On a theorem of O. Mathieu

KANEDA Masaharu

1 Introduction

(1.1) This is an elementary account of O. Mathieu's proof [M2] of S. Donkin's conjecture that if \mathfrak{G} is a connected affine algebraic group over an algebraically closed field and if M and M' are finite dimensional rational \mathfrak{G} -modules with good filtrations, then $M \otimes M'$ also admits a good filtration, where a \mathfrak{G} -filtration $0 = V^0 < V^1 < \ldots$ of a \mathfrak{G} -module $V = \bigcup_{i \geq 0} V^i$ is called good iff for each i there is a Borel subgroup \mathfrak{B} of \mathfrak{G} and a 1-dimensional rational \mathfrak{B} -module λ such that V^i/V^{i-1} is isomorphic to the rational \mathfrak{G} -module ind $\mathfrak{G}(\lambda)$ induced by λ . For the history and the significance of the conjecture one may refer to [D1], [D2], [W].

Although [M2] proves much more, we will focus only on the above problem. Instead we will complement more details to the terse arguments of [M2], and also give an alternative construction of what Mathieu calls the canonical Frobenius splitting, based on [K] that requires less algebraic geometry.

(1.2) In order not to obscure the main ideas, let us recall Mathieu's program of the proof, assuming the standard notations from [J], (II.1).

First there is a reduction by [D1] that we may assume \mathfrak{G} is simply connected and simple over an algebraically closed field of positive characteristic p with \mathfrak{B} a fixed Borel subgroup of \mathfrak{G} .

By a technical reason it is easier to work over the prime field \mathbf{F}_p , which we will denote by K. Thus let G be a simply connected simple K-group scheme with a maximal torus T split over \mathbf{Z} , B a Borel subgroup of G containing T, and U the unipotent radical of B. Let \mathbf{Grp}_K be the category

of K-groups, and $X = \mathbf{Grp}_K(T, \mathbf{GL}_1)$. The 1-dimensional B-modules are provided by X under the natural projection $B = U \rtimes T \to T$.

If M is a B-module, define a quasicoherent $\mathcal{O}_{G/B}$ -module $\mathcal{L}_{G/B}(M)$ by assigning to each open \mathfrak{V} of G/B

(1)
$$\mathcal{L}_{G/B}(M)(\mathfrak{V}) = \mathbf{Sch}_K(\pi^{-1}\mathfrak{V}, M)^B := \{ f \in \mathbf{Sch}_K(\pi^{-1}\mathfrak{V}, M) \mid f(A)(xb) = b^{-1}f(A)(x) \quad \forall x \in (\pi^{-1}\mathfrak{V})(A), b \in B(A), A \in \mathbf{Alg}_K \},$$

where $\operatorname{\mathbf{Sch}}_K$ (resp. $\operatorname{\mathbf{Alg}}_K$) denotes the category of K-schemes (resp. commutative K-algebras) and $\pi \in \operatorname{\mathbf{Sch}}_K(G,G/B)$ is the quotient morphism. Then $\mathcal{L}_{G/B}(M)$ comes equipped with a structure of G-equivariant sheaf on G/B. In particular, we will abbreviate the G-module $\mathcal{L}_{G/B}(M)(G/B)$ as $H^0(M)$. Then Donkin's conjecture reads that for each λ and $\mu \in X$,

(2) $H^0(\lambda) \otimes_K H^0(\mu)$ admits a G-filtration whose successive quotients are isomorphic to some $H^0(\nu)$, $\nu \in X$.

Let $R \subseteq X$ be the root system of G relative to T and choose a positive system R^+ of R so that the roots of U are $-R^+$. We refine the standard PO (partial order) \geq on X into an additive total order, denoted \succeq . Eg., if S is the simple system of R^+ , choose a **Q**-linearly independent set $(r_{\alpha})_{\alpha \in S}$ in \mathbb{R} with $r_{\alpha} > 0$ for each $\alpha \in S$. Then one gets a **Q**-linear injection

(3)
$$X \otimes_{\mathbf{Z}} \mathbf{Q} \longrightarrow \mathbf{R}$$
 such that $\alpha \otimes 1 \longmapsto r_{\alpha}, \quad \alpha \in S$.

Now for a *B*-module *M* let after [D1] $\mathcal{F}_{\nu}M$ (resp. $\mathcal{F}_{\nu}^{+}M$), $\nu \in X$, be the largest *B*-submodule of *M* all of whose weights are $\succeq \nu$ (resp. $\succ \nu$), and set $\mathcal{F}_{\nu}^{0}M = \mathcal{F}_{\nu}M/\mathcal{F}_{\nu}^{+}M$. Then

(4) \mathcal{F}_{ν} , \mathcal{F}_{ν}^{+} , and \mathcal{F}_{ν}^{0} all define idempotents

in the ring of endofunctors of BMod,

where \mathfrak{H} denotes the category of \mathfrak{H} -modules if \mathfrak{H} is a K-group. Define two subcategories of B denotes the category of \mathfrak{H} -modules if \mathfrak{H} is a K-group.

(5)
$$\mathbf{M}_{B}^{\nu} = \{ M \in B\mathbf{Mod} \mid \operatorname{soc}_{B}M \subseteq M_{\nu} \}$$

with $M_{\nu} = \{ m \in M \mid t(m \otimes 1) = m \otimes \nu(A)(t) \mid \forall t \in T(A), A \in \mathbf{Alg}_K \}$ the

 ν -weight space of M, and

(6)
$$\operatorname{\mathbf{gr}} \mathbf{A}_B^{\nu} = \{ \mathfrak{A} = \coprod_{n \geq 0} \mathfrak{A}_n \text{ graded } K\text{-algebra} \mid \mathfrak{A}_n \in \mathbf{M}_B^{n\nu} \quad \forall n \in \mathbf{N} \}$$

and the multiplication on \mathfrak{A} is B-equivariant $\}$.

Likewise define two subcategories of GMod

$$\mathbf{M}^{\nu} = \mathbf{M}_{B}^{\nu} \cap G\mathbf{Mod}$$

and

(8)
$$\operatorname{gr} \mathbf{A}^{\nu} = \{ \mathfrak{A} = \coprod_{n \geq 0} \mathfrak{A}_n \text{ graded } K\text{-algebra} \mid \mathfrak{A}_n \in \mathbf{M}^{n\nu} \quad \forall n \in \mathbf{N} \}$$

and the multiplication on $\mathfrak A$ is G-equivariant $\}$.

Resides the B-filtrations defined by $\mathcal F$ $\mathcal F^+$ and $\mathcal F^0$ another important.

Besides the *B*-filtrations defined by \mathcal{F}_{ν} , \mathcal{F}_{ν}^{+} , and \mathcal{F}_{ν}^{0} , another important ingredient of Mathieu's proof is a Frobenius splitting introduced by V.B. Mehta, S. Ramanan, and A. Ramanathan [MR], [RR], [R]. If \mathfrak{Y} is a *K*-scheme, let $F_{\mathfrak{Y}} \in \mathbf{Sch}_{K}(\mathfrak{Y}, \mathfrak{Y})$ be the Frobenius endomorphism of \mathfrak{Y} defined by $F_{\mathfrak{Y}}(A) = \mathfrak{Y}(\phi_{A})$ with $\phi_{A} \in \mathbf{Alg}_{K}(A, A)$ such that $a \mapsto a^{p}$. A Frobenius splitting of \mathfrak{Y} is a left inverse in $\mathbf{Mod}_{\mathfrak{Y}}$ the category of $\mathcal{O}_{\mathfrak{Y}}$ -modules to the structure morphism $F_{\mathfrak{Y}}^{\mathfrak{f}}: \mathcal{O}_{\mathfrak{Y}} \to F_{\mathfrak{Y}*}\mathcal{O}_{\mathfrak{Y}}$. In particular, a *K*-linear left inverse ψ to ϕ_{A} with $\psi(a^{p}b) = a\psi(b) \ \forall a,b \in A$ is called a Frobenius splitting of A.

We are now ready to describe Mathieu's program. Let λ , $\mu \in X$ and $V = H^0(\lambda) \otimes_K H^0(\mu)$. Filter V by $\mathcal{F}^0_{\nu}V$, $\nu \in X$. One checks

(9) each $\mathcal{F}^0_{\nu}V$ inherits the structure of G-module from M such that $\mathcal{F}^0_{\nu}V\in\mathbf{M}^{\nu}$.

If E(?) denotes the injective hull in $G\mathbf{Mod}$, one has

(10)
$$\mathcal{F}_{\nu}^{0}V \leq \mathcal{F}_{\nu}E(\mathcal{F}_{\nu}^{0}V).$$

On the other hand, if $\mathcal{F}^0_{\nu}V \neq 0$, then

(11) $w_0 \nu$ is the highest weight of $\mathcal{F}^0_{\nu} V$ in the standard PO, where w_0 is the element of the Weyl group $W = N_G(T)/T$ such that $w_0 R^+ = -R^+$. If $(\mathcal{F}^0_{\nu} V)^{w_0 \nu} = (\mathcal{F}^0_{\nu} V)/\sum_{\eta \neq w_0 \nu} (\mathcal{F}^0_{\nu} V)_{\eta}$, then

(12)
$$\mathcal{F}_{\nu}E(\mathcal{F}_{\nu}^{0}V) \simeq H^{0}((\mathcal{F}_{\nu}^{0}V)^{w_{0}\nu})$$
 that is a direct sum of $H^{0}(w_{0}\nu)$.

Hence if the equality holds in (10), we will be done.

