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On a theorem of O. Mathieu

KANEDA Masaharu

1 Introduction

(1.1) This is an elementary account of O. Mathieu’s proof [M2] of S. Donkin’s
conjecture that if ® is a connected affine algebraic group over an alge-
braically closed field and if M and M’ are finite dimensional rational ®-
modules with good filtrations, then M ® M’ also admits a good filtration,
where a ®-filtration 0 = VO < V1 < ... ofa B-module V = U,,;Z(,Vi is called
good iff for each i there is a Borel subgroup B of ® and a 1-dimensional
rational B-module A such that V?/V*~! is isomorphic to the rational &-
module ind§()\) induced by A. For the history and the significance of the
conjecture one may refer to [D1], [D2], [W].

Although [M2] proves much more, we will focus only on the above prob-
lem. Instead we will complement more details to the terse arguments of
[M2], and also give an alternative construction of what Mathieu calls the
canonical Frobenius splitting, based on [K] that requires less algebraic ge-
ometry.

(1.2) In order not to obscure the main ideas, let us recall Mathieu’s program
of the proof, assuming the standard notations from [J], (IL.1).

First there is a reduction by [D1] that we may assume & is simply con-
nected and simple over an algebraically closed field of positive characteristic
p with 9B a fixed Borel subgroup of &.

By a technical reason it is easier to work over the prime field F, which
we will denote by K. Thus let G be a simply connected simple K-group
scheme with a maximal torus T split over Z, B a Borel subgroup of G
containing 7', and U the unipotent radical of B. Let Grpg be the category
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of K-groups, and X = Grpg(T,GL;). The 1-dimensional B-modules are
provided by X under the natural projection B=U xT — T.

If M is a B-module, define a quasicoherent Og/p-module Lg/p(M) by
assigning to each open U of G/B
(1) Lg/p(M)(D) = Schg(n™'D, M)® := {f € Schy(r'0, M) |
f(A)(xb) =b7"f(A)(z) Vz € (n'D)(A),be B(A),A € Algk},
where Schi (resp. Algg) denotes the category of K-schemes (resp. com-
mutative K-algebras) and m € Schi(G,G/B) is the quotient morphism.

Then Lg,g(M) comes equipped with a structure of G-equivariant sheaf on
G/B. In particular, we will abbreviate the G-module Lg/5(M)(G/B) as

H%M). Then Donkin’s conjecture reads that for each A and uweE X,

(2) H°(\) ®x H%(p) admits a G-filtration whose successive quotients are

isomorphic to some H%(v), v € X.

Let R C X be the root system of G relative to T' and choose a positive
system R* of R so that the roots of U are —R*. We refine the standard
PO (partial order) > on X into an additive total order, denoted >. Eg., if
S is the simple system of R*, choose a Q-linearly independent set (74)qes
in R with 7, > 0 for each o € S. Then one gets a Q-linear injection

(3) X®2zQ—R suchthat a®l+—r1r, a€S.

Now for a B-module M let after [D1] F,M (resp. F} M), v € X, be the
largest B-submodule of M all of whose weights are > v (resp. > v), and
set FOM = F,M/F}M. Then

(4) F,, F}t, and F? all define idempotents
in the ring of endofunctors of BMod,

where §Mod denotes the category of $)-modules if § is a K-group. Define
two subcategories of BMod

(5) s ={M € BMod | socgM C M,}
with M, = {m e M |t(m® 1) =mQv(A)(t) Vte T(A),A € Algk} the

— 150 —



v-weight space of M, and
(6) grAG ={A= [ %, graded K-algebra |, € MY VnecN

n>0

and the multiplication on 2 is B-equivariant}.

Likewise define two subcategories of GMod

(7) M = M% N GMod

and .

(8) grA” ={UA= ] A, graded K-algebra | A, € M™ Vne N
n>0

and the multiplication on 2 is G-equivariant}.

Besides the B-filtrations defined by F,, F,;}, and F., another important
ingredient of Mathieu’s proof is a Frobenius splitting introduced by V.B.
Mehta, S. Ramanan, and A. Ramanathan [MR], [RR], [R]. If @) is a K-
scheme, let Fyy € Schx(2),2)) be the Frobenius endomorphism of ) defined
by Fy(A) = D(da) with ¢4 € Algg(A, A) such that a — aP. A Frobenius
splitting of 9 is a left inverse in Modgy the category of Og-modules to
the structure morphism ng : Oy — Fyp.Oy. In particular, a K-linear left
inverse ¢ to ¢4 with 1(a?b) = a(b) Va,b € A is called a Frobenius splitting
of A.

We are now ready to describe Mathieu’s program. Let A, u € X and
V = H°(\) ® H(u). Filter V by F'V, v € X. One checks

(9) each F)V inherits the structure of G-module from M
such that FoV € M” .

If E(7) denotes the injective hulkin GMod, one has

(10) . RV SFREFW).
On the other hand, if 2V # 0, then
(11) wyv is the highest weight of FOV in the standard PO ,

where wj is the element of the Weyl group W = Ng(T')/T such that woRt =
—R* I (F)V)* = (F)V)/ Sogun(F2V )y, then

(12) F,E(FV) ~ H”((ff,’V)w"”) that is a direct sum of H(wyv) .
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Hence if the equality holds in (10), we will be done.

To see that, Mathieu considers

(13) () = II 7o, (H'(nX) ®k H'(nu))  and

n>0

]:E(mo('/)) = [ Fu E@A(v)n),

n2>()

where A°(v),, is the n-th component of %°(v). Under the cup product both
A0(v) and FE(A’(v)) are made into objects of grA” such that

(14) A(v) < FEA(v)).

If BO(v) = >0 Fo(Le/p(nA)(BwoB/B) ®k H%(np)), then BO(v) is an
object of grA’s under the cup product such that

(15) A(v) < FERA(v)) < B).

If the equality were to fail in (14), one could find -

(16) m € N* and a € FE(A°(V))m \ A°(v) such that a? € A (1), .
But

(17) B°(v) admits a Frobenius splitting ¢°(v) that stabilizes 2A°(v) .
Hence

(18) 2 = 0%()(@?) € (W)@ (V)pm) € 2(),

that is a contradiction.

The assertion (16) was a difficult (to the present author) point in [M2].
I have included full detail of the argument in (2.11/12). In (17) I will use
the Frobenius splitting on &/ associated to a lowest weight vector of the
Steinberg module, that incidentally splits all the Schubert subschemes si-
multaneously [K].

(1.3) To be precise, let us intoroduce some more notations and recall some
standard facts from the representation theory.

If $§ and R are K-groups with & < §), one has an exact functor (cf. [J],
(1.5.9))

(1) E,b/ﬁ : AMod — Modﬁ/ﬁ
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generalizing the construction of (1.2)(1). If &' is a K-subgroup of §, 0 an
open of §/A such that 710 is $’-stable under the multiplication from the
left, and if M € fMod, then Lg,c(M)(D) = Schg(r ™18, M)* affords an
$’-module such that

2) (@)(A) () = F(A) (=),
T € 5'(A),A € Algg, A’ € Alga,y € (n710)(4"),

where 7 : ) — $/8 is the quotient morphism. In particular, Lg,q(M)($/8)
defines an $3-module that we denote by ind2M. Then ind2 defines a functor
AMod — HMod, that is left adjoint to the forgetful functor HMod —
AMod : VM € KMod and V € $HMod, there is a K-linear isomorphism

(3) AMod(V, M) — $HMod(V,ind2M) written o —> 3
with 1 = £ 09, where € = &)y € AMod(ind2 M, M) such that
(4) f— F(K)(1), f€ind2M = Schg(H, M)~

The isomorphism (3) is called a Frobenius reciprocity.

