in the natural way.

Now we shall define bracket operations on $\Gamma(U,f)$ and $\Gamma_{n}^{G}(W)$ . Let
$(U,f)\in\Psi_{n}(W)$ . Note that a section $s\in\Gamma(U,f)$ is regarded as a smooth
vector field on U. Define a bracket operation $<,$ $>on\Gamma(U,f)$ by

$<s,$ $t>(y)=p_{f(y)}([s, t](y))$ for $s,t\in\Gamma(U,f),$ $y\in U$ .
Here $[s, t]$ is the bracket of vector fields $s$ and $t$ on $U$ , and $p_{f(y)}$ denote the
orthogonal projection from the tangent space $\tau_{y}(W)$ of $W$ at $y$ to the n-plane
$f(y)$ . Using the above bracket operation, we define a bracket operation $<$ ,
$>on\Gamma_{\mathfrak{n}}^{G}(W)$ by

$<s,$ $t>(f_{x})=t<\tilde{s},t\sim>\}_{f}$. for $s,t\in\Gamma_{\mathfrak{n}}^{G}(W),$ $f_{l}\in\hat{l}_{n}(W)$ ,
where $\tilde{s},t\sim$ are elements of $\Gamma(U,f)$ for some $op\underline{en}$neighborhood $U$ of $x$ such
that $s(f_{x})=\{\tilde{s}\}_{f_{l}},$ $ t(f_{x})=\{t\}_{f_{l}}\sim$ . Note that $<s,t>=<\tilde{s},t\sim>$ .

We say $L$ to be an R-algebra if $L$ is a vector space over the field $R$

of real numbers with a bilinear operation $\beta_{L}$ : $L\times L\rightarrow L$ . By the bracket
operations we can regard $\Gamma(U, f)$ and $\Gamma_{n}^{G}(W)$ as R-algebras.

Definition Let $L$ be an R-algebra. We say that a pair $(L, \mu_{L})$ has a
property (P) if $\mu_{L}$ satisfies the following conditions:

(a) For any $(U,f)\in S_{n}(W)$ , there exists a homomorphism $\mu_{L}(f):L\rightarrow$

$\Gamma(U,f)$ such that
$\mu_{L}(\beta_{L}(v_{1},v_{2}))=<\mu_{L}(v_{1}),$ $\mu_{L}(v_{2})>$ for $v_{1},$ $v_{2}\in L$ .

(b) For any $(U,f)\in ff_{n}(W)$ and an open set $V$ with $V\subset U,$ $\mu_{L}(f|V)=$

$r_{U,V}o\mu_{L}(f)$ , where $r_{U,V}:\Gamma(U, f)\rightarrow\Gamma(V,f|V)$ is the restriction map.
(c) $g\cdot\mu_{L}(f)(v)=\mu_{L}(g\cdot f)(v)$ for $g\in G,$ $(U,f)\in ff_{\mathfrak{n}}(W),$ $v\in L$ .
For any $(U,f)\in ff_{n}(W)$ , define an R-algebra homomorphism $\hat{\mu}(f)$ :
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$\Gamma_{n}^{G}(W)\rightarrow\Gamma(U, f)$ as folows. For any $s\in\Gamma_{\mathfrak{n}}^{G}(W)$ and $x\in U$ , there ex-
ists $\tilde{s}\in\Gamma(U, f)$ such that $s(f_{x})=\{\tilde{s}\}_{f}.$ . Let $\hat{\mu}(f)(s)(x)=\tilde{s}(x)$ . It is easy to
see that $\hat{\mu}(f)$ is well defined.

Theorem 1.1 (1) The R-algebra $(\Gamma_{\mathfrak{n}}^{G}(W),\hat{\mu})$ has the property (P).
(2) If $(L, \mu_{L})$ is a pair which has the property (P), then there exists a

unique R-algebra homomorphism $\varphi:L\rightarrow\Gamma_{\mathfrak{n}}^{G}(W)$ such that
$\hat{\mu}(f)0\varphi=\mu_{L}(f)$ for any $(U,f)\in s_{n}(W)$ .