To see that, Mathieu considers

(13)
$$\mathfrak{A}^{0}(\nu) = \coprod_{n\geq 0} \mathcal{F}_{n\nu}^{0}(H^{0}(n\lambda) \otimes_{K} H^{0}(n\mu))$$
 and
$$\mathcal{F}E(\mathfrak{A}^{0}(\nu)) = \coprod_{n\geq 0} \mathcal{F}_{n\nu}E(\mathfrak{A}^{0}(\nu)_{n}),$$

where $\mathfrak{A}^0(\nu)_n$ is the *n*-th component of $\mathfrak{A}^0(\nu)$. Under the cup product both $\mathfrak{A}^0(\nu)$ and $\mathcal{F}E(\mathfrak{A}^0(\nu))$ are made into objects of $\mathbf{gr}\mathbf{A}^{\nu}$ such that

(14)
$$\mathfrak{A}^{0}(\nu) \leq \mathcal{F}E(\mathfrak{A}^{0}(\nu)).$$

If $\mathfrak{B}^0(\nu) = \coprod_{n\geq 0} \mathcal{F}^0_{n\nu}(\mathcal{L}_{G/B}(n\lambda)(Bw_0B/B) \otimes_K H^0(n\mu))$, then $\mathfrak{B}^0(\nu)$ is an object of $\operatorname{\mathbf{gr}} \mathbf{A}^{\nu}_B$ under the cup product such that

(15)
$$\mathfrak{A}^{0}(\nu) \leq \mathcal{F}E(\mathfrak{A}^{0}(\nu)) \leq \mathfrak{B}^{0}(\nu).$$

If the equality were to fail in (14), one could find

(16)
$$m \in \mathbb{N}^+$$
 and $a \in \mathcal{F}E(\mathfrak{A}^0(\nu))_m \setminus \mathfrak{A}^0(\nu)$ such that $a^p \in \mathfrak{A}^0(\nu)_{pm}$.

But

(17) $\mathfrak{B}^0(\nu)$ admits a Frobenius splitting $\sigma^0(\nu)$ that stabilizes $\mathfrak{A}^0(\nu)$. Hence

(18)
$$a = \sigma^{0}(\nu)(a^{p}) \in \sigma^{0}(\nu)(\mathfrak{A}^{0}(\nu)_{pm}) \subseteq \mathfrak{A}^{0}(\nu),$$

that is a contradiction.

The assertion (16) was a difficult (to the present author) point in [M2]. I have included full detail of the argument in (2.11/12). In (17) I will use the Frobenius splitting on $\mathfrak{G}/\mathfrak{B}$ associated to a lowest weight vector of the Steinberg module, that incidentally splits all the Schubert subschemes simultaneously [K].

(1.3) To be precise, let us intoroduce some more notations and recall some standard facts from the representation theory.

If \mathfrak{H} and \mathfrak{K} are K-groups with $\mathfrak{K} \leq \mathfrak{H}$, one has an exact functor (cf. [J], (I.5.9))

$$\mathcal{L}_{\mathfrak{H}/\mathfrak{K}}: \mathfrak{K} \mathbf{Mod} \longrightarrow \mathbf{Mod}_{\mathfrak{H}/\mathfrak{K}}$$

generalizing the construction of (1.2)(1). If \mathfrak{H}' is a K-subgroup of \mathfrak{H} , \mathfrak{V} an open of $\mathfrak{H}/\mathfrak{K}$ such that $\pi^{-1}\mathfrak{V}$ is \mathfrak{H}' -stable under the multiplication from the left, and if $M \in \mathfrak{K}\mathbf{Mod}$, then $\mathcal{L}_{\mathfrak{H}/\mathfrak{K}}(M)(\mathfrak{V}) = \mathbf{Sch}_K(\pi^{-1}\mathfrak{V}, M)^{\mathfrak{K}}$ affords an \mathfrak{H}' -module such that

(2)
$$(xf)(A')(y) = f(A')(x^{-1}y),$$

 $x \in \mathfrak{H}'(A), A \in \mathbf{Alg}_K, A' \in \mathbf{Alg}_A, y \in (\pi^{-1}\mathfrak{V})(A'),$

where $\pi: \mathfrak{H} \to \mathfrak{H}/\mathfrak{K}$ is the quotient morphism. In particular, $\mathcal{L}_{\mathfrak{H}/\mathfrak{K}}(M)(\mathfrak{H}/\mathfrak{K})$ defines an \mathfrak{H} -module that we denote by $\operatorname{ind}_{\mathfrak{K}}^{\mathfrak{H}}M$. Then $\operatorname{ind}_{\mathfrak{K}}^{\mathfrak{H}}$ defines a functor $\mathfrak{K}\operatorname{Mod} \to \mathfrak{H}\operatorname{Mod}$, that is left adjoint to the forgetful functor $\mathfrak{H}\operatorname{Mod} \to \mathfrak{K}\operatorname{Mod}$: $\forall M \in \mathfrak{K}\operatorname{Mod}$ and $V \in \mathfrak{H}\operatorname{Mod}$, there is a K-linear isomorphism

(3)
$$\mathfrak{K}\mathbf{Mod}(V, M) \longrightarrow \mathfrak{H}\mathbf{Mod}(V, \operatorname{ind}_{\mathfrak{K}}^{\mathfrak{H}}M)$$
 written $\psi \longmapsto \hat{\psi}$

with $\psi = \varepsilon \circ \hat{\psi}$, where $\varepsilon = \varepsilon_M \in \mathfrak{K}\mathbf{Mod}(\mathrm{ind}_{\mathfrak{K}}^{\mathfrak{H}}M, M)$ such that

(4)
$$f \longmapsto f(K)(1), \quad f \in \operatorname{ind}_{\mathfrak{K}}^{\mathfrak{H}} M = \operatorname{\mathbf{Sch}}_{K}(\mathfrak{H}, M)^{\mathfrak{K}}.$$

The isomorphism (3) is called a Frobenius reciprocity.

We will denote the algebra of distributions on \mathfrak{K} by $\mathrm{Dist}(\mathfrak{K})$. If \mathfrak{K} is noetherian and integral, and if M' is a K-linear subspace of M, then (cf. [J], (I.7.15))

(5)
$$M \leq M'$$
 in $\mathfrak{A}\mathbf{Mod}$ iff $M \leq M'$ in $\mathrm{Dist}(\mathfrak{K})\mathbf{Mod}$.

Let $\alpha \in R$ and U_{α} the associated root subgroup of G. Writing $K[U_{\alpha}] = K[t]$, define $X_{\alpha}^{(n)} \in \text{Dist}(U_{\alpha}), n \in \mathbb{N}$, by

(6)
$$X_{\alpha}^{(n)}(t^{m}) = \delta_{nm} \quad \forall m \in \mathbf{N}.$$

Under the comultiplication of $\mathrm{Dist}(U_{\alpha})$ one has

(7)
$$X_{\alpha}^{(n)} \longmapsto \sum_{i=0}^{n} X_{\alpha}^{(i)} \otimes X_{\alpha}^{(n-i)}.$$

Let X^+ be the set of dominant weights. If $\lambda \in X^+$, then (cf. [J], (II.2.2))

(8) λ is the highest weight of $H^0(\lambda)$

with
$$H^0(\lambda)_{\lambda} = H^0(\lambda)^{U^+}$$
 of dimension 1.

Moreover (cf. [J], (II.2.3/2.4))

- (9) $H^0(\lambda)$ has a simple socle of highest weight λ , that we will denote by $L(\lambda)$.
- (1.4) We list the nonstandard notations employed in this note.

$$K = \mathbf{F}_p$$
 $H_B^0(?) = \operatorname{ind}_T^B(?)$
 $E(?)$ injective hull in $G\mathbf{Mod}$
 $E_B(?)$ injective hull in $B\mathbf{Mod}$

$$\mathfrak{X} = G/B$$

$$\mathfrak{X}_1 = G/G_1B \quad \text{with } G_1 = \ker F_G \text{ the Frobenius kernel of } G$$
 $q \in \mathbf{Sch}_K(G/B, G/G_1B) \quad \text{the quotient morphism}$

$$\mathfrak{V}_0 = Bw_0B/G_1B = w_0U^+B/G_1B \quad \text{with } U^+ = w_0^{-1}Uw_0$$

$$\mathfrak{V}_0^q = q^{-1}\mathfrak{V}_0$$
 $M^{\nu} = M/\sum_{\eta \in X \setminus \{\nu\}} M_{\eta} \quad \text{if } M \text{ is a } B\text{-module with } \nu \text{ a maximal weight}$
of M in the standard PO on X .

For \mathbf{M}_B^{ν} , $\mathbf{gr}\mathbf{A}_B^{\nu}$, \mathbf{M}^{ν} , and $\mathbf{gr}\mathbf{A}^{\nu}$ see (1.2)(5), (6), (7), and (8), respectively.

During the preparation of the manuscript, I learned the publication of [vdK], that covers an entire aspect of [M2]. There is also a novel proof of Donkin's conjecture by J. Paradowski [P], who uses quantum groups. I'd like to thank the referee for critical reading of the manuscript, hoping the present note may still be of some help in reading [M2].

2 Filtrations of B-modules

Lemma 2.1 (i) The simple B-modules are 1-dimensional.

- (ii) If $M \in B\mathbf{Mod}$ and $\nu \in X$, then $\mathcal{F}^0_{\nu}M \in \mathbf{M}^{\nu}_{B}$.
- (iii) $\forall \nu \in X$, $E_B(\nu) \simeq H_B^0(\nu) \simeq K[U] \otimes_K \nu$ in $B\mathbf{Mod}$, hence the formal character of $E_B(\nu)$ is $\operatorname{ch} E_B(\nu) = e^{\nu} \prod_{\alpha \in R^+} \frac{1}{1-e^{\alpha}}$.
- (iv) If $\lambda \in X^+$, then $\operatorname{soc}_B H^0(\lambda) = H^0(\lambda)_{w_0\lambda} = L(\lambda)_{w_0\lambda} = \operatorname{soc}_B L(\lambda)$ while $\operatorname{hd}_B L(\lambda) = L(\lambda)^{\lambda}$, both of dimension 1.