We will denote the algebra of distributions on & by Dist(R). If R is
noetherian and integral, and if M’ is a K-linear subspace of M, then (cf.
[J], (1.7.15))

(5) M < M'in SMod iff M < M’ in Dist(&)Mod.

Let a € R and U, the associated root subgroup of G. Writing K[U,] =
K[t], define X{™ € Dist(U,), n € N, by

(6) X((y") (tm) = 5m'n. Vm € N.

Under the comultiplication of Dist(U,) one has

) X — 3 X0 @ X0

Let X be the set of dominant weights. If A\ € X, then (cf. [J], (I1.2.2))

(8) A is the highest weight of H’()\)
with H'(\)y = H'(A\)Y" of dimension 1.
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Moreover (cf. [J], (I1.2.3/2.4))
(9) H()\) has a simple socle of highest weight A,

that we will denote by L(\).

(1.4) We list the nonstandard notations employed in this note.

K = F,
Hp(?) = indZ(?)
E(?) injective hull in GMod
Ep(?) injective hull in BMod

X = G/B
X, = G/G1B with G1 = ker F¢ the Frobenius kernel of G
g € Schg(G/B,G/G1B) the quotient morphism

By = BwyB/G1B =woUYB/G1B with U" = wy'Uwq
B§ = ¢ Do
MY = M/ > M, if M isa B-module with v a maximal weight

neX\{v}
of M in the standard PO on X.

For MY, grA%, MY, and grAY see (1.2)(5), (6), (7), and (8), respectively.

During the preparation of the manuscript, I learned the publication of
[vdK], that covers an entire aspect of [M2]. There is also a novel proof of
Donkin’s conjecture by J. Paradowski [P], who uses quantum groups. I'd
like to thank the referee for critical reading of the manuscript, hoping the
present note may still be of some help in reading [M2].

2 Filtrations of B-modules

Lemma 2.1 (i) The simple B-modules are 1-dimensional.
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(ii) If M € BMod and v € X, then F'M € M.
(iii) Vv € X, Ep(v) ~ H}(v) ~ K[U] ®x v in BMod, hence the formal
character of Ep(v) is ch Ep(v) = €’ lacr+ == -

(iv) If X € X, then socg H(A) = H'(A)wor = L(A\)wyr = socgL(\) while
hdpL(A) = L(A\)*, both of dimension 1.

Proof. (i) follows from the local finiteness of B-modules (cf. [J], (1.2.13)).
Then (ii) follows from (i). AlsosocgH%(v) = v by the Frobenius reciprocity.
As v is injective in TMod, H%(v) remains injective in BMod again by the
Frobenius reciprocity, hence H}(v) ~ Eg(v). Then

(10) ch Eg(v) = ch Hy(v) = ch Schi(B,v)T =¢ ] L

acpr 1 — €
Finally, as woA is the lowest weight of H°(\) (cf. (1.3)(8))
(11) HO(A\)uor < socs HO(A). |
On the other hand,
(12)  socgH(A) < H'(WY by (i)
= wo(H'NY") = H'N)wor  (cf. (1.3)(8)).

Hence H°(A)yor = socgH®(A\). As dim HO(A)y = dim HO(A), = 1 (cf.
(1.3)(8)), one also obtains

(13) L{X)wox = socgL(A\) = socgHY(\).

Then

(14)  hdpL(A) = (socp(L(A)"))" = (socp(L(—woA)*))* = (=A)* = A,
hence radpL(\) = Tpen L(N),.

Lemma 2.2 Letv € X.

(i) F, and F} are both left ezact. Also FO preserves imbeddings.
(ii) Fo, Ff, and F2 all commute with filtered direct limits.

(iii) If M € GMod, then F,M, F} M, and FOM all inherit the structure
of G-modules such that FOM € MV,
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Proof. (i) and (ii) follow from the definitions.
(iii) As Dist(G) = Dist(U*)Dist(B),

(1) Dist(G)(F, M) = Dist(U*)(F, M) C F, M,
hence F, M < M in GMod (cf. (1.3)(5)). Likewise
(2) FIM <M in GMod.

Then FOM comes equipped with a structure of G-module with FOM € M*
by (2.1)(ii).

Eg. 2.3 Let v,n € X. AssocgEp(n) = n and as ch Eg(n) = €"llpert 1=
by (2.1), one finds

Ep(n) ifv<Xn
0 FoEg(n) = {220 .
0 otherwise,
FE if v <
(2) FrEp(m) = |20 7
0 otherwise,
FE ifv=
(3) FoBa(n) = |22 "
0 otherwise.

Hence one sees from (2.2)(ii) that

(4) if M € BMod is injective,
then F,M, F,f M, and .773M all remain injective .

Lemma 2.4 LetveE X and A € XT.

(i) One has
L(A) if v 2w
F,L(\) = { (N ZfV_@()
0 otherwise,
0 otherwise,
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LX) if v =wyA

FLQ) = |
0 otherwise,
f,,HO()\) _ H()()\) Zf 174 j ?jU())\
0 otherwise,
f:HO(}\) _ HO(A) Zf vV < ’l.,U())\
- 0 otherwise,

.FSHO()\) _ {HO()\) ifV=w())\

0 otherwise.
(i) If Q(\) = E(L(X)), then in GMod |
Furn@) = FInQ(\) = H°(N).
Proof. (i) follows from (2.1)(iv).
(ii) Put v = woX. If £ Q(A) # 0, then
L(X) =socgQ(A) < FFQ(N) by (2.2)(iii),
hence woA > v, absurd. Consequently, it is enough to show
(1) F,Q(\) ~ H°()\) in GMod.
As socgHO(A) = L(A) (cf. (1.3)(9)), one may regard H'(\) < Q()\). Then
(2) F,QM) = FH'(N) = H'(A) by (i).
On the other hand, Q()\) admits a good filtration (cf. [J], (I1.4.18)) with
3) Q) : H(w)) = [H(n) : L(N)] Vu € X+,

where the LHS (resp. RHS) is the multiplicity of H%(u) (resp. L(\)) in
the good filtration (resp. the composition series) of Q()\) (resp. H%(u)).

Moreover, we may assume H°(\) appears at the bottom of the filtration [J],
(11.6.20).

Put V = Q(\)/H’()) and just suppose (F,Q()\))/H®()\) # 0. Then
Jue X' L(p) < (F.QW)/H'(A) V.
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Let v € L(p)\ 0, and 0 = V < V! < ... a good filtration of V with
Vi Vet~ HO(N). If v € VI\ Vi1 then

L(p) < V2 /V7=h = HO()),
hence p = A; (cf. (1.3)(9)). But A; > A by (3), hence
v =wpA > woAj; = wop a weight of L(u),
absurd.