Proof (1) Since $s(f_{l})=\{\hat{\mu}(f)(s)\}_{f}$. for $s\in\Gamma_{n}^{G}(W),$ $(U,f)\in S_{\mathfrak{n}}(W)$ ,
$x\in U$ , we have that $\hat{\mu}(f)$ is bracket-preserving, and $\hat{\mu}$ satisfies the condition
(a). It is clear that $\hat{\mu}$ satisfies the condition (b). If $g\in G,$ $(U,f)\in \mathfrak{F}_{\mathfrak{n}}(W)$ ,
$x\in U$ , then

$s((g\cdot f)_{g\cdot x})=g\cdot s(f_{x})=\{g\cdot\hat{\mu}(f)(s)\}_{(g\cdot f)_{g}}..$ .
Thus

$(g\cdot\hat{\mu}(f)(s))(g\cdot x)=g\cdot\hat{\mu}(f)(s)(x)=\hat{\mu}(g\cdot f)(s)(g\cdot x)$ .
This implies that $\hat{\mu}$ has the property (P).

(2) Let $(L, \mu_{L})$ be a pair which has the property (P). Put
$\varphi(v)(f_{x})=\{\mu_{L}(f)(v)\}_{f}$. for $v\in L,$ $f_{l}\in\Psi_{n}(W)$ .

Then for $g\in G$,
$g\cdot(\varphi(v)(f_{x}))=g\cdot\{\mu_{L}(f)(v)\}_{f}$.

$=\{\mu_{L}(g\cdot f)(v)\}_{(g\cdot f)_{g}}..=\varphi(v)(g\cdot f_{x})$ .
Thus $\varphi:L\rightarrow\Gamma_{\mathfrak{n}}^{G}(W)$ is a well defined homomorphism. If $v_{1},v_{2}\in L,$ $ f_{x}\in$

$\hat{S}_{\mathfrak{n}}^{x}(W)$ , then
$\varphi(\beta_{L}(v_{1},v_{2}))(f_{x})=\{<\mu_{L}(f)(v_{1}), \mu_{L}(f)(v_{2})>\}_{f}$.

$=<\varphi(v_{1}),$ $\varphi(v_{2})>(f_{x})$ .
Therefore $\varphi$ is an R-algebra homomorphism.

If $\psi:L\rightarrow\Gamma_{\mathfrak{n}}^{G}(W)$ is an R-algebra homomorphism such that
$\hat{\mu}(f)0\psi=\mu_{L}(f)$ for any $(U,f)\in S_{n}(W)$ ,

then
$\{\hat{\mu}(f)(\psi(v))\}_{f}$. $=\varphi(v)(f_{x})$ for $v\in L,$ $f_{x}\in\hat{S}_{n}^{x}(W)$ .

Thus $\psi(v)(f_{x})=\varphi(v)(f_{x})$ , and this completes the proof of Theorem 1.1.

Corollary 1.2 Any pair $(L, \mu_{L})$ which has the property (P) is isomorphic
to $(\Gamma_{n}^{G}(W),\hat{\mu})$ .
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\S 2. Properties of bracket operations

Let $M$ be an m-dimensional connected smooth closed G-submanifold of
$W$ . Let $\Gamma_{n}^{G}(M)$ denote the set of smooth G-maps $h:M\rightarrow G_{n}(W)$ such
that $q_{n}oh=1_{M}$ . For $h\in\Gamma_{n}^{G}(M)$ let $\xi_{h}$ denote the G-bundle induced from
$p_{n}$ : $E_{\mathfrak{n}}(W)\rightarrow G_{\mathfrak{n}}(W)$ by $h$ . Let $\Gamma(M, h)$ denote the set of smooth sections of
the bundle $\xi_{h}$ , and let $\Gamma^{G}(M, h)$ denote the subset of $\Gamma(M, h)$ whose elements
are G-invariant.