Proof. (i) follows from the local finiteness of B-modules (cf. [J], (I.2.13)). Then (ii) follows from (i). Also $\operatorname{soc}_B H_B^0(\nu) = \nu$ by the Frobenius reciprocity. As ν is injective in $T\mathbf{Mod}$, $H_B^0(\nu)$ remains injective in $B\mathbf{Mod}$ again by the Frobenius reciprocity, hence $H_B^0(\nu) \simeq E_B(\nu)$. Then

(10)
$$\operatorname{ch} E_B(\nu) = \operatorname{ch} H_B^0(\nu) = \operatorname{ch} \mathbf{Sch}_K(B, \nu)^T = e^{\nu} \prod_{\alpha \in R^+} \frac{1}{1 - e^{\alpha}}.$$

Finally, as $w_0\lambda$ is the lowest weight of $H^0(\lambda)$ (cf. (1.3)(8))

(11)
$$H^0(\lambda)_{w_0\lambda} \le \operatorname{soc}_B H^0(\lambda).$$

On the other hand,

(12)
$$\operatorname{soc}_{B}H^{0}(\lambda) \leq H^{0}(\lambda)^{U} \text{ by (i)}$$

= $w_{0}(H^{0}(\lambda)^{U^{+}}) = H^{0}(\lambda)_{w_{0}\lambda} \text{ (cf. (1.3)(8))}.$

Hence $H^0(\lambda)_{w_0\lambda} = \operatorname{soc}_B H^0(\lambda)$. As $\dim H^0(\lambda)_{w_0\lambda} = \dim H^0(\lambda)_{\lambda} = 1$ (cf. (1.3)(8)), one also obtains

(13)
$$L(\lambda)_{w_0\lambda} = \operatorname{soc}_B L(\lambda) = \operatorname{soc}_B H^0(\lambda).$$

Then

(14)
$$\operatorname{hd}_B L(\lambda) \simeq (\operatorname{soc}_B(L(\lambda)^*))^* \simeq (\operatorname{soc}_B(L(-w_0\lambda)^*))^* \simeq (-\lambda)^* \simeq \lambda,$$

hence $\operatorname{rad}_B L(\lambda) = \sum_{\eta \neq \lambda} L(\lambda)_{\eta}.$

Lemma 2.2 Let $\nu \in X$.

- (i) \mathcal{F}_{ν} and \mathcal{F}_{ν}^{+} are both left exact. Also \mathcal{F}_{ν}^{0} preserves imbeddings.
- (ii) \mathcal{F}_{ν} , \mathcal{F}_{ν}^{+} , and \mathcal{F}_{ν}^{0} all commute with filtered direct limits.
- (iii) If $M \in G\mathbf{Mod}$, then $\mathcal{F}_{\nu}M$, $\mathcal{F}_{\nu}^{+}M$, and $\mathcal{F}_{\nu}^{0}M$ all inherit the structure of G-modules such that $\mathcal{F}_{\nu}^{0}M \in \mathbf{M}^{\nu}$.

Proof. (i) and (ii) follow from the definitions.

(iii) As $Dist(G) = Dist(U^+)Dist(B)$,

(1)
$$\operatorname{Dist}(G)(\mathcal{F}_{\nu}M) = \operatorname{Dist}(U^{+})(\mathcal{F}_{\nu}M) \subseteq \mathcal{F}_{\nu}M,$$

hence $\mathcal{F}_{\nu}M \leq M$ in $G\mathbf{Mod}$ (cf. (1.3)(5)). Likewise

(2)
$$\mathcal{F}_{\nu}^{+}M \leq M \quad \text{in } G\mathbf{Mod}.$$

Then $\mathcal{F}^0_{\nu}M$ comes equipped with a structure of G-module with $\mathcal{F}^0_{\nu}M \in \mathbf{M}^{\nu}$ by (2.1)(ii).

Eg. 2.3 Let $\nu, \eta \in X$. As $\operatorname{soc}_B E_B(\eta) = \eta$ and as $\operatorname{ch} E_B(\eta) = e^{\eta} \prod_{\alpha \in R^+} \frac{1}{1 - e^{\alpha}}$ by (2.1), one finds

(1)
$$\mathcal{F}_{\nu}E_{B}(\eta) = \begin{cases} E_{B}(\eta) & \text{if } \nu \leq \eta \\ 0 & \text{otherwise,} \end{cases}$$

(2)
$$\mathcal{F}_{\nu}^{+}E_{B}(\eta) = \begin{cases} E_{B}(\eta) & \text{if } \nu \prec \eta \\ 0 & \text{otherwise,} \end{cases}$$

(3)
$$\mathcal{F}_{\nu}^{0}E_{B}(\eta) = \begin{cases} E_{B}(\eta) & \text{if } \nu = \eta \\ 0 & \text{otherwise.} \end{cases}$$

Hence one sees from (2.2)(ii) that

(4) if $M \in B\mathbf{Mod}$ is injective,

then $\mathcal{F}_{\nu}M,\,\mathcal{F}_{\nu}^{+}M,\,$ and $\mathcal{F}_{\nu}^{0}M$ all remain injective .

Lemma 2.4 Let $\nu \in X$ and $\lambda \in X^+$.

(i) One has

$$\mathcal{F}_{
u}L(\lambda) = egin{cases} L(\lambda) & \textit{if }
u \preceq w_0 \lambda \ 0 & \textit{otherwise}, \end{cases}$$
 $\mathcal{F}_{
u}^+L(\lambda) = egin{cases} L(\lambda) & \textit{if }
u \prec w_0 \lambda \ 0 & \textit{otherwise}, \end{cases}$

$$\mathcal{F}_{\nu}^{0}L(\lambda) = egin{cases} L(\lambda) & if \
u = w_{0}\lambda \\ 0 & otherwise, \end{cases}$$
 $\mathcal{F}_{\nu}H^{0}(\lambda) = egin{cases} H^{0}(\lambda) & if \
u \preceq w_{0}\lambda \\ 0 & otherwise, \end{cases}$
 $\mathcal{F}_{\nu}^{+}H^{0}(\lambda) = egin{cases} H^{0}(\lambda) & if \
u \prec w_{0}\lambda \\ 0 & otherwise, \end{cases}$
 $\mathcal{F}_{\nu}^{0}H^{0}(\lambda) = egin{cases} H^{0}(\lambda) & if \
u = w_{0}\lambda \\ 0 & otherwise. \end{cases}$

(ii) If $Q(\lambda) = E(L(\lambda))$, then in GMod

$$\mathcal{F}_{w_0\lambda}Q(\lambda) = \mathcal{F}_{w_0\lambda}^0Q(\lambda) \simeq H^0(\lambda).$$

Proof. (i) follows from (2.1)(iv).

(ii) Put $\nu = w_0 \lambda$. If $\mathcal{F}_{\nu}^+ Q(\lambda) \neq 0$, then

$$L(\lambda) = \operatorname{soc}_G Q(\lambda) \le \mathcal{F}_{\nu}^+ Q(\lambda)$$
 by (2.2)(iii),

hence $w_0 \lambda \succ \nu$, absurd. Consequently, it is enough to show

(1)
$$\mathcal{F}_{\nu}Q(\lambda) \simeq H^0(\lambda)$$
 in $G\mathbf{Mod}$.

As $\operatorname{soc}_G H^0(\lambda) = L(\lambda)$ (cf. (1.3)(9)), one may regard $H^0(\lambda) \leq Q(\lambda)$. Then

(2)
$$\mathcal{F}_{\nu}Q(\lambda) \geq \mathcal{F}_{\nu}H^{0}(\lambda) = H^{0}(\lambda) \text{ by (i)}.$$

On the other hand, $Q(\lambda)$ admits a good filtration (cf. [J], (II.4.18)) with

(3)
$$(Q(\lambda): H^0(\mu)) = [H^0(\mu): L(\lambda)] \quad \forall \mu \in X^+,$$

where the LHS (resp. RHS) is the multiplicity of $H^0(\mu)$ (resp. $L(\lambda)$) in the good filtration (resp. the composition series) of $Q(\lambda)$ (resp. $H^0(\mu)$). Moreover, we may assume $H^0(\lambda)$ appears at the bottom of the filtration [J], (II.6.20).

Put
$$V = Q(\lambda)/H^0(\lambda)$$
 and just suppose $(\mathcal{F}_{\nu}Q(\lambda))/H^0(\lambda) \neq 0$. Then $\exists \mu \in X^+ : L(\mu) \leq (\mathcal{F}_{\nu}Q(\lambda))/H^0(\lambda) \leq V$.

Let $v \in L(\mu) \setminus 0$, and $0 = V^0 < V^1 < \dots$ a good filtration of V with $V^i/V^{i-1} \simeq H^0(\lambda_i)$. If $v \in V^j \setminus V^{j-1}$, then

$$L(\mu) \le V^j/V^{j-1} \simeq H^0(\lambda_j),$$

hence $\mu = \lambda_i$ (cf. (1.3)(9)). But $\lambda_i > \lambda$ by (3), hence

$$\nu = w_0 \lambda > w_0 \lambda_j = w_0 \mu$$
 a weight of $L(\mu)$,

absurd.

Proposition 2.5 Let $\nu \in X$, $M \in \mathbf{M}_B^{\nu}$, and fix an imbedding of M into $E_B(M)$ in $B\mathbf{Mod}$.

- (i) If $M \neq 0$, then ν is the lowest weight of M in the standard PO. In particular, $\mathcal{F}_{\nu}M = M$. Also $\mathcal{F}_{\nu}^{+}M = 0$, hence $\mathcal{F}_{\nu}^{0}M = M$.
- (ii) $\operatorname{soc}_B E_B(M) = \operatorname{soc}_B M = M_{\nu}$, hence $E_B(M) \in \mathbf{M}_B^{\nu}$. Also $E_B(M) \simeq H_B^0(M_{\nu})$ in BMod with $\hat{\pi}_{\nu} \in \operatorname{BMod}(M, H_B^0(M_{\nu}))$ injective if $\pi_{\nu} \in \operatorname{TMod}(M, M_{\nu})$ is the natural projection.
- (iii) If $\eta \in X$, $M' \in \mathbf{M}_B^{\eta}$, and if $i_B : M \otimes_K M' \to E_B(M) \otimes_K E_B(M')$ is the natural imbedding, then $\mathcal{F}_{\nu+\eta}^0(i_B)$ restricts to an isomorphism from

$$\operatorname{soc}_{B}\mathcal{F}^{0}_{\nu+\eta}(M\otimes_{K}M') = \{\mathcal{F}^{0}_{\nu+\eta}(M\otimes_{K}M')\}_{\nu+\eta}$$

$$\simeq M_{\nu}\otimes_{K}M'_{\eta} \quad under \ the \ natural \ projection$$

onto

$$\operatorname{soc}_B \mathcal{F}^0_{\nu+\eta}(E_B(M) \otimes_K E_B(M')) = \mathcal{F}^0_{\nu+\eta}(E_B(M) \otimes_K E_B(M'))_{\nu+\eta}.$$

Hence one has also isomorphisms in BMod

$$\mathcal{F}^0_{\nu+\eta}(E_B(M)\otimes_K E_B(M'))\simeq E_B(M_\nu\otimes_K M'_\eta)\simeq E_B(\mathcal{F}^0_{\nu+\eta}(M\otimes_K M'))$$

Proof. (i) If $m \in M_{\lambda} \setminus 0$, $\lambda \in X$, then $\mathrm{Dist}(B)m$ is a finite dimensional submodule of M, hence $\nu \leq \lambda$.