Proposition 2.5 Let v € X, M € MY%, and fix an imbedding of M into
Ep(M) in BMod.

(i) If M # 0, then v is the lowest weight of M in the standard PO. In
particular, F,M = M. Also FfM =0, hence FoM = M.

(i) socgEg(M) = socgM = M,, hence Eg(M) € MY%. Also Eg(M) ~
H}(M,) in BMod with #, € BMod(M,H%(M,)) injective if m, €
TMod(M, M,) is the natural projection.

(iii) If n e X, M e Mn, and if ip : M Qg M — EB(M) QK EB(M') 18
the natural imbedding, then F,, (ip) restricts to an isomorphism from

SOCB}.BH')(M K M,) = {'Fx?+r)(M QK M,)}V-H'I
~ M, ®k M, under the natural projection

onto

socpF) 1, (Es(M) ®k Eg(M")) = F), (Ep(M) ®k Ep(M')),1y.
Hence one has also isomorphisms in BMod
Foin(Ep(M) @k Eg(M')) ~ Ep(M, ®k M;) ~ Ep(F,), (M @k M'))

Proof. (i) f m € My \ 0, A € X, then Dist(B)m is a finite dimensional
submodule of M, hence v < A.

(ii) By (i) M, < socgM, hence M, = socgM = socgEp(M). Then
Ep(M) € M¥%, and also Eg(M) ~ HY(M,) (cf. (2.1)(iii)). As €0, |socyrr=
idps, = idsocpM, Ty is injective.
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iii) By (ii) we may assume ip = 7, QK 7. Then
N

socpF )y (Hp(M) ®x Hp(M'))

= F)r(Hp(M) ®x Hy(M')),., by (ii) and (2.1)(ii)

~ Hp(M), @k HY(M’), asv (resp. n) is the lowest weight of H%(M)
(resp. HY(M’)) by (i) and the character formula (2.1)(iii)

= M, ®x M,

= -7:3+n(M ®x M')y4q = SOCsz(}H,(M Qx M'),

where the two isomorphisms are both induced by the natural projections.

As any T-module is injective, H}(M) @ HY(M’) is injective in BMod
by the Frobenius reciprocity (cf. [J], (I.3.10) or by the tensor identity). As
Foio(HE(M) ®x HY(M')) remains injective by (2.3)(4), the last assertion
also follows.

Corollary 2.6 Let v € X, A € grA%, and ER(A) = Un>0 E(An). Then
one can make Ep(A) into an object of grA% uniquely such that A < Eg(A)
in grAp. If A is commutative (resp. commutative and reduced), then Ey(A)
is also commutative (resp. commutative and reduced).

Proof. Take after (2.5)
(1) Ep(An) = Hp(Anny) Vn €N,
and fix an imbedding
(2) Jn = ftny € BMod(An, H}(Anm)).
Thus if if t Apnw — A, then
B

.B _ . .B .
(3) E0j Oty = Ty, 04, =idy

where 7,, € TMod(A,, A,,) is the natural projection.
If fyffm : Ap ®k Ay — Apim is the multiplication on A, define

Yion € BMod(Ep(A,) ®k Ep(An), Es(Anim))

tO be {W'rlz?m IAn,n.u@KAm.,mu O(E ®K 8) }A:
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EB(A'H,) QK EB(Am.) -mo? EB(A'N.+1N)

(4) 5@'0;(61 ls

A'n.,'rw ®K Am.,mu B ’ An+m,(n+m)u°

nm

We must show
(5) ’71?17) ° (Jf @K .751,) = jr?+m ° 7’57&?

and that the multiplication on E(A) defined by 42,, n,m € N, is associa-
tive: Vn,m,¢ € N,

(6) '71113,m+£ o (Ep(An) ®k ﬁgf) = ’71113+m,€ © (:)’/rgn ®x Ep(As))-
First by (2.5)(ii) and (i)
(7) fgnﬂn)uEB (An+m) = Ep(An+m),

hence both sides of (5) factor through f?n +m),,(An ®K A). Then to see (5),
it is enough to show that both sides of (5) induced on F7), ., (An ®x Ai)
agree on s0CgF(), ), (An®k Am). On the other hand, the natural projection
induces by (2.5)(iii) an isomorphism

(8) An,nu K Am,mu — SOCB]:?n+1n)y(An QK Am.)'

Hence we have only to check with iZ =i @ iB and jB, = jB @k jB
~ B -B -B __ :B B -B

(9) Yrn © Inm O%lpm = In+m © Yam © nns

that will also imply by (2.5)(iii) the unicity of the multiplication on Eg(A)
extending that of A. But the image of the LHS of (9) is contained in
Ep(Antmn)m+myw, that is Apym (nmp bY (2.5)(ii). Hence

Y - -B ~B :B -B
(10) LHS - Jn+m © zn+1n cego ’Ynm © Jnm © znm.
_ 4B B -B .B .B
= Jn+m © Yam © tnm © (6 QK 5) © Jnn © tuin by (4)

= RHS by (3),

as desired.
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Likewise, to see (6), as both sides of (6) factor through
Forvmion (Ep(An) ®k Ep(An) ®k Ep(As)) and as j2 @k jE @k jF induces
a bijection
(11) An,nu QK Am,mu QK AE,ZU -

50CBF (nsm+ey(EB(An) ®k Ep(Am) @k Ep(Ar)),
one has only to show with jffmﬂ = Jp QK Jjm QK Je and i,l,?,,n,; = 1, QK tm QK ¢
(12)  Frmie © (EB(An) ®K Fme) © e © tnime = Vorme © iome © img.

But the image of the LHS is contained in A, 1144 (n+m+6), hence (12) follows
as in (10).

If A is commutative, then one can argue likewise to show
(13) ’7,};2" © Tpm = '757-,;, Vn,m € N,

where Ty : Eg(An)®k Ep(Anm) — Ep(An)®xk Ep(A,) is the transposition.
Hence Ez(M) will be commutative.

Assume finally that A is commutative and reduced. Just suppose z €
Ep(A,) \ 0 is nilpotent. Then the B-submodule Dist(B)z = KBz (cf.
(1.3)(5) and [J], (1.2.13)) of Ep(A,) would consist of nilpotents. But

0 # socg(K Bz) < socgEp(A;,) = socp(A,).

Hence A, would contain a nonzero nilpotent, absurd.
Proposition 2.7 Let v,n € X, and M € MY, N € M".

(i) If M # 0, then wov is the highest weight of M in the standard PO.
(ii) If we regard M < E(M), then
M, = socgM = (socgM), = socgF,E(M) = {F,E(M)},,
hence F,E(M) € MY that is an injective hull of M in M".

(iii) hdpsocgM = (socgM)“¥ ~ MY in BMod with the isomorphism
nduced by the inclusion.