Take a G-invariant $\epsilon$-tubular neighborhood $U_{e}$ of $M$ in $W$ . Let $\pi:U_{e}$

$\rightarrow M$ be the natural projection and let
$P_{u,\pi(u)\ddagger}\tau_{u}(W)\rightarrow\tau_{\pi(u)}(W)$ $(u\in U_{e})$

denote the parallel translation along the geodesic joining $u$ and $\pi(u)$ . Define
a smooth G-map $h\#:U_{e}\rightarrow G_{n}(W)$ by

$h\#(u)=P_{u,\pi(u)}^{-1}(h(\pi(u)))$ for $u\in U_{e}$ .
Then $(U_{e}, h\#)\in s_{n}^{u}(W)$ for $u\in U$ . For $s\in\Gamma(M, h)$ , put

$s\#(u)=P_{u,\pi(u)}^{-1}(s(\pi(u)))$ for $u\in U_{e}$ .
Then $s\#\in\Gamma(U_{e}, h\#)$ .

Now define a bracket operation $<,$ $>on\Gamma^{G}(M, h)$ by
$<s,$ $t>(x)=<s\#,$ $t\#>(x)$ for $s,$ $t\in\Gamma^{G}(M, h),$ $x\in M$ .

Let $\hat{\mu}(h):\Gamma_{n}^{G}(W)\rightarrow\Gamma^{G}(M, h)$ be a map defined by
$\hat{\mu}(h)(s)(x)=\hat{\mu}(h\#)(s)(x)$ for $s\in\Gamma_{n}^{G}(W),$ $x\in M$ .

Proposition 2.1 $\hat{\mu}(h)$ is epimorp $hic$ .

Proof Let $\xi$ be a real valued G-invariant smooth function on $W$ such
that

$\xi(u)=1$ if $||u-\pi(u)||\leq\epsilon/3$ ,

$=0$ if $||u-\pi(u)||\geq 2\epsilon/3$ .
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For any $s\in\Gamma^{G}(M, h),$ $(U,f)\in S_{\mathfrak{n}}^{y}(W)(y\in U_{e})$ put

$s^{f}(z)=p_{f(z)}(\xi(z)s^{\#}(z))$ if $z\in U_{e}\cap U$.
Then $s^{f}\in\Gamma(U_{\epsilon}\cap U,f)$ . Define

$\hat{s}(f_{y})$ $=$ $\{s^{f}\}_{h}$ for $y\in U_{e}$

$=0$ for $y\not\in U_{e}$

Then $\hat{s}$ is a wel defined section of $\rho_{\mathfrak{n}}$ . Since
$p_{g\cdot f(y)}(v)=g\cdot p_{f(y)}(g^{-1}\cdot v)$ for $g\in G,$ $v\in p_{n}^{-1}(g\cdot f(y))$ ,

we see that $\hat{s}\in\Gamma_{\mathfrak{n}}^{G}(W)$ and $\hat{\mu}(h)(\hat{s})=s$ . This completes the proof of
Proposition 2.1.

Let $G_{x}(x\in M)$ denote the isotropy subgroup of $G$ at $x$ , and put
$h(x)^{G_{s}}=$ { $v\in h(x)$ ; $g\cdot v=v$ for $g\in G_{x}$ }.

Theorem 2.2 The homomorphism $\hat{\mu}(h)$ is bracket preserving if and only if
$h(x)^{G_{s}}$ is contained in $\tau_{x}(M)$ for $x\in M$.

Prvof Assume that $h(x)^{G}$. is contained in $\tau_{x}(M)$ for $ x\in$ M. If $s,$ $ t\in$

$\Gamma_{n}^{G}(W)$ and $x\in M$ , there exist $\tilde{s},t\sim\in\Gamma(U, h\#)$ such that
$s(h_{x}\#)=\{\tilde{s}\}_{h!}$ , $ t(h_{x}\#)=\{t\}_{h!}\sim$ .