(ii) By (i) $M_{\nu} \leq \operatorname{soc}_{B}M$, hence $M_{\nu} = \operatorname{soc}_{B}M = \operatorname{soc}_{B}E_{B}(M)$. Then $E_{B}(M) \in \mathbf{M}_{B}^{\nu}$, and also $E_{B}(M) \simeq H_{B}^{0}(M_{\nu})$ (cf. (2.1)(iii)). As $\varepsilon \circ \hat{\pi}_{\nu} \mid_{\operatorname{soc}_{B}M} = \operatorname{id}_{\operatorname{soc}_{B}M}$, $\hat{\pi}_{\nu}$ is injective.

(iii) By (ii) we may assume
$$i_B = \hat{\pi}_{\nu} \otimes_K \hat{\pi}_{\eta}$$
. Then

$$\operatorname{soc}_B \mathcal{F}^0_{\nu+\eta}(H^0_B(M) \otimes_K H^0_B(M'))$$

$$= \mathcal{F}_{\nu+\eta}^{0}(H_{B}^{0}(M) \otimes_{K} H_{B}^{0}(M'))_{\nu+\eta}$$
 by (ii) and (2.1)(ii)

$$\simeq H_B^0(M)_{\nu} \otimes_K H_B^0(M')_{\eta}$$
 as ν (resp. η) is the lowest weight of $H_B^0(M)$ (resp. $H_B^0(M')$) by (i) and the character formula (2.1)(iii)

$$= M_{\nu} \otimes_{K} M'_{n}$$

$$\simeq \mathcal{F}_{\nu+\eta}^0(M\otimes_K M')_{\nu+\eta} = \operatorname{soc}_B \mathcal{F}_{\nu+\eta}^0(M\otimes_K M'),$$

where the two isomorphisms are both induced by the natural projections.

As any T-module is injective, $H_B^0(M) \otimes_K H_B^0(M')$ is injective in B**Mod** by the Frobenius reciprocity (cf. [J], (I.3.10) or by the tensor identity). As $\mathcal{F}^0_{\nu+\eta}(H_B^0(M) \otimes_K H_B^0(M'))$ remains injective by (2.3)(4), the last assertion also follows.

Corollary 2.6 Let $\nu \in X$, $A \in \operatorname{gr} A_B^{\nu}$, and $E_B(A) = \coprod_{n \geq 0} E_B(A_n)$. Then one can make $E_B(A)$ into an object of $\operatorname{gr} A_B^{\nu}$ uniquely such that $A \leq E_B(A)$ in $\operatorname{gr} A_B^{\nu}$. If A is commutative (resp. commutative and reduced), then $E_B(A)$ is also commutative (resp. commutative and reduced).

Proof. Take after (2.5)

(1)
$$E_B(A_n) = H_B^0(A_{n,n\nu}) \quad \forall n \in \mathbf{N},$$

and fix an imbedding

(2)
$$j_n^B = \hat{\pi}_{n\nu} \in B\mathbf{Mod}(A_n, H_B^0(A_{n,n\nu})).$$

Thus if $i_n^B: A_{n,n\nu} \hookrightarrow A_n$, then

(3)
$$\varepsilon \circ j_n^B \circ i_n^B = \pi_{n\nu} \circ i_n^B = \mathrm{id}_{A_{n,n\nu}},$$

where $\pi_{n\nu} \in T\mathbf{Mod}(A_n, A_{n\nu})$ is the natural projection.

If $\gamma_{nm}^B: A_n \otimes_K A_m \to A_{n+m}$ is the multiplication on A, define

$$\tilde{\gamma}_{nm}^B \in B\mathbf{Mod}(E_B(A_n) \otimes_K E_B(A_m), E_B(A_{n+m}))$$

to be $\{\gamma_{nm}^B\mid_{A_{n,n\nu}\otimes_K A_{m,m\nu}} \circ (\varepsilon \otimes_K \varepsilon)\}$:

$$(4) \qquad E_{B}(A_{n}) \otimes_{K} E_{B}(A_{m}) \xrightarrow{---} E_{B}(A_{n+m})$$

$$\downarrow^{\varepsilon}$$

$$A_{n,n\nu} \otimes_{K} A_{m,m\nu} \xrightarrow{\gamma_{nm}^{B}} A_{n+m,(n+m)\nu}.$$

We must show

(5)
$$\tilde{\gamma}_{nm}^{B} \circ (j_{n}^{B} \otimes_{K} j_{m}^{B}) = j_{n+m}^{B} \circ \gamma_{nm}^{B},$$

and that the multiplication on $E_B(A)$ defined by $\tilde{\gamma}_{nm}^B$, $n, m \in \mathbb{N}$, is associative: $\forall n, m, \ell \in \mathbb{N}$,

(6)
$$\tilde{\gamma}_{n,m+\ell}^{B} \circ (E_B(A_n) \otimes_K \tilde{\gamma}_{m\ell}^{B}) = \tilde{\gamma}_{n+m,\ell}^{B} \circ (\tilde{\gamma}_{nm}^{B} \otimes_K E_B(A_\ell)).$$

First by (2.5)(ii) and (i)

(7)
$$\mathcal{F}_{(n+m)\nu}^{0} E_{B}(A_{n+m}) = E_{B}(A_{n+m}),$$

hence both sides of (5) factor through $\mathcal{F}^0_{(n+m)\nu}(A_n \otimes_K A_m)$. Then to see (5), it is enough to show that both sides of (5) induced on $\mathcal{F}^0_{(n+m)\nu}(A_n \otimes_K A_m)$ agree on $\operatorname{soc}_B \mathcal{F}^0_{(n+m)\nu}(A_n \otimes_K A_m)$. On the other hand, the natural projection induces by (2.5)(iii) an isomorphism

(8)
$$A_{n,n\nu} \otimes_K A_{m,m\nu} \longrightarrow \operatorname{soc}_B \mathcal{F}^0_{(n+m)\nu} (A_n \otimes_K A_m).$$

Hence we have only to check with $i_{nm}^B=i_n^B\otimes_K i_m^B$ and $j_{nm}^B=j_n^B\otimes_K j_m^B$

(9)
$$\tilde{\gamma}_{nm}^B \circ j_{nm}^B \circ i_{nm}^B = j_{n+m}^B \circ \gamma_{nm}^B \circ i_{nm}^B,$$

that will also imply by (2.5)(iii) the unicity of the multiplication on $E_B(A)$ extending that of A. But the image of the LHS of (9) is contained in $E_B(A_{n+m})_{(n+m)\nu}$, that is $A_{n+m,(n+m)\nu}$ by (2.5)(ii). Hence

(10) LHS =
$$j_{n+m}^{B} \circ i_{n+m}^{B} \circ \varepsilon \circ \tilde{\gamma}_{nm}^{B} \circ j_{nm}^{B} \circ i_{nm}^{B}$$

= $j_{n+m}^{B} \circ \gamma_{nm}^{B} \circ i_{nm}^{B} \circ (\varepsilon \otimes_{K} \varepsilon) \circ j_{nm}^{B} \circ i_{nm}^{B}$ by (4)
= RHS by (3),

as desired.

Likewise, to see (6), as both sides of (6) factor through $\mathcal{F}^0_{(n+m+\ell)\nu}(E_B(A_n) \otimes_K E_B(A_m) \otimes_K E_B(A_\ell))$ and as $j_n^B \otimes_K j_m^B \otimes_K j_\ell^B$ induces a bijection

 $(11) \quad A_{n,n\nu} \otimes_K A_{m,m\nu} \otimes_K A_{\ell,\ell\nu} \longrightarrow$

$$\operatorname{soc}_B \mathcal{F}^0_{(n+m+\ell)\nu}(E_B(A_n) \otimes_K E_B(A_m) \otimes_K E_B(A_\ell)),$$

one has only to show with $j_{nm\ell}^B=j_n\otimes_K j_m\otimes_K j_\ell$ and $i_{nm\ell}^B=i_n\otimes_K i_m\otimes_K i_\ell$

$$(12) \quad \tilde{\gamma}_{n,m+\ell}^{B} \circ (E_B(A_n) \otimes_K \tilde{\gamma}_{m,\ell}^{B}) \circ j_{nm\ell}^{B} \circ i_{nm\ell}^{B} = \tilde{\gamma}_{n+m,\ell}^{B} \circ j_{nm\ell}^{B} \circ i_{nm\ell}^{B}.$$

But the image of the LHS is contained in $A_{n+m+\ell,(n+m+\ell)\nu}$, hence (12) follows as in (10).

If A is commutative, then one can argue likewise to show

(13)
$$\tilde{\gamma}_{mn}^{B} \circ \tau_{nm} = \tilde{\gamma}_{nm}^{B} \quad \forall n, m \in \mathbf{N},$$

where $\tau_{nm}: E_B(A_n) \otimes_K E_B(A_m) \to E_B(A_m) \otimes_K E_B(A_n)$ is the transposition. Hence $E_B(M)$ will be commutative.

Assume finally that A is commutative and reduced. Just suppose $x \in E_B(A_n) \setminus 0$ is nilpotent. Then the B-submodule Dist(B)x = KBx (cf. (1.3)(5) and [J], (I.2.13)) of $E_B(A_n)$ would consist of nilpotents. But

$$0 \neq \operatorname{soc}_B(KBx) \leq \operatorname{soc}_B E_B(A_n) = \operatorname{soc}_B(A_n).$$

Hence A_n would contain a nonzero nilpotent, absurd.

Proposition 2.7 Let $\nu, \eta \in X$, and $M \in \mathbf{M}^{\nu}$, $N \in \mathbf{M}^{\eta}$.