(iv) FLE(M) ~ H(M*") in GMod with #“ € GMod(M, H°(Mvo¥))
injective if m°¥ € BMod(M, M™") is the natural projection. In partic-
ular, F,E(M) is a direct sum of H*(wov), and socgF,E(M ) ~ socg M
is a direct sum of L(wgv).
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(v) In BMod
hdpsocgF? (M ®x N) = {socgF? (M ®x N ) prolw+n)
~ {F)y(M ®K N )yl induced by the inclusion
~ (M®g N )"""(”*”) induced by the natural projection
~ M‘on ®K Nw(ﬂ].
(vi) The cup product induces an isomorphism in GMod
o (HOM™) @ HON™)) — HO(M“ @5 N*7).
vii) If i : M ®x N — F,E(M) ®k F,E(N) is the natural injection (cf.
7

(2.5)(i)), then F.),, (i) restricts to an isomorphism in GMod (resp.
BMod) from

soch3+,’(M ®x N) (resp. socBF3+n(M Qg N) =
{F) (M ®K N)}yin =~ M, ®k Ny)
onto
socgFpn(FLE(M) @k FoE(N)) (resp.
50cpF,) 1n(FVE(M)®x FyE(N)) = {F)1(FyE(M)®k F E(N)) }v+1)-
Proof. (i) follows from (2.5)(i).
(ii)-(iv) If L(X) < socgM with A € X%, then
(1) L(Mwex = socpL(}) by (2.1)(iv)
< socgM = M, by (2.5)(ii),
hence wyA = v. Consequently,
(2) socgM is a direct sum of L(wpv).
If we write socaM = 11 L(wyv), then in GMod
(3) FLE(M) ~ F,E(soccM) = ]:”E(I,‘\I L(wgyv))
= IAI H'(wyv) by (2.2)(ii) and (2.4)(ii)

~ HhdpsoceM) by (2.1)(iv).
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If we regard M < E(socGM), then

(4) socp M socgF,M by (2.5)(i)

socpF,E(soceM) = socgF, E([[ L(wyv))
A
socp [[ H'(wor) by (3)
A

{IKI H(wov)}, = {I/‘\I L(wov)}, by (2.1)(iv)
{FLE(soccM)}, = (socegM),

socgsocgM by (2.5)(ii)

socg M.

Hence if we regard M < E(M), then

(6) M, = socgM by (2.5)(ii)
= socgF,E(M) = {F,E(M)}, = (socaM), = socgsocgM.

IA

IA

In particular,

(6) | F,E(M) € M".

Also

(7) Mg, = {FVB(M) }us = (5966 M ),

hence one gets in BMod

(8) hdpsocgM = (socgM)“” by (2) and (2.1)(iv)
~ M"Y by (i).

Then by (3)

(9) F,E(M) ~ H (M%),

As 7Y |socem preserves (socgM)y,, and as socgM is a direct sum of
T |socenr 1S injective, hence

L('LU()I/), v
(10) 7 € GMod (M, H°(M™")) is injective.
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(v) By (2.2)(iii) F)oy(M ®x N) € M, hence (iii) implies in BMod

(11) hdpsoceFy, (M ®k N) = {socgFy,,(M @k N)}+
~ {F) (M &k N )} +) induced by the inclusion by (8)
~ (M ®x N)“*7) induced by the natural projection as
{f,(,]+n(M ®k N)}yin =~ (M ®k N)y+,y by (2.5)(iii)
~ MY Qg NYI,

(vi) The cup product HO(M"”"") Ry HO(NWM) — HO(MWY @y NWoT) is
surjective (cf. [J], (11.14.20)). Put V = HO(M¥*) @ HO(Nw o),

As HO(M"" @k N¥") = F)  HY(M™ @k N by (2.4)(i), the cup
product factors through F? v+qV to induce a morphism in GMod
D FppgV — HY(M™” ®k N*m). On the other hand, soceFp,,V is a
dlrect sum of L(wo(v + 1)) by (iv). As v preserves (F, .,V )wow+n by (11),
Y lsocer2,,v is injective. Hence v is invertible.

(vii) By (iv) we may assume i = %" @ g 7", so F, E(M) ®k FpE(N) =

V of (vi). Then one has in BMod
(12) (soce V+17V)V+'I = SOCB]:OH]V (f(uj+nv)!/+'fl by (ii)

~ V,i, under the natural projection as v + 7 is the lowest weight of V'
HO(M™), @ HY( Nweny,
~ M, ®k N, induced by ¢ as My, @K Nyen =
HO(M) 0, @1 HON™)
(M ®x N)uay
~ {F2, (M &k N)}ois
= socgFyyn(M ®k N) = {socgF,) (M ®x N)}vin.

Hence also
(13) socgFy,V = soch3+n(M ®K N)
as both are direct sums of copies of L(wg(v + 7)) by (iv).

Remark 2.8 It follows that M” # {0} iff wor € X*, in which case M” has
a unique simple L(wyv) with the injective hull H(wyv).
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Corollary 2.9 Let v € X, A € grAY, and FE(A) = >0 Fu E(A,). One
can make FE(A) uniquely into an object of grA? such that A < FE(A)
in grA” and that FE(A) < Eg(A) in grA. If A is commutative (resp.
commutative and reduced), then FE(A) remains commutative (resp. com-
mutative and reduced).

Proof. Take after (2.7)(iv) (resp. (2.5)(ii))
(1) FuwE(An) = H(AZ™™)  (resp. Ep(A)n = Ep(An) = Hp(Anm) ),
and fix an imbedding

(2) Jn = A" € GMod(A,, H°(A™")).
By (2.1)(iv)
(3) SOCBHO(AZIU()V) = HO(AZwOV)-n,V ~ 'LUOA'n,'n'on/ >~ A'n,,‘nl/7

hence the projection HY(A™0") — HO(A™0),, in TMod induces an injec-
tion h, € BMod(H°(A™M), H%( Ay, ) such that

(4) €0 h’ © JTL IAn nv_ idA'n,rw'
Recall from (2.5)(ii) the imbedding j2 = #,, : A, — H%(A,.). One has
(5) hnojn =32 VYneN.

If yom € GMod(Ay, ®k A, Ant+m) is the multiplication on A, define the
multiplication on FFE(A) to be Aun = {'yf,',‘,j‘ muw o (e @k €)) €
GMOd(HO(Agwgu) ®K H()(Amwou) HO(A;T;:,T, wou)).

m

H()(Azwou) QK HU(Amwoy) Ynm H()(A/(;’;tr'v”)u/‘ou)

m

£®K€1 ’_} le

nwov mwgv (n+m)wov
(6) An " QK Am ¢ ? An+m
7(11:7-:— m)wgv
ﬂ,nwOVQ—OKﬂ.meVI ’] Al:/.r(n+m)w0u
An ®K Am _— A'n.+'m,
’Yn?n
We must show
(7) Yrn © (jn QK jm) = Jn+m © Y
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and
(8) '?an o (hn. K hm) = hn+m © Y-

As H (’(A£Z';r’::,?")"”°") = FoempH 0(Altmwery 1y (2.4)(1), both sides of (7) fac-
tor through f?n +m),,(A,,, ®K Ann). Hence to see (7), it is enough to show that
the both sides of (7) induce the same morphisms on
s0CaF(n+mw(An ®K A:m), that will also imply by (2.7)(vii) the unicity of
the multiplication on FE(M) extending that of A. But the natural projec-
tion induces by (2.7)(v) an isomorphism

(9) AR @Kk AR — thSOCGf?n+m)u(An ®K Am)-
If ¢, : Ar,'rwou — A,, T € N; then with lum = in K iy, and Jnm = In OK Jmn

(10) In+m © Ynm © L = Ynm © Inm © Lnn-

As 50¢GF ), 1ny, (An ®k Ap) is a direct sum of copies of L((n + m)wov) by
(2.7)(iv), (7) follows.