Then
$<s,$ $t>(h\#)=t<\tilde{s},t\sim>\}_{h!}$ for $x\in M$ .

Since $h(x)^{G_{x}}$ is contained in $\tau_{x}(M)$ for $x\in M$ ,

$\hat{\mu}(h)(s)(x),\hat{\mu}(h)(t)(x)\in\tau_{l}(M)$ .
Then, for $x\in M$ ,

$\hat{\mu}(h)(<s, t>)(x)$ $=\hat{\mu}(h^{\#})(<s, t>)(x)$

$=$ $<\tilde{s},t>(x)\sim$

$=p_{h(x)}([\tilde{s}, t](x))$

$=p_{h(x)}([\hat{\mu}(h)(s),\hat{\mu}(h)(t)](x))$

$=$ $<\hat{\mu}(h)(s),\hat{\mu}(h)(t)>(x)$ .
Thus $\hat{\mu}(h)$ is bracket preserving.
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Conversely, assume that $h(q)^{G_{q}}$ is not contained in $\tau_{q}(M)$ for some $ q\in$

M. Then there exists $s\in\Gamma^{G}(M, h)$ such that $s(q)$ is not a vector in $\tau_{q}(M)$

for some $q\in M$ . By the differentiable slice theorem (c.f. [5], Chapter I, \S 1.3),
we have a G-invariant neighborhood of $q$ in $W$ which is G-equivariantly
diffeomorphic to a differentiable G-bundle $G\times c_{q}(S_{q}\times\nu_{q}(M))$ over $G/G_{q}$ .
Here $S_{q}$ is a linear slice at $q$ in $M$ and $\nu_{q}(M)$ is the normal space of $M$ in $W$

at $q$. Then we have a local coordinate system
$\{x_{1}, \ldots,x_{m},y_{1}., \ldots,y_{N-m}\}$ $(\dim W=N)$

of $W$ on an open neighborhood $V_{1}$ of $q$ in $U_{e/3}$ such that
(1) $x_{i}(q)=0(1\leq i\leq m),$ $y_{j}(q)=0(1\leq j\leq N-m)$ .
(2) The set $V_{0}=\{p\in V ; y_{1}(q)=\ldots=y_{N-m}(q)=0\}$ together with the

restriction of $\{x_{1}, \ldots, x_{m}\}$ to $V_{0}$ form a local chart on $M$ at $x$ .
(3) $x_{i}(v)=x_{i}(\pi(v))$ for $v\in V_{1},$ $i=1,$ $\ldots,m$ .
(4) $y_{j}(g\cdot v)=y_{j}(v)(1\leq i\leq\ell)$ for $g\in G$ , if $v,$ $g\cdot v\in V_{1}$ ,

where $\ell$ is the dimension of the fixed point set $\nu_{q}(M)^{G_{q}}$ of the normal space
$\nu_{q}(M)$ under the isotropy subgroup $G_{q}$ of $G$ at $q$ .
Then the section $s$ is described on $V_{1}$ as follows:

$s$ $=\sum_{i=1}^{m}a_{i}(x_{1}, \ldots,x_{m},y_{1}, \ldots,y_{N-m})\frac{\partial}{\partial x_{i}}$

$+\sum_{j=1}^{N-m}b_{j}(x_{1}, \ldots,x_{m},y_{1}, \ldots,y_{N-m})\frac{\partial}{\partial y_{j}}$ .