- (i) If $M \neq 0$, then $w_0\nu$ is the highest weight of M in the standard PO.
- (ii) If we regard $M \leq E(M)$, then

$$M_{\nu} = \operatorname{soc}_{B} M = (\operatorname{soc}_{G} M)_{\nu} = \operatorname{soc}_{B} \mathcal{F}_{\nu} E(M) = \{\mathcal{F}_{\nu} E(M)\}_{\nu},$$

hence $\mathcal{F}_{\nu}E(M) \in \mathbf{M}^{\nu}$ that is an injective hull of M in \mathbf{M}^{ν} .

- (iii) $\operatorname{hd}_B \operatorname{soc}_G M = (\operatorname{soc}_G M)^{w_0 \nu} \simeq M^{w_0 \nu}$ in B**Mod** with the isomorphism induced by the inclusion.
- (iv) $\mathcal{F}_{\nu}E(M) \simeq H^0(M^{w_0\nu})$ in GMod with $\hat{\pi}^{w_0\nu} \in GMod(M, H^0(M^{w_0\nu}))$ injective if $\pi^{w_0\nu} \in BMod(M, M^{w_0\nu})$ is the natural projection. In particular, $\mathcal{F}_{\nu}E(M)$ is a direct sum of $H^0(w_0\nu)$, and $\operatorname{soc}_G\mathcal{F}_{\nu}E(M) \simeq \operatorname{soc}_GM$ is a direct sum of $L(w_0\nu)$.

(v) In BMod

$$\begin{aligned} \operatorname{hd}_{B} &\operatorname{soc}_{G} \mathcal{F}^{0}_{\nu+\eta}(M \otimes_{K} N) = \{ \operatorname{soc}_{G} \mathcal{F}^{0}_{\nu+\eta}(M \otimes_{K} N) \}^{w_{0}(\nu+\eta)} \\ & \simeq \{ \mathcal{F}^{0}_{\nu+\eta}(M \otimes_{K} N) \}^{w_{0}(\nu+\eta)} \quad induced \ by \ the \ inclusion \\ & \simeq (M \otimes_{K} N)^{w_{0}(\nu+\eta)} \quad induced \ by \ the \ natural \ projection \\ & \simeq M^{w_{0}\nu} \otimes_{K} N^{w_{0}\eta}. \end{aligned}$$

(vi) The cup product induces an isomorphism in GMod

$$\mathcal{F}^0_{\nu+\eta}(H^0(M^{w_0\nu})\otimes_K H^0(N^{w_0\eta}))\longrightarrow H^0(M^{w_0\nu}\otimes_K N^{w_0\eta}).$$

(vii) If $i: M \otimes_K N \to \mathcal{F}_{\nu}E(M) \otimes_K \mathcal{F}_{\eta}E(N)$ is the natural injection (cf. (2.5)(i)), then $\mathcal{F}^0_{\nu+\eta}(i)$ restricts to an isomorphism in GMod (resp. BMod) from

$$\operatorname{soc}_{G} \mathcal{F}^{0}_{\nu+\eta}(M \otimes_{K} N) \quad (resp. \quad \operatorname{soc}_{B} \mathcal{F}^{0}_{\nu+\eta}(M \otimes_{K} N) = \{\mathcal{F}^{0}_{\nu+\eta}(M \otimes_{K} N)\}_{\nu+\eta} \simeq M_{\nu} \otimes_{K} N_{\eta})$$

onto

$$\operatorname{soc}_{G} \mathcal{F}^{0}_{\nu+\eta}(\mathcal{F}_{\nu}E(M) \otimes_{K} \mathcal{F}_{\eta}E(N)) \quad (resp.$$

$$\operatorname{soc}_{B} \mathcal{F}^{0}_{\nu+\eta}(\mathcal{F}_{\nu}E(M) \otimes_{K} \mathcal{F}_{\eta}E(N)) = \{\mathcal{F}^{0}_{\nu+\eta}(\mathcal{F}_{\nu}E(M) \otimes_{K} \mathcal{F}_{\eta}E(N))\}_{\nu+\eta}.$$

Proof. (i) follows from (2.5)(i).

(ii)-(iv) If
$$L(\lambda) \leq \operatorname{soc}_G M$$
 with $\lambda \in X^+$, then

(1)
$$L(\lambda)_{w_0\lambda} = \operatorname{soc}_B L(\lambda) \text{ by } (2.1)(\mathrm{iv})$$

$$\leq \operatorname{soc}_B M = M_{\nu} \text{ by } (2.5)(\mathrm{ii}),$$

hence $w_0\lambda = \nu$. Consequently,

(2) $\operatorname{soc}_G M$ is a direct sum of $L(w_0 \nu)$.

If we write $\operatorname{soc}_G M = \coprod_{\Lambda} L(w_0 \nu)$, then in $G\mathbf{Mod}$

(3)
$$\mathcal{F}_{\nu}E(M) \simeq \mathcal{F}_{\nu}E(\operatorname{soc}_{G}M) = \mathcal{F}_{\nu}E(\coprod_{\Lambda}L(w_{0}\nu))$$
$$= \coprod_{\Lambda}H^{0}(w_{0}\nu) \text{ by (2.2)(ii) and (2.4)(ii)}$$
$$\simeq H^{0}(\operatorname{hd}_{B}\operatorname{soc}_{G}M) \text{ by (2.1)(iv)}.$$

If we regard $M \leq E(\operatorname{soc}_G M)$, then

(4)
$$\operatorname{soc}_{B}M = \operatorname{soc}_{B}\mathcal{F}_{\nu}M \quad \operatorname{by} (2.5)(i)$$

$$\leq \operatorname{soc}_{B}\mathcal{F}_{\nu}E(\operatorname{soc}_{G}M) = \operatorname{soc}_{B}\mathcal{F}_{\nu}E(\coprod_{\Lambda}L(w_{0}\nu))$$

$$= \operatorname{soc}_{B}\coprod_{\Lambda}H^{0}(w_{0}\nu) \quad \operatorname{by} (3)$$

$$= \{\coprod_{\Lambda}H^{0}(w_{0}\nu)\}_{\nu} = \{\coprod_{\Lambda}L(w_{0}\nu)\}_{\nu} \quad \operatorname{by} (2.1)(i\nu)$$

$$= \{\mathcal{F}_{\nu}E(\operatorname{soc}_{G}M)\}_{\nu} = (\operatorname{soc}_{G}M)_{\nu}$$

$$= \operatorname{soc}_{B}\operatorname{soc}_{G}M \quad \operatorname{by} (2.5)(ii)$$

$$\leq \operatorname{soc}_{B}M.$$

Hence if we regard $M \leq E(M)$, then

(5)
$$M_{\nu} = \operatorname{soc}_{B} M$$
 by (2.5)(ii)
= $\operatorname{soc}_{B} \mathcal{F}_{\nu} E(M) = \{\mathcal{F}_{\nu} E(M)\}_{\nu} = (\operatorname{soc}_{G} M)_{\nu} = \operatorname{soc}_{B} \operatorname{soc}_{G} M$.

In particular,

(6)
$$\mathcal{F}_{\nu}E(M) \in \mathbf{M}^{\nu}.$$

Also

(7)
$$M_{w_0\nu} = \{\mathcal{F}_{\nu}E(M)\}_{w_0\nu} = (\mathrm{soc}_G M)_{w_0\nu},$$

hence one gets in BMod

(8)
$$\operatorname{hd}_{B}\operatorname{soc}_{G}M = (\operatorname{soc}_{G}M)^{w_{0}\nu} \text{ by (2) and (2.1)(iv)}$$

$$\simeq M^{w_{0}\nu} \text{ by (i)}.$$

Then by (3)

(9)
$$\mathcal{F}_{\nu}E(M) \simeq H^{0}(M^{w_{0}\nu}).$$

As $\hat{\pi}^{w_0\nu} \mid_{\operatorname{soc}_G M}$ preserves $(\operatorname{soc}_G M)_{w_0\nu}$ and as $\operatorname{soc}_G M$ is a direct sum of $L(w_0\nu)$, $\hat{\pi}^{w_0\nu} \mid_{\operatorname{soc}_G M}$ is injective, hence

(10)
$$\hat{\pi}^{w_0\nu} \in G\mathbf{Mod}(M, H^0(M^{w_0\nu}))$$
 is injective.

(v) By (2.2)(iii)
$$\mathcal{F}^0_{\nu+\eta}(M\otimes_K N)\in\mathbf{M}^{\nu+\eta}$$
, hence (iii) implies in $B\mathbf{Mod}$

(11)
$$\operatorname{hd}_{B}\operatorname{soc}_{G}\mathcal{F}^{0}_{\nu+\eta}(M\otimes_{K}N) = \{\operatorname{soc}_{G}\mathcal{F}^{0}_{\nu+\eta}(M\otimes_{K}N)\}^{w_{0}(\nu+\eta)}$$

 $\simeq \{\mathcal{F}^{0}_{\nu+\eta}(M\otimes_{K}N)\}^{w_{0}(\nu+\eta)}$ induced by the inclusion by (8)
 $\simeq (M\otimes_{K}N)^{w_{0}(\nu+\eta)}$ induced by the natural projection as
 $\{\mathcal{F}^{0}_{\nu+\eta}(M\otimes_{K}N)\}_{\nu+\eta} \simeq (M\otimes_{K}N)_{\nu+\eta}$ by (2.5)(iii)
 $\simeq M^{w_{0}\nu}\otimes_{K}N^{w_{0}\eta}.$

(vi) The cup product $H^0(M^{w_0\nu}) \otimes_K H^0(N^{w_0\eta}) \to H^0(M^{w_0\nu} \otimes_K N^{w_0\eta})$ is surjective (cf. [J], (II.14.20)). Put $V = H^0(M^{w_0\nu}) \otimes_K H^0(N^{w_0\eta})$.

As $H^0(M^{w_0\nu} \otimes_K N^{w_0\eta}) = \mathcal{F}^0_{\nu+\eta} H^0(M^{w_0\nu} \otimes_K N^{w_0\eta})$ by (2.4)(i), the cup product factors through $\mathcal{F}^0_{\nu+\eta} V$ to induce a morphism in $G\mathbf{Mod}$ $\gamma: \mathcal{F}^0_{\nu+\eta} V \to H^0(M^{w_0\nu} \otimes_K N^{w_0\eta})$. On the other hand, $\mathrm{soc}_G \mathcal{F}^0_{\nu+\eta} V$ is a direct sum of $L(w_0(\nu+\eta))$ by (iv). As γ preserves $(\mathcal{F}^0_{\nu+\eta} V)_{w_0(\nu+\eta)}$ by (11), $\gamma \mid_{\mathrm{soc}_G \mathcal{F}^0_{\nu+\eta} V}$ is injective. Hence γ is invertible.