Likewise by (2.5)(ii)/(i) both sides of (8) factor through
F HO(A™0) @ HO(A™¥)), hence one has only to check that both
(n+m)v n m
sides induce the same morphisms on socg ¥y, ;) (H (A" )® x HO(Ajev)).

m
But 7™ @ #™*¥ induces by (2.7)(vii) a bijection

(11) An,nu QK Am,mu —_ SOCBf?n.;.m),,(HO(AZw“V) Rk HO(Am'u'ou )

m

In the notation of (2.6) one has

-B . .B .B .B
(12) Yo © (hn K hm) OJnm Clyyn = Jngm © Ynm O lpp

= hpym O Yran © Jnum © i-fm,
hence (8).
As FE(A) < Eg(A) in grA%, the last assertions follow from (2.6).

Lemma 2.10 ([M1], Lemma 13) Let A be a commutative graded K-
algebra and A’ a proper graded subalgebra of A. Assume A (resp. A')
is an A’-module (resp. K -algebra) of finite type. If the inclusioni: A' — A
induces a bijection Max(A®k K) — Max(A'®k K) of the marimal spectra,
then there is a homogeneous element s € A\ A’ such that s? € A’, where K
s an algebraic closure of K.
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Proof. If one can find such s € (A®x K)\(A'QxK), write s = > 8;RE;
with (£;); linearly independent over K. Then ¥; s} ® £} = s € A’ @k K,
hence ©; s7® &} = 0 in (A/A’)®x K. But (£7); remain linearly independent
over K: if 0 = T;¢;€j in K with ¢; € K, then 0 = ©; &8 = (T; ¢;&))7,
hence 0 = ¥; ¢;§;, so ¢; = 0 Vj. Consequently 5‘? € A’ Vj. As there is some
J with s; ¢ A’, by considering A ® x K and A’ ®x K instead of A and A/,
one may replace K by K.

If a is a homogeneous element of A, define a homogeneous ideal of A’
(1) I{(a)={z € A" | za € A'}.
As A’ is noetherian, there is homogeneous ¢ € A such that
(2) I(c) is maximal among the I(a) properly contained in A’ .
In particular,
(3) cé¢ A
Put C = A’[c] in A and p = I(c). By the maximality of p

(4) p is a prime ideal of A’ .
Moreover,
(5) p forms an ideal of C' .

For as C is integral over A’ (cf. [AM], (5.1)), there is q € Spec(C) such that
qN A" =p (cf. [AM], (5.10)). Then pc CpCNA CqnA =p.

We have two cases to consider, either \/p = p in C or otherwise. Suppose
first \/p # p. Then

(6) 3 homogeneous s € v/p\pandn € Nt : s* €p .

As p is prime in A’, s ¢ A’, hence the assertion.

Suppose next /p = p. From a commutative diagram of the natural maps

Clp — C s 4

(7) | | [ /

A//p -— AI
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one gets a commutative diagram

Max(C/p) —— Max(C) Roxld) Max(A)

(8) Max(3) Max(i.)
1 1 ~/Max(i )
Max(A'/p) —— Max(A’)

As A (resp. C) is a C-module (resp. an A’-module) of finite type, Max(7’),
Max(i.), and Max(%.), are all surjective (cf. [AM], (5.10)/(5.8)) and also
closed (cf. [AM], Ex. 5.1). But Max(%) is bijective by the hypothesis, hence

(9) Max(i'), Max(i.), and Max(z.), are all homeomorphisms .
In particular, Max(C/p) is irreducible, hence

(10) p = +/p is a prime ideal of C .

Also (cf. [H], (4.6))

(11) the fractional field Frac(C/p) of C/p is finite
and purely inseparable over Frac(A/p) .

Hence there is r € N, a € A/, and b € A’ \ p such that bc” = @ mod p.
Then (bc)?” € A’. As bc ¢ A’, the assertion follows.

Theorem 2.11 Let A € X+, A = [I,»0 H'(n)\) graded K -algebra with the
multiplication given by the cup product, and A’ = K[L())] graded subalgebra
of A generated by L()\) < H°(\) = A;.

(i) A is an A’-module of finite type.

(ii) If K is an algebraic closure of K, the inclusion A’ — A induces home-
omorphisms

Proj(A)(K) — Proj(A")(K) and Max(A®k K) — Max(A' ®k K).

(iii) If A” is an intermediate graded algebra between A and A’ with A" < A,
then there is a homogeneous element a € A\ A” such that a? € A”.

Proof. By considering G xx K, H'(n)\) ®x K ~ indg:’g—l{’(n)\ Rk K),

and L()\) ®x K the simple socle of H'(n)\) ®x K instead of G, H%(n)), and
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L(A), respectively, we may replace K by K, so in the rest of the proof we
assume K = K.

Let f- € (H°(A)*)-»\ 0 and [f-] the line through f_ in P(H(A\)*)(K).
If i : L(A) — HO(X) is the inclusion, then

(1) ker(i ) NG(K)f- =0 as L(A\)x = H'(\),.

Hence (cf. [Mil], p.154) G(K)[f-] € D.(SE(L(N)))(K) with Proj(Sk(i)) :
D (SE(L(N)) — Proj(Sk(L(}))) inducing a morphism 6 : G(K)[f-] —
G(K)[f- o] via

(2) z[f-] — z[f- 0i], z € G(K),

where Sk(L(A)) is the symmetric algebra of L(A) over K, SE(L()\)) =
>0 Sk (L(A))n the irrelevant ideal of Sg(L()\)), and

D (SK(L(N))) = {p € Proj(Sx(H°(N))) | p B SH(L(\)}.

Let P be the parabolic subgroup of G with P(K) = Cewu)([f-]). One has
an isomorphism (cf. [J], (11.14.19))

3) (G/P)(K) — G(K)[f-] via z+—z[f], ze€G(K)
that gives a closed imbedding of G/ P into P(H%(\)*) such that
(4) Lg/p(A) is the associated very ample sheaf on G/P.
In particular, ,
(5)  G(K)[f-] is an irreducible closed subvariety of P(H"(A)*)(K ),
hence also (cf. [H], (21.1)(b))
(6) G(K)[f-oi] =imé is an irreducible closed subvariety
of P(L(A)*)(K).
Moreover,
(7) 0 is a homeomorphism.

To see that, as @ is closed (cf. [H], (21.1)(a)/(b)), it is enough to show that
¢ is injective. For that we claim a stronger statement that

(8) 7 lKG(K)f_: KG(K)f_ — L(/\)* is injective,
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“inducing a bijection ' : KG(K)f- — KG(K)(f- o1).