Since $h(q)^{G_{q}}$ is not contained in $\tau_{q}(M)$ , there exists a number $k(1\leq k\leq\ell)$

with $b_{k}(0)\neq 0$ . As in the proof of Proposition 2.1, we have $\hat{s}\in\Gamma_{n}^{G}(W)$ such
that

$\hat{s}(f_{y})=\{s^{f}\}_{h}$ for $y\in V_{1},$ $f_{y}\in f_{n}^{y}(W)$ .
Let $V_{2}$ be a $G_{q}$-invariant open neighborhood of $q$ in $W$ such that the

closure $\overline{V}_{2}$ of $V_{2}$ is contained in $V_{1}$ . There exists $\hat{y}_{k}\in C_{G}^{\infty}(W)$ such that
$\hat{y}_{k}=y_{k}$ on $V_{2}$ . Put

$\hat{t}(f_{y})=\hat{y}_{k}(y)\hat{s}(f_{y})$ for $y\in W,$ $f_{y}\in\#_{n}^{\wedge}(W)$ .
Then $i\in\Gamma_{n}^{G}(W)$ , and we see that, for $u\in U_{e/3}\cap V_{2}$ ,

$\hat{\mu}(h\#)(\hat{s})(u)=s\#(u)$ ,
$\hat{\mu}(h\#)(\hat{t})(u)=\hat{y}_{k}(u)s\#(u)$ .

Thus
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$\hat{\mu}(h)(<\hat{s}, i>)(q)=<s\#,\hat{y}_{k}\cdot s\#>(q)=s\#(\hat{y}_{k})(q)s\#(q)$ .
Since the $(m+k)$-th component of $s\#(\hat{y}_{k})(q)s\#(q)$ is $b_{k}(0)^{2}$ , we have

$\hat{\mu}(h)(<\hat{s}, i>)(q)\neq 0$ .
Since $\hat{\mu}(h)(\hat{t})=0$ on a neighborhood of $q$ in $M$ ,

$<\hat{\mu}(h)(\hat{s}),\hat{\mu}(h)(t)>(q)=0$ .
This completes the proof of $Th\infty rem2.2$ .

Let $X_{G}(M)$ denote the Lie algebra of G-invariant smooth vector fields on
M. Let $h_{M}:M\rightarrow G_{m}(W)$ denote a G-map given by

$h_{M}(x)=\tau_{l}(M)$ for $x\in M$ .
Note that $X_{G}(M)=\Gamma^{G}(M, h_{M})$ . For $h\in\Gamma_{\mathfrak{n}}^{G}(M)$ , let $\hat{\eta}(h)$ : $\Gamma_{n}^{G}(W)\rightarrow$

$X_{G}(M)$ be a homomorphism defined by
$\hat{\eta}(h)(s)(x)=p_{h_{M}(x)}(\hat{\mu}(h)(s)(x))$ for $x\in M,$ $s\in\Gamma_{n}^{G}(W)$ .

We say that $h$ is G-involutive if $h(x)^{G}$. is contained in $\tau_{l}(M)$ for any
$x\in M$ and

$[s, t]\in\Gamma^{G}(M, h)$ for any $s,t\in\Gamma^{G}(M, h)$ .
Theorem 2.3 (1) $\hat{\eta}(h)=0$ if and only if $h(x)^{G}$. is contained in the normal
space $\nu_{x}(M)$ at $x$ in $W$ for any $x\in M$.

(2) Assume $\hat{\eta}(h)\neq\theta$. Then $\hat{\eta}(h)$ is bracket preserving if and only if $h$

is G-involutive.

Prvof (1) Assume $\hat{\eta}(h)=0$ . Let $ x\in$ M. For any $v\in h(x)^{G_{x}}$ , there
exists $s\in\Gamma^{G}(M, h)$ such that $s(x)=v$ . By Proposition 2.1, there exists
$\hat{s}\in\Gamma_{\mathfrak{n}}^{G}(W)$ such that $\hat{\mu}(h)(\hat{s})=s$ . Then $\hat{\eta}(h)(\hat{s})(x)=p_{h_{M}(x)}(v)=0$ , and
$v\in\nu_{x}(M)$ . Conversely assume that $h(x)^{G}$. is contained in $\nu_{x}(M)$ for any
$x\in M$ . Since $\hat{\mu}(h)(s)(x)\in h(x)^{G}$. for $s\in\Gamma_{n}^{G}(W),$ $x\in M$ , we have $\hat{\eta}(h)=0$ .