(vii) By (iv) we may assume $i = \hat{\pi}^{w_0 \nu} \otimes_K \hat{\pi}^{w_0 \eta}$, so $\mathcal{F}_{\nu} E(M) \otimes_K \mathcal{F}_{\eta} E(N) = V$ of (vi). Then one has in $B\mathbf{Mod}$

(12)
$$(\operatorname{soc}_{G}\mathcal{F}_{\nu+\eta}^{0}V)_{\nu+\eta} = \operatorname{soc}_{B}\mathcal{F}_{\nu+\eta}^{0}V = (\mathcal{F}_{\nu+\eta}^{0}V)_{\nu+\eta}$$
 by (ii)

 $\simeq V_{\nu+\eta}$ under the natural projection as $\nu+\eta$ is the lowest weight of V

$$= H^0(M^{w_0\nu})_{\nu} \otimes_K H^0(N^{w_0\eta})_{\eta}$$

 $\simeq M_{\nu} \otimes_{K} N_{\eta}$ induced by i as $M_{w_{0}\nu} \otimes_{K} N_{w_{0}\eta} \simeq H^{0}(M^{w_{0}\nu})_{w_{0}\nu} \otimes_{K} H^{0}(N^{w_{0}\eta})_{w_{0}\eta}$

$$= (M \otimes_K N)_{\nu+\eta}$$

$$\simeq \{\mathcal{F}^0_{\nu+n}(M\otimes_K N)\}_{\nu+n}$$

$$= \operatorname{soc}_{B} \mathcal{F}_{\nu+\eta}^{0}(M \otimes_{K} N) = \{ \operatorname{soc}_{G} \mathcal{F}_{\nu+\eta}^{0}(M \otimes_{K} N) \}_{\nu+\eta}.$$

Hence also

(13)
$$\operatorname{soc}_{G} \mathcal{F}_{\nu+\eta}^{0} V \simeq \operatorname{soc}_{G} \mathcal{F}_{\nu+\eta}^{0} (M \otimes_{K} N)$$

as both are direct sums of copies of $L(w_0(\nu + \eta))$ by (iv).

Remark 2.8 It follows that $\mathbf{M}^{\nu} \neq \{0\}$ iff $w_0 \nu \in X^+$, in which case \mathbf{M}^{ν} has a unique simple $L(w_0 \nu)$ with the injective hull $H^0(w_0 \nu)$.

Corollary 2.9 Let $\nu \in X$, $A \in \operatorname{gr} A^{\nu}$, and $\mathcal{F} E(A) = \coprod_{n \geq 0} \mathcal{F}_{n\nu} E(A_n)$. One can make $\mathcal{F} E(A)$ uniquely into an object of $\operatorname{gr} A^{\nu}$ such that $A \leq \mathcal{F} E(A)$ in $\operatorname{gr} A^{\nu}$ and that $\mathcal{F} E(A) \leq E_B(A)$ in $\operatorname{gr} A^{\nu}_B$. If A is commutative (resp. commutative and reduced), then $\mathcal{F} E(A)$ remains commutative (resp. commutative and reduced).

Proof. Take after (2.7)(iv) (resp. (2.5)(ii))

(1)
$$\mathcal{F}_{n\nu}E(A_n) = H^0(A_n^{nw_0\nu})$$
 (resp. $E_B(A)_n = E_B(A_n) = H_B^0(A_{n,n\nu})$), and fix an imbedding

(2)
$$j_n = \hat{\pi}^{nw_0\nu} \in G\mathbf{Mod}(A_n, H^0(A_n^{nw_0\nu})).$$

By (2.1)(iv)

(3)
$$\operatorname{soc}_{B}H^{0}(A_{n}^{nw_{0}\nu}) = H^{0}(A_{n}^{nw_{0}\nu})_{n\nu} \simeq w_{0}A_{n,nw_{0}\nu} \simeq A_{n,n\nu},$$

hence the projection $H^0(A_n^{nw_0\nu}) \to H^0(A_n^{nw_0\nu})_{n\nu}$ in $T\mathbf{Mod}$ induces an injection $h_n \in B\mathbf{Mod}(H^0(A_n^{nw_0\nu}), H_B^0(A_{n,n\nu}))$ such that

$$\varepsilon \circ h_n \circ j_n \mid_{A_{n,n\nu}} = \mathrm{id}_{A_{n,n\nu}}.$$

Recall from (2.5)(ii) the imbedding $j_n^B = \hat{\pi}_{n\nu} : A_n \to H_B^0(A_{n,n\nu})$. One has

$$(5) h_n \circ j_n = j_n^B \quad \forall n \in \mathbf{N}.$$

If $\gamma_{nm} \in G\mathbf{Mod}(A_n \otimes_K A_m, A_{n+m})$ is the multiplication on A, define the multiplication on $\mathcal{F}E(A)$ to be $\tilde{\gamma}_{nm} = \{\gamma_{nm}^{(n+m)w_0\nu} \circ (\varepsilon \otimes_K \varepsilon)\}$ $\in G\mathbf{Mod}(H^0(A_n^{nw_0\nu}) \otimes_K H^0(A_m^{nw_0\nu}), H^0(A_{n+m}^{(n+m)w_0\nu}))$:

$$H^{0}(A_{n}^{nw_{0}\nu}) \otimes_{K} H^{0}(A_{m}^{mw_{0}\nu}) \xrightarrow{\tilde{\gamma}_{nm}} H^{0}(A_{n+m}^{(n+m)w_{0}\nu})$$

$$\varepsilon \otimes_{K} \varepsilon \downarrow \qquad \qquad \qquad \downarrow \varepsilon$$

$$A_{n}^{nw_{0}\nu} \otimes_{K} A_{m}^{mw_{0}\nu} \xrightarrow{\gamma_{nm}^{(n+m)w_{0}\nu}} A_{n+m}^{(n+m)w_{0}\nu}$$

$$\uparrow^{(n+m)w_{0}\nu}$$

$$A_{n} \otimes_{K} A_{m} \xrightarrow{\gamma_{nm}} A_{n+m}$$

We must show

(7)
$$\tilde{\gamma}_{nm} \circ (j_n \otimes_K j_m) = j_{n+m} \circ \gamma_{nm}$$

and

(8)
$$\tilde{\gamma}_{nm}^{B} \circ (h_n \otimes_K h_m) = h_{n+m} \circ \tilde{\gamma}_{nm}.$$

As $H^0(A_{n+m}^{(n+m)w_0\nu}) = \mathcal{F}_{(n+m)\nu}^0 H^0(A_{n+m}^{(n+m)w_0\nu})$ by (2.4)(i), both sides of (7) factor through $\mathcal{F}_{(n+m)\nu}^0(A_n \otimes_K A_m)$. Hence to see (7), it is enough to show that the both sides of (7) induce the same morphisms on $\mathrm{soc}_G \mathcal{F}_{(n+m)\nu}(A_n \otimes_K A_m)$, that will also imply by (2.7)(vii) the unicity of the multiplication on $\mathcal{F}E(M)$ extending that of A. But the natural projection induces by (2.7)(v) an isomorphism

(9)
$$A_n^{nw_0\nu} \otimes_K A_m^{mw_0\nu} \longrightarrow \mathrm{hd}_B \mathrm{soc}_G \mathcal{F}^0_{(n+m)\nu} (A_n \otimes_K A_m).$$

If $i_r: A_{r,rw_0\nu} \hookrightarrow A_r$, $r \in \mathbb{N}$, then with $i_{nm} = i_n \otimes_K i_m$ and $j_{nm} = j_n \otimes_K j_m$

$$(10) j_{n+m} \circ \gamma_{nm} \circ i_{nm} = \tilde{\gamma}_{nm} \circ j_{nm} \circ i_{nm}.$$

As $\operatorname{soc}_G \mathcal{F}^0_{(n+m)\nu}(A_n \otimes_K A_m)$ is a direct sum of copies of $L((n+m)w_0\nu)$ by $(2.7)(\operatorname{iv})$, (7) follows.

Likewise by (2.5)(ii)/(i) both sides of (8) factor through $\mathcal{F}^0_{(n+m)\nu}(H^0(A_n^{nw_0\nu})\otimes_K H^0(A_m^{nw_0\nu}))$, hence one has only to check that both sides induce the same morphisms on $\operatorname{soc}_B\mathcal{F}^0_{(n+m)\nu}(H^0(A_n^{nw_0\nu})\otimes_K H^0(A_m^{nw_0\nu}))$. But $\hat{\pi}^{nw_0\nu}\otimes_K \hat{\pi}^{mw_0\nu}$ induces by (2.7)(vii) a bijection

$$(11) A_{n,n\nu} \otimes_K A_{m,m\nu} \longrightarrow \operatorname{soc}_B \mathcal{F}^0_{(n+m)\nu} (H^0(A_n^{nw_0\nu}) \otimes_K H^0(A_m^{mw_0\nu})).$$

In the notation of (2.6) one has

(12)
$$\tilde{\gamma}_{nm}^{B} \circ (h_{n} \otimes_{K} h_{m}) \circ j_{nm} \circ i_{nm}^{B} = j_{n+m}^{B} \circ \gamma_{nm} \circ i_{nm}^{B} \\ = h_{n+m} \circ \tilde{\gamma}_{nm} \circ j_{nm} \circ i_{nm}^{B},$$

hence (8).

As $\mathcal{F}E(A) \leq E_B(A)$ in $\mathbf{gr} \mathbf{A}_B^{\nu}$, the last assertions follow from (2.6).

Lemma 2.10 ([M1], Lemma 13) Let A be a commutative graded K-algebra and A' a proper graded subalgebra of A. Assume A (resp. A') is an A'-module (resp. K-algebra) of finite type. If the inclusion $i: A' \to A$ induces a bijection $\operatorname{Max}(A \otimes_K \overline{K}) \to \operatorname{Max}(A' \otimes_K \overline{K})$ of the maximal spectra, then there is a homogeneous element $s \in A \setminus A'$ such that $s^p \in A'$, where \overline{K} is an algebraic closure of K.