Suppose f_oi = 0'(f.) = 0'(xf-) = &£x(f-o01), £ € K and z € G(K).
If Wp is the Weyl group of P, one can write (cf. [S], (10.3.3)(5))

(9) z=uwy, u€UK),weW/Wp,ye P(K).
Let v; € L(A)) \ 0 with f_(v4) = (f-oi)(v4) = 1. Then
(10) 1 = f_(uvy) (cf. [J], (I1.1.19)(6))

= (f-o1)(uvy) as uvy € L())

= (£z(f- 01))(uvs) = (§uwyf-)(uvy) = E(wyf-)(vs)
= &8 (wf-)(vy) for some &' € K as P(K) fixes [f-]

= £§,f—(w—1v+)’
hence w € Wp, so we may assume w = 1. Then ££’ = 1, hence

(11) fxf. = Euyf- =& uf- =uf-
= f_ as f_ has the lowest weight of H’())*,

as desired.

Let J < Sk (H"()\)) be the homogeneous radical ideal defining G(K)[f-],
so (cf. [Mi], p. 152)

(12) GRS = Va()(K) = {p € Proj(Sx(H°(\))(K) | p 2 3}
~ Proj(Sx(H°(\)/3)(K).

As G/P is integral, J is prime, hence (¢f. [Mi], Theorem II.3.4)

(13) Sk(H®(\))/7J is a domain.
If 3 = Sg(L(A\)) N 7T, then
14  GUf- oil = Vi(3)(K) = Proj(Sk(L(N)/T)(K).

Indeed, G(K)[f- 014 C V(I)K) as § : p — p N Skg(L(A)). On the
other hand, as G(K)[f- o] is closed, there is a homogeneous radical ideal
3" of Sg(L()\)) such that G(K)[f- oi] = V4 (3")(K). By the projective
Nullstellensatz (cf. [F], p. 91)

(15) 3= I+(V+(3”) (K)) 2 I+(V+(3’)(K)) =7
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But in P(HY()\)*)(K)

(16) VL (I)(K) 2 G(K)[f-] = V+(I)(K),
hence by the projective Nullstellensatz
(17) VI"CTI in Sg(H'(N)).

Consequently, 3 C v3" N Sk(L()\)) € 3N Sg(L(N) = ¥, hence 3" = ¥,

as desired.
On the other hand, by (4)

(18) A=~ ] T(G(K)[f-], O(n)),

n>0
hence one has by (12) and (13) a natural injection (cf. [Mi], Theorem I1.3.9)
(19) Sk(H°(\)/3 — A in Algg.
Moreover (cf. [J], (I1.14.20)),
(20) A = K[A4],

hence (19) is bijective. Then as both A’ and Sk (L()\))/J are generated by
L(X) in A ~ Sg(H®()\))/3, one gets an isomorphism

(21) Sk(L(\)/T — A,

A« > A

N

| ) Sk(HOW) — Sk(L()) )

S R N

Sk(HO(\)/3 < > Sk(L(N)/T
Hence the inclusion 7 : A’ < A induces a homeomorphism
(22) Proj(j)(K) : Proj(A)(K) — Proj(A")(K).

Proj(A)(K) —WE), projan) (k)

| g i
GE)]  —  GK)[f-oi
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Next if r = dim H%()\)*, the cone (cf. [F], p. 90) of G(K)[f-] is
(23)  CGK)[f-]) = {z€ A |[z] € GK)[f] or z=0}

= KG(K)f-
By the projective Nullstellensatz
(24) KG(K)f- = Va(3)(K) := {p € A"(K) | p 23}
and

(25) J=1,(KG(K)f-) the annihilator of KG(K)f-
in K[A"] ~ Sg(H’()\)).

Likewise if v’ = dim L(\)*,
(26) C(G(K)[f-o01]) = KG(K)(f-0i) = V,(F)(K) in A"(K)

and

(@27 3 = L(KG(K)(f-04)) in K[A"] ~ Sk(L())).

Hence the inclusion j : A’ < A induces

(28) 9 = C0) : KG(K)f- — KG(K)(f- o4).
Max(A) Max(@), Max(A’)

| |
Max(Sx(H°())/3) ")  Max(Sk(L(N)/7)
| I
KG(K)f- —  KG(K)(f- 1)
But @' is bijective by (8), hence (cf. [S], (4.2.4) and [DG], (1.5.1.2))
(29) A is an A’-module of finite type.
Then (cf. [AM], Ex. 5.1)

(30) Max(7) is closed, hence a homeomorphism.
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This concludes the proof of (i) and (ii).

Finally, if 77 : A” — A, then Max(j") : Max(A) — Max(A") is a closed
surjection as A is an A”-module of finite type by (i) (cf. [AM], Ex. 5.1 and

(5.10)/(5.8)), hence is a homeomorphism as the injective Max(j) factors
through Max(j"”). Then (iii) follows from (2.10).

Corollary 2.12 Let v € X and A € grAY with the 0-th homogeneous part
Ao = K. Assume A is commutative and reduced. If A < FE(A) in (2.9),
then there ism € N* and a € FE(A)n \ Am such that a? € App,.

Proof. By (2.4)(ii)
(1) FE(A)o = FoE(Ao) = FoE(K) = K = Ay.

If A, < FE(A),, then considering the subalgebra K[A,], we may assume
r=1. -

As A1 € MV, by (27)(1\/)
(2) FE(A); = F,E(A;) is a direct sum of H®(wyv),

hence there is a direct summand M of FE(A); with M ~ H%wyv) in
GMod such that |

(3) M € A

Put L = socgM, and let A = K[M] (resp. A’ = K[L]) be the subalgebra
of FE(A) generated by M (resp. L).

If A" =2A N A, one has in grA”
(4) A <A <A< FE(A).

Recall from (2.9) the multiplication ¥ on FE(A) = 50 H'(A™¥). If ~ is
the multiplication on A, one has a commutative diagram
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FE(A) ®x FE(A) —— FE(A),
I |

HO(A"IUOV) QK HO(ATOU) H()(Ag-m(,u)
(5) E®Kel le
A"IUOV ®K A’lll)ol/ ------ 3 A%‘u)(,u
Al ®K Al T) A2.

As A is reduced, 4 does not annihilate 2; ., @k A1 - Also as FE(A), €
M? | 4 |a,@x2, induces an isomorphism in GMod

(6) im 7 |aqexe = Fo, (% ®k A1) =~ H(2wv).
Repeating the argument yields
(7 A~ [[ H'(nwor) in grA”

n>0

with the multiplication on the RHS given by the cup product.

The assertion now follows from (2.11).

3 Frobenius splittings

Lemma 3.1 ([R], Remark. 1.3(i)) Let A € Alggk. If the map A — A
via a — aP admits a left inverse, then A is reduced. In particular, if A
admits a Frobenius splitting, then A is reduced.

Proof. Let 9 be a left inverse to the p-th power map on A. If a is a
nilpotent of A, there is r € N* such that a? = 0. Then

r—1

0 = P(0°) = %(0) = Y(a”) = a
Repeat to get a = 0.
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(3.2) Let Gy = ker Fg the Frobenius kernel of G, and 7 € Schy(G,G/B),
q € Schg(G/B,G/G1B) the quotient morphisms. The Frobenius morphism
Fg/p: G/B — G/B factors through ¢ to induce an isomorphism

(8) F:G/GiB — G/B.