(2) If $\hat{\mu}(h)$ is bracket preserving, then it follows from Theorem 2.2 that
$\hat{\eta}(h)$ is bracket preserving if and only if $h$ is G-involutive. Assume that $\hat{\eta}(h)\neq$

$0$ and $\hat{\mu}(h)$ is not bracket preserving. Since $M$ is connected, from $Th\infty rem$

2.2 there exist a point $q\in M$ and a vector $v\in h(q)^{G_{q}}$ such that $v\not\in\tau_{q}(M)$

and $v\not\in\nu_{q}(M)$ . We can choose $s\in\Gamma^{G}(M, h)$ such that $s(q)=v$ .
Let $\{x_{1}, \ldots,x_{m},y_{1}., \ldots,y_{N-m}\}$ be a local coordinate system as in the proof
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of Theorem 2.2. Then $s$ is described on a neighborhood of $q$ as follows:

$s$ $=\sum_{1=1}^{m}a_{i}(x_{1}, \ldots, x_{m},y_{1}, \ldots, y_{N-m})\frac{\partial}{\partial x_{i}}$

$+\sum_{j=1}^{N-m}b_{j}(x_{1}, \ldots, x_{m},y_{1}, \ldots,y_{N-m})\frac{\partial}{\partial y_{j}}$ .

Since $s(q)\not\in\tau_{q}(M)$ and $s(q)\not\in\nu_{q}(M)$ , there exist a number $i(1\leq i\leq m)$

with $a_{i}(0)\neq 0$ and a number $k(1\leq k\leq\ell)$ with $b_{k}(0)\neq 0$ . With the same
argument as in the proof of Theorem 2.2, we define $\hat{s}$ and $\hat{t}$. Then we have

$\hat{\mu}(h)(<\hat{s},\hat{t}>)(q)=s\#(\hat{y}_{k})(q)s\#(q)$ .
Note that the i-th component of $s\#(\hat{y}_{k})(q)s\#(q)$ is $b_{k}(0)a_{i}(0)$ . Thus

$\hat{\eta}(h)(<\hat{s}, i>)(q)\neq 0$ .

Since $\hat{\mu}(h)(t)=0$ on a neighborhood of $q$ in $M$ ,

$<\hat{\eta}(h)(\hat{s}),\hat{\eta}(h)(\hat{t})>(q)=0$ .
This completes the proof of $Th\infty rem2.3$ .

$h$ is said to be integrable if the induced bundle $\xi_{h}$ is integrable.

Corollary 2.4 If $G$ is a finite group and $\hat{\eta}(h)\neq 0$ , then $\hat{\eta}(h)$ is bracket-
preserving if and only if $h$ is integrable.

Proof. Assume that $\hat{\eta}(h)$ is bracket preserving. By $Th\infty rem2.3$ , we see
that

$<s,$ $t>=[s, t]$ for $s,t\in\Gamma^{G}(M, h)$ .
Put $M_{0}=\{x\in M ; G_{x}=\{1\}\}$ . Let $s,t\in\Gamma(M, h)$ . For $x\in M_{0}$ , there exist
$s_{1},$ $t_{1}\in\Gamma^{G}(M, h)$ such that $s_{1}=s$ and $t_{1}=t$ on a $neighborh^{J}oodV$ of $x$ in
M. Then for $x\in V$

$<s,$ $t>(x)=<s_{1},$ $t_{1}>(x)=[s_{1}, t_{1}](x)=[s, t](x)$ .
Since $M_{0}$ is open dense in $M$ , we see that $<s,$ $t>=[s, t]$ . Then, by
$Frobenius’ th\infty rem$ (c.f. [5], $Th\infty rem2.4.5$), $h$ is integrable. If $h$ is integrable,
then $\hat{\eta}(h)$ is bracket preserving by Theorem 2.3 (2), and Corollary 2.4 folows.
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