Proof. If one can find such $s \in (A \otimes_K \overline{K}) \setminus (A' \otimes_K \overline{K})$, write $s = \sum_j s_j \otimes \xi_j$ with $(\xi_j)_j$ linearly independent over K. Then $\sum_j s_j^p \otimes \xi_j^p = s^p \in A' \otimes_K \overline{K}$, hence $\sum_j s_j^p \otimes \xi_j^p = 0$ in $(A/A') \otimes_K \overline{K}$. But $(\xi_j^p)_j$ remain linearly independent over K: if $0 = \sum_j c_j \xi_j^p$ in \overline{K} with $c_j \in K$, then $0 = \sum_j c_j^p \xi_j^p = (\sum_j c_j \xi_j)^p$, hence $0 = \sum_j c_j \xi_j$, so $c_j = 0 \ \forall j$. Consequently $s_j^p \in A' \ \forall j$. As there is some j with $s_j \notin A'$, by considering $A \otimes_K \overline{K}$ and $A' \otimes_K \overline{K}$ instead of A and A', one may replace K by \overline{K} .

If a is a homogeneous element of A, define a homogeneous ideal of A'

(1)
$$I(a) = \{x \in A' \mid xa \in A'\}.$$

As A' is noetherian, there is homogeneous $c \in A$ such that

(2) I(c) is maximal among the I(a) properly contained in A'. In particular,

$$c \notin A'.$$

Put C = A'[c] in A and $\mathfrak{p} = I(c)$. By the maximality of \mathfrak{p}

(4)
$$\mathfrak{p}$$
 is a prime ideal of A' .

Moreover,

$$\mathfrak{p} \text{ forms an ideal of } C.$$

For as C is integral over A' (cf. [AM], (5.1)), there is $\mathfrak{q} \in \operatorname{Spec}(C)$ such that $\mathfrak{q} \cap A' = \mathfrak{p}$ (cf. [AM], (5.10)). Then $\mathfrak{p}c \subseteq \mathfrak{p}C \cap A' \subseteq \mathfrak{q} \cap A' = \mathfrak{p}$.

We have two cases to consider, either $\sqrt{\mathfrak{p}}=\mathfrak{p}$ in C or otherwise. Suppose first $\sqrt{\mathfrak{p}}\neq\mathfrak{p}$. Then

(6)
$$\exists \text{ homogeneous } s \in \sqrt{\mathfrak{p}} \setminus \mathfrak{p} \text{ and } n \in \mathbb{N}^+ : s^{p^n} \in \mathfrak{p}$$
.

As \mathfrak{p} is prime in A', $s \notin A'$, hence the assertion.

Suppose next $\sqrt{p} = p$. From a commutative diagram of the natural maps

(7)
$$C/\mathfrak{p} \longleftarrow C \stackrel{i'}{\longleftarrow} A$$

$$\downarrow i_c \qquad \downarrow i_c \qquad$$

one gets a commutative diagram

(8)
$$\begin{aligned} \operatorname{Max}(C/\mathfrak{p}) & \longleftarrow & \operatorname{Max}(C) & \stackrel{\operatorname{Max}(i')}{\longleftarrow} & \operatorname{Max}(A) \\ \operatorname{Max}(\overline{i_c}) & & \operatorname{Max}(i_c) & & & \\ \operatorname{Max}(A'/\mathfrak{p}) & \longleftarrow & \operatorname{Max}(A') & & & \end{aligned}$$

As A (resp. C) is a C-module (resp. an A'-module) of finite type, Max(i'), $Max(i_c)$, and $Max(\overline{i_c})$, are all surjective (cf. [AM], (5.10)/(5.8)) and also closed (cf. [AM], Ex. 5.1). But Max(i) is bijective by the hypothesis, hence

(9) $\operatorname{Max}(i')$, $\operatorname{Max}(i_c)$, and $\operatorname{Max}(\overline{i_c})$, are all homeomorphisms.

In particular, $Max(C/\mathfrak{p})$ is irreducible, hence

(10)
$$\mathfrak{p} = \sqrt{\mathfrak{p}} \text{ is a prime ideal of } C.$$

Also (cf. [H], (4.6))

(11) the fractional field $\operatorname{Frac}(C/\mathfrak{p})$ of C/\mathfrak{p} is finite and purely inseparable over $\operatorname{Frac}(A'/\mathfrak{p})$.

Hence there is $r \in \mathbb{N}$, $a \in A'$, and $b \in A' \setminus \mathfrak{p}$ such that $bc^{p^r} = a \mod \mathfrak{p}$. Then $(bc)^{p^r} \in A'$. As $bc \notin A'$, the assertion follows.

Theorem 2.11 Let $\lambda \in X^+$, $A = \coprod_{n \geq 0} H^0(n\lambda)$ graded K-algebra with the multiplication given by the cup product, and $A' = K[L(\lambda)]$ graded subalgebra of A generated by $L(\lambda) \leq H^0(\lambda) = A_1$.

- (i) A is an A'-module of finite type.
- (ii) If \overline{K} is an algebraic closure of K, the inclusion $A' \hookrightarrow A$ induces homeomorphisms

$$\operatorname{Proj}(A)(\overline{K}) \to \operatorname{Proj}(A')(\overline{K})$$
 and $\operatorname{Max}(A \otimes_K \overline{K}) \to \operatorname{Max}(A' \otimes_K \overline{K})$.

(iii) If A" is an intermediate graded algebra between A and A' with A" < A, then there is a homogeneous element $a \in A \setminus A''$ such that $a^p \in A''$.

Proof. By considering $G \times_K \overline{K}$, $H^0(n\lambda) \otimes_K \overline{K} \simeq \operatorname{ind}_{B \times_K \overline{K}}^{G \times_K \overline{K}}(n\lambda \otimes_K \overline{K})$, and $L(\lambda) \otimes_K \overline{K}$ the simple socle of $H^0(n\lambda) \otimes_K \overline{K}$ instead of G, $H^0(n\lambda)$, and

 $L(\lambda)$, respectively, we may replace K by \overline{K} , so in the rest of the proof we assume $K = \overline{K}$.

Let $f_- \in (H^0(\lambda)^*)_{-\lambda} \setminus 0$ and $[f_-]$ the line through f_- in $\mathbf{P}(H^0(\lambda)^*)(K)$. If $i: L(\lambda) \to H^0(\lambda)$ is the inclusion, then

(1)
$$\ker(i^*) \cap G(K)f_- = \emptyset \text{ as } L(\lambda)_{\lambda} = H^0(\lambda)_{\lambda}.$$

Hence (cf. [Mi], p.154) $G(K)[f_-] \subseteq D_+(S_K^+(L(\lambda)))(K)$ with $Proj(S_K(i)) : D_+(S_K^+(L(\lambda))) \to Proj(S_K(L(\lambda)))$ inducing a morphism $\theta : G(K)[f_-] \to G(K)[f_- \circ i]$ via

(2)
$$x[f_{-}] \longmapsto x[f_{-} \circ i], \quad x \in G(K),$$

where $S_K(L(\lambda))$ is the symmetric algebra of $L(\lambda)$ over K, $S_K^+(L(\lambda)) = \coprod_{n>0} S_K(L(\lambda))_n$ the irrelevant ideal of $S_K(L(\lambda))$, and

$$D_{+}(S_{K}^{+}(L(\lambda))) = \{ \mathfrak{p} \in \operatorname{Proj}(S_{K}(H^{0}(\lambda))) \mid \mathfrak{p} \not\supseteq S_{K}^{+}(L(\lambda)) \}.$$

Let P be the parabolic subgroup of G with $P(K) = C_{G(K)}([f_-])$. One has an isomorphism (cf. [J], (II.14.19))

(3)
$$(G/P)(K) \longrightarrow G(K)[f_{-}] \quad \text{via} \quad x \longmapsto x[f_{-}], \quad x \in G(K)$$

that gives a closed imbedding of G/P into $\mathbf{P}(H^0(\lambda)^*)$ such that

- (4) $\mathcal{L}_{G/P}(\lambda)$ is the associated very ample sheaf on G/P. In particular,
- (5) $G(K)[f_{-}]$ is an irreducible closed subvariety of $\mathbf{P}(H^{0}(\lambda)^{*})(K)$, hence also (cf. [H], (21.1)(b))
- (6) $G(K)[f_{-} \circ i] = \operatorname{im} \theta$ is an irreducible closed subvariety of $\mathbf{P}(L(\lambda)^*)(K)$.

Moreover,

(7)
$$\theta$$
 is a homeomorphism.

To see that, as θ is closed (cf. [H], (21.1)(a)/(b)), it is enough to show that θ is injective. For that we claim a stronger statement that

(8)
$$i^* \mid_{KG(K)f_-} : KG(K)f_- \longrightarrow L(\lambda)^*$$
 is injective,

inducing a bijection $\theta': KG(K)f_- \to KG(K)(f_- \circ i)$.

Suppose $f_- \circ i = \theta'(f_-) = \theta'(\xi x f_-) = \xi x (f_- \circ i), \xi \in K$ and $x \in G(K)$. If W_P is the Weyl group of P, one can write (cf. [S], (10.3.3)(5))

(9)
$$x = uwy, \quad u \in U(K), w \in W/W_P, y \in P(K).$$

Let $v_+ \in L(\lambda)_{\lambda} \setminus 0$ with $f_-(v_+) = (f_- \circ i)(v_+) = 1$. Then

(10)
$$1 = f_{-}(uv_{+}) \quad (\text{cf. } [J], (\text{II.1.19})(6))$$

$$= (f_{-} \circ i)(uv_{+}) \quad \text{as } uv_{+} \in L(\lambda)$$

$$= (\xi x(f_{-} \circ i))(uv_{+}) = (\xi uwyf_{-})(uv_{+}) = \xi(wyf_{-})(v_{+})$$

$$= \xi \xi'(wf_{-})(v_{+}) \quad \text{for some } \xi' \in K \text{ as } P(K) \text{ fixes } [f_{-}]$$

$$= \xi \xi' f_{-}(w^{-1}v_{+}),$$

hence $w \in W_P$, so we may assume w = 1. Then $\xi \xi' = 1$, hence

(11)
$$\xi x f_{-} = \xi u y f_{-} = \xi \xi' u f_{-} = u f_{-}$$
$$= f_{-} \text{ as } f_{-} \text{ has the lowest weight of } H^{0}(\lambda)^{*},$$

as desired.