We will write X (resp. X;) for G/B (resp. G/G1B). Let S = Lx((p — 1)p)
and St = S(X) = H'((p — 1)p) = L((p — 1)p) the Steinberg module.

Let v_ € St_(, 1), = {Schi(G, (p — 1)p)®} _(,-1), such that
(9) V_|wou+ = 1 (cf. [J], (I1.2.6)),

and recall from [K] the Frobenius splitting of G/B assoc1ated with v_. Thus
let 7_ € Modx(Ox,S) induced by v_ :

(10) () : 1 — v_]g Vil open of X.
One has an isomorphism (cf. [K], (1.3)(9) and (1.7))
(11) 0331 Q@ St — ¢S via a®v '———>C;(§/’U,

where a € Ox, () = Schg (n7!(V), K)%' 2 with 9 an open of X, 7, = qo,
v € St = Schg (G, (p — 1)p)?, and

(12) a®v € (¢.S5)(W) = Schx (r7L(V), (p—1)p)® such that
a@v(z) = a(A)(z)v(A)(z) Ve (BV)(A) with A€ Algy.

If f, € (St*)(p_l)p is the dual element of v_, then & defined by the following
commutative diagram is the Frobenius splitting of G/B associated with v_

30y —2 Ox, af+(v)
(13) a.v- | [ox@xr
S Ox, ®k St

P g
ARV —  a Q.

The structure morphism ¢' : Oy, — ¢,0% induces on each open U of X;
an isomorphism

(14) Oz, () — {d" | a € (¢.02)(V) = Schg(x7'V, K)P}.
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(3.3) Take U = BwyB/G1B = wyUTB/G1B in (3.2), which we will denote
by 2. Then

(1) (¢:Ox) (Do)

SChK(’lU()U+, K)
Ky] := K[ya)acr+
~ SChK(on%, (p—1)p) = (¢:+8) (W),

where yo(A)(woger+ zs(A)(ag)) = aa YA € Algk and ag € A with
zg : Ga — U™ the root morphism associated with # € R*. Under this
identification one has a commutative diagram

(¢:0x)(Bo) =~ K[y

(Qtw— )(WO) i ] id
(2) (9+5) (Do) Kly]  a(v|wu+)

2 1 I
(Ox, ®x St)(Vy) =~ K[y @k St a@wv.

Hence choosing a K-basis (v;); of St consisting of weight vectors including
v_, one can write

R

12

P

(3) Kly] = ]_[1 K[y"]v; withv_ =1 in K[y].
Then for each ¢

- idK[yp] if v =V,
4 ‘_U Plu; —
) 7 0-)’K[y Jos {O otherwise.
In particular,
(5) () is T-equivariant.
(3.4) Let a € S and arrange
(1) U+ = Ua X H Uﬁ.

BeR*\{a}
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One can choose a representative of wy in Ng(T") (cf. [J], (I1.1.4)) such that

(2) 3c € {£1} : Va € A with A € Algg, zy,0(A)(—a)wy = woZa(A)(ca).

Hence if we write K[U,,] = K[t], the Uy o-module structure on
(¢+Ox)(Vy) = Schi(wU*, K) = K[y

is given by the map

(3) Kly] = Kly,t] = K[y] ®k K[Uyu,] such that

11 yZ"’ — (Yo +ct)™ I yz'ﬁ, ng € N.
BERT BeR*T\{a}

If we identify Ox, (Bo) with K[y?] = K[y§lscr+ as in (3.2)(14), then

(4) the Uy, o-module structure on Ox,(Py) is given by (3)

upon restriction.

Put 6, = X{) € Dist(Uyya), 7 € N. Then

; n _, n
(5) 5-( I1 wg") =C"( ")yZ" S

BeR* T BeR+\{a}
hence one can write symbolically,
c I P!

6 r = - K == K P .
(6) = e " [y] ,I=Il [v"]v
By the Leibniz rule
(7) 5:(avi) = Y- 6;(@)8r—;(v)) Va € K[y7)

j=0

Assume from now on that p divides r. As the weights of St are
{(p—1)p— Tper+n36 | 0 < mg < p— 1},

(8) &r_j(vj) € (St lon+)w,-+(7'—j)woa =0 ifp l jand 5 #r,

where w; is the weight of v;. Hence in (7)
(9) 6r(avi) = 6:(a)bo(vi) = 6;(a)v; with 6,.(a) € K[y”).
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Then by (3.3)(4)

(10) &(By) o 6,(av;) = { ifvi = v-
otherwise
= 6, 0 3(Wo)(av;).
Hence for any r € N with p | r,
(11) (By) 06, = 6,06(Vy) on (g.O0x)(Vo).

As woU ' B is open dense in G, one has a commutative diagram

(0.02)(%) T2 0, (x)

(12) resI Ires
(g+Ox) (Vo) Py Ox, (Do)

g\
with the Dist(Uy,q)-module structure on both ¢.Ox and Ox, compatible
with the restrictions.. Hence together with (3.3)(5) and (3.2)(14) one obtains

Lemma 3.5 Let U € {BwyB/G1B,G/B}.
(i) 6(0) is T-equivariant.
(ii) If« € S, then for any r € N withp |,
5() o XU = X1 05(B) on (4.0g8)(D).
(iii) Va € O%,(B), &(V)(a?) = a?.
(3.6) Let A € X. Then

(1) aLx(P)) = ¢.4"Lx(pA) (cf [CPS], (2.7), [K], (1.8))
~ Lx,(p)) ®o,, ¢Ox by the projection formula.

Under the identification define &,, € Modx,(¢.Lx(p)), Lx,(p))) by the
commutative diagram

g Lx (D)) e, Lx,(p))

2) | I

l:x‘(p)\) ®0x, 3:Ox — Lx, (p)‘) R0, Ox,.
Lx, (I”\)ngxl o
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Recall the isomorphism F € Schy(X;,X) from (3.2)(8). Generalizing
(3.2)(14) one has an isomorphism

(3) (FH.Lx(\) — Lx,(pA) via a+— a’.

Proposition 3.7 Let A € X and U € {BwB/G,B,G/G1B}.

(i) 6pA(D) is a T-equivariant surjection. In particular, (V) annihilates
all v-weight spaces with v € X \ pX.

(ii) If a € S, then for any r € N with p | r,
Fpa(B) 0 X)) = xT) o opA(B) on  (q.Lg/p(pA))(D).
(iif) Va € (F™):Lg/a(M)(D) = Lo/s(N)(¢71D),
&0 (0)(a?) = P,

Proof. Asin (3.4)(12) we have only to check the assertions on 0 = U, =
B’(U()B/Gl B.

(i) As & is a split epi, so is Opx, hence the sujectivity. The second asser-
tion follows from the identification Ly, (pA)(Wy) ~ K [y5ilser+ with each y}
having weight pwy(A — 3).

(ii) and (iii) follow from (3.5).
(3.8) Assume X € X*. Let (m;); be a K-basis of H()), and let
(1) Apoyy : My — };mk ® ajk, ajx € K[G]
be the G-module structure on H()). If

H](pA) = Lx,(pA)(X1) = indg, p(pA),

then (m}); forms a K-basis of H)(p)) by (3.6)(3) with the G-module struc-
ture given by

(2) AH{’(}»\) : mz) L Z mi') ® a;')k'
k
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Define a K-linear bijection [—1](X;) : H(pA) — H"(\) via
(3) mk — m;.

Define likewise a K-linear bijection [—1](2y) : Lx,(pA)(Bo) — (g«Lx(N)) (D)
by the commutative diagram

L2, (N)(@B0) T (0.Lx(0)(B0)

| |
" Sch (woU+, pA)UT Schy (weU™+, A)

| b

Kyjlserr —  Klyplpen+
Mys"* — My,"
Set

(5) opal—1] = [=1](%1) 0 Gpa(%1) € Modk (H"(pX), H'(X))
and
(6) op[—1] = [=1}(DBo) © 5pA(Vo)

€ MOdK(Ex(p/\) (q—lmo) , L',x(/\) (q‘l‘B(_,)) .

One has a commutative diagram in Modg

H(pyy 258 o

Y
(7) resJ' Ires
Lx(pA) (g~ 'Do) ”T[:]" Lx(N) (g~ D).

PA
From (3.7) one obtains
Corollary 3.9 Let A € Xt anda € S.

(i) Both op\[—1] and opy[—1] annihilate the v-weight spaces for all v €
X \ pX while both send each pn-weight space onto the n-weight space
forne X.
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(ii) Vr € N, one has

| XE’;)YOJI,,\[—l] = U,,A[—I]OX(_I::') and X9;100;3 [—1] = a;)'/\[—l]oX(_T:f).
(iii) Vm € H(A\) and v € Lg/p(\)(BwyB/B),

opa[—1](mP) =m  and op\[-1](v") = v.

4 Proof of the conjecture

Lemma 4.1 Let A € X' and recall from (2.9)(4) an injection h, €
BMod(HO(\), HY(wo))). There is an isomorphism

¥ € BMod(Lg/p(A)(BwyB/B), Hy(wo\)) such that 1 o res = hy.
In particular, Lg)p(A)(BwyB/B) is injective in BMod.

Proof. Put for simplicity U¢ = ¢~ = BwyB/B = woU*B/B. Define
a K-linear isomorphism

¥ : Schg(woU™, ) — Schg(U,woX) via f+— f(7w)

with inverse g — g(?wg?!). One then checks ¥ € BMod.

On the other hand, the Frobenius reciprocity yields

BMod(H"(\), HY(woA)) =~ TMod(H®(\), wol) ~ K,

hence, or directly, the assertion follows.
(4.2) Let grA (resp. grAp) be the category of N-graded K-algebras whose

homogeneous parts are G- (resp. B-) modules with G- (resp. B-) equivari-
ant multiplication.

Let A, u € Xt and set
(8) A = H le, with Q[m = Ho(m)\) QK H“(mu).

m>0

Under the cup product
(9) 2A € grA.
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Define also a B-module

- (10) By = Hj(mwyl) Qx H'(mu)

~ Lx(m))(BE) ®x H'(mp) by (4.1).
If B = II,n>0 B, the cup product makes
(11) B € grAp.
Under the restriction from X to 0§ on the first factor one has
(12) A<V in grAp.
In the notation of (3.8) define 0 € Modk (B, B) by

(13)

m

0-, — 0971)\[_1] Ok Ump,["” lfp l m
0 otherwise.

Upon restriction to 2 one has

(14) UI‘ZI,,, — {O'mz\[—].] Rk 011z;¢[—'1] if D l m

0 otherwise.

Lemma 4.3 o is a Frobenius splitting of B that stabilizes A. In particular,
A and B are both reduced.

Proof. By (3.9)(iii) o is a left inverse to the p-th power map on 8, hence
B is reduced by Ramanathan’s lemma (3.1). Moreover, by construction one
sees for each a € H%(rwp)) and b € H’(psA) with r,s € N,

Tpirsal—11(aPb) = aop, [=1](b) in By,

Hence o is a Frobenius splitting of *B.

(4.4) Let v € X, and set
(]‘) Ql(V) = H ‘7:;".1/(21')77.) and Ql+(l/) = H .7-',?;,/(2[.,”).

m>() m2>()
By (2.2)(ii)
(2) Av) <A in grA with AT (v) S AQw).
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It Q[“(V) = A(v)/A*(v) = Wm0 f;(r);,u(mm)a then

(3) A°(v) € grA”.

Define likewise

(4) B(v) = "go Fow(Bm), Bt (v) = 1}210 Fr(Bn),
and set

(5) Bv) = B(v)/B*(v) = I_>I0 Fow(Bin) € grAp.
Then

(6) A1) < B%v) in grA%.

Also by (4.1) and (2.3)(4)

(7 B°(v) is injective in BMod.

Proposition 4.5 The Frobenius splitting o of B stabilizes B(v), A(v),
BT (v), and A" (v) for all v € X. Hence o induces a Frobenius splitting
o'(v) of BO(v) that stabilizes A°(v).

Proof. We will show o stabilizes 8(v). The rest follows likewise.
As o vanishes on B,, if ptm, it is enough to show
(1) U('y:])vr)u%z)m) - ]Tmu(%m) vm € N.
By (3.9)(i) one has for all n and ' € X
(2) G(Hg(pmwo)\)-,, QK H()(pmu).,,') =
| Hj (mw(,/\) QK Ho(m,u) y ifn,n €pX
0 otherwise.

Moreover, for each a € S, 7 € N, and z € HO B(EMwoN)py, v € HO(pmu)y
with 7,7’ € X one has
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® X0 oz @y) = S (XD e X5 Noeey) (L (L3)(T)

= o(X(X% o X% M (z®y)) by (3.9)(i)

i=0
pr (l) (p,,._,')

= (L (X e X2 Nz ®y)) by (2)

= (X" (z®y))

€ 0'(-7'—1)mu%pm)-

Hence o(FpnuBpm) < By in Dist(U_o)Mod for each a« € S, so

0 (FpmvBpn) < By in U_,Mod (cf. (1.3)(5)). Consequently, together
with (2) one gets

(4) o (FpmvBpm) < B, in BMod,
hence by (2) again

(5) o (FpmvBpn) < FinvBm,

as desired.

Theorem 4.6 Let A\, € Xt. The G-module H°()\) @ H(1) admits a
good filtration.

Proof. Put M = H°(\) ®x H°(1). Consider the G-filtration of M by
FIM), v € X (2.2)(iii). It suffices by (2.7)(iv) to show

(1) Fo(M) = FLE(F)(M)) VveX

For that, as F2(M) — A%(v),, it will be enough to show more generally
(2) A (v) = FE@A(v)).

One has in grAjp

3)  A(v) < FEA(v) < Ep(A'(v)) by (2.9)

Ez(3B°(v)) as A'(v) < B(v) in grAy
BY(v) as BY(v) is already injective by (4.4)(7)."

<
<
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As A"(v) is reduced by (4.5), if (2) failed, then (2.12) would imply
(4) Im € N* and a € FER (1)) \ A°().n : a” € AV o
Then by (4.5) one would have

) a = 0°() (@) € () (A (W)pm) = W),

absurd.
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