Let $\mathfrak{I} \subseteq S_K(H^0(\lambda))$ be the homogeneous radical ideal defining $G(K)[f_-]$, so (cf. [Mi], p. 152)

(12)
$$G(K)[f_{-}] = V_{+}(\mathfrak{I})(K) := \{ \mathfrak{p} \in \operatorname{Proj}(S_{K}(H^{0}(\lambda)))(K) \mid \mathfrak{p} \supseteq \mathfrak{I} \}$$

 $\simeq \operatorname{Proj}(S_{K}(H^{0}(\lambda))/\mathfrak{I})(K).$

As G/P is integral, \Im is prime, hence (cf. [Mi], Theorem II.3.4)

(13)
$$S_K(H^0(\lambda))/\Im$$
 is a domain.

If $\mathfrak{I}' = S_K(L(\lambda)) \cap \mathfrak{I}$, then

(14)
$$G(K)[f_{-} \circ i] = V_{+}(\mathfrak{I}')(K) \simeq \operatorname{Proj}(S_{K}(L(\lambda))/\mathfrak{I}')(K).$$

Indeed, $G(K)[f_- \circ i] \subseteq V_+(\mathfrak{I}')(K)$ as $\theta : \mathfrak{p} \mapsto \mathfrak{p} \cap S_K(L(\lambda))$. On the other hand, as $G(K)[f_- \circ i]$ is closed, there is a homogeneous radical ideal \mathfrak{I}'' of $S_K(L(\lambda))$ such that $G(K)[f_- \circ i] = V_+(\mathfrak{I}'')(K)$. By the projective Nullstellensatz (cf. [F], p. 91)

(15)
$$\mathfrak{I}'' = I_{+}(V_{+}(\mathfrak{I}'')(K)) \supseteq I_{+}(V_{+}(\mathfrak{I}')(K)) = \mathfrak{I}'.$$

But in
$$\mathbf{P}(H^0(\lambda)^*)(K)$$

(16)
$$V_{+}(\mathfrak{I}'')(K) \supseteq G(K)[f_{-}] = V_{+}(\mathfrak{I})(K),$$

hence by the projective Nullstellensatz

(17)
$$\sqrt{\mathfrak{I}''} \subseteq \mathfrak{I} \quad \text{in} \quad S_K(H^0(\lambda)).$$

Consequently, $\mathfrak{I}'' \subseteq \sqrt{\mathfrak{I}''} \cap S_K(L(\lambda)) \subseteq \mathfrak{I} \cap S_K(L(\lambda)) = \mathfrak{I}'$, hence $\mathfrak{I}'' = \mathfrak{I}'$, as desired.

On the other hand, by (4)

(18)
$$A \simeq \coprod_{n \geq 0} \Gamma(G(K)[f_{-}], \mathcal{O}(n)),$$

hence one has by (12) and (13) a natural injection (cf. [Mi], Theorem II.3.9)

(19)
$$S_K(H^0(\lambda))/\mathfrak{I} \longrightarrow A \text{ in } \mathbf{Alg}_K.$$

Moreover (cf. [J], (II.14.20)),

$$(20) A = K[A_1],$$

hence (19) is bijective. Then as both A' and $S_K(L(\lambda))/\mathfrak{I}'$ are generated by $L(\lambda)$ in $A \simeq S_K(H^0(\lambda))/\mathfrak{I}$, one gets an isomorphism

(21)
$$S_K(L(\lambda))/\mathfrak{I}' \longrightarrow A'.$$

Hence the inclusion $j: A' \hookrightarrow A$ induces a homeomorphism

(22)
$$\operatorname{Proj}(j)(K) : \operatorname{Proj}(A)(K) \longrightarrow \operatorname{Proj}(A')(K).$$

$$\begin{array}{ccc} \operatorname{Proj}(A)(K) & \xrightarrow{\operatorname{Proj}(j)(K)} & \operatorname{Proj}(A')(K) \\ & & & & & | & \\ & & & \downarrow \\ & & & & G(K)[f_{-}] & \xrightarrow{\theta} & G(K)[f_{-} \circ i] \end{array}$$

Next if $r = \dim H^0(\lambda)^*$, the cone (cf. [F], p. 90) of $G(K)[f_-]$ is

(23)
$$C(G(K)[f_{-}]) := \{z \in \mathbf{A}^{r} \mid [z] \in G(K)[f_{-}] \text{ or } z = 0\}$$

= $KG(K)f_{-}$

By the projective Nullstellensatz

(24)
$$KG(K)f_{-} = V_{a}(\mathfrak{I})(K) := \{ \mathfrak{p} \in \mathbf{A}^{r}(K) \mid \mathfrak{p} \supseteq \mathfrak{I} \}$$

and

(25)
$$\mathfrak{I} = I_a(KG(K)f_-)$$
 the annihilator of $KG(K)f_-$ in $K[\mathbf{A}^r] \simeq S_K(H^0(\lambda))$.

Likewise if $r' = \dim L(\lambda)^*$,

(26)
$$C(G(K)[f_- \circ i]) = KG(K)(f_- \circ i) = V_a(\mathfrak{I}')(K)$$
 in $\mathbf{A}^{r'}(K)$ and

(27)
$$\mathfrak{I}' = I_a(KG(K)(f_- \circ i)) \quad \text{in} \quad K[\mathbf{A}^{r'}] \simeq S_K(L(\lambda)).$$

Hence the inclusion $j: A' \hookrightarrow A$ induces

(28)
$$\theta' = C(\theta) : KG(K)f_{-} \longrightarrow KG(K)(f_{-} \circ i).$$

But θ' is bijective by (8), hence (cf. [S], (4.2.4) and [DG], (I.5.1.2))

(29) A is an A'-module of finite type.

Then (cf. [AM], Ex. 5.1)

(30) Max(j) is closed, hence a homeomorphism.

This concludes the proof of (i) and (ii).

Finally, if $j'': A'' \hookrightarrow A$, then $\operatorname{Max}(j''): \operatorname{Max}(A) \to \operatorname{Max}(A'')$ is a closed surjection as A is an A''-module of finite type by (i) (cf. [AM], Ex. 5.1 and (5.10)/(5.8)), hence is a homeomorphism as the injective $\operatorname{Max}(j)$ factors through $\operatorname{Max}(j'')$. Then (iii) follows from (2.10).

Corollary 2.12 Let $\nu \in X$ and $A \in \operatorname{gr} A^{\nu}$ with the 0-th homogeneous part $A_0 = K$. Assume A is commutative and reduced. If $A < \mathcal{F}E(A)$ in (2.9), then there is $m \in \mathbb{N}^+$ and $a \in \mathcal{F}E(A)_m \setminus A_m$ such that $a^p \in A_{pm}$.

Proof. By (2.4)(ii)

(1)
$$\mathcal{F}E(A)_0 = \mathcal{F}_0E(A_0) = \mathcal{F}_0E(K) = K = A_0.$$

If $A_r < \mathcal{F}E(A)_r$, then considering the subalgebra $K[A_r]$, we may assume r = 1.

As $A_1 \in \mathbf{M}^{\nu}$, by (2.7)(iv)

(2)
$$\mathcal{F}E(A)_1 = \mathcal{F}_{\nu}E(A_1) \text{ is a direct sum of } H^0(w_0\nu),$$

hence there is a direct summand M of $\mathcal{F}E(A)_1$ with $M\simeq H^0(w_0\nu)$ in $G\mathbf{Mod}$ such that

$$(3) M \not\subseteq A_1.$$

Put $L = \operatorname{soc}_G M$, and let $\mathfrak{A} = K[M]$ (resp. $\mathfrak{A}' = K[L]$) be the subalgebra of $\mathcal{F}E(A)$ generated by M (resp. L).

If $\mathfrak{A}'' = \mathfrak{A} \cap A$, one has in $\mathbf{gr} \mathbf{A}^{\nu}$

$$\mathfrak{A}' \leq \mathfrak{A}'' < \mathfrak{A} \leq \mathcal{F}E(A).$$

Recall from (2.9) the multiplication $\tilde{\gamma}$ on $\mathcal{F}E(A) = \coprod_{n\geq 0} H^0(A_n^{nw_0\nu})$. If γ is the multiplication on A, one has a commutative diagram

As A is reduced, $\tilde{\gamma}$ does not annihilate $\mathfrak{A}_{1,w_0\nu} \otimes_K \mathfrak{A}_{1,w_0\nu}$. Also as $\mathcal{F}E(A)_2 \in \mathbf{M}^{2\nu}$, $\tilde{\gamma} \mid_{\mathfrak{A}_1 \otimes_K \mathfrak{A}_1}$ induces an isomorphism in $G\mathbf{Mod}$

(6)
$$\operatorname{im} \tilde{\gamma} \mid_{\mathfrak{A}_1 \otimes_K \mathfrak{A}_1} \simeq \mathcal{F}_{2\nu}^0(\mathfrak{A}_1 \otimes_K \mathfrak{A}_1) \simeq H^0(2w_0\nu).$$

Repeating the argument yields

(7)
$$\mathfrak{A} \simeq \coprod_{n \geq 0} H^0(nw_0\nu) \quad \text{in} \quad \mathbf{gr} \mathbf{A}^{\nu}$$

with the multiplication on the RHS given by the cup product.

The assertion now follows from (2.11).

3 Frobenius splittings

Lemma 3.1 ([R], Remark. 1.3(i)) Let $A \in Alg_K$. If the map $A \to A$ via $a \mapsto a^p$ admits a left inverse, then A is reduced. In particular, if A admits a Frobenius splitting, then A is reduced.

Proof. Let ψ be a left inverse to the p-th power map on A. If a is a nilpotent of A, there is $r \in \mathbb{N}^+$ such that $a^{p^r} = 0$. Then

$$0 = \psi(0^p) = \psi(0) = \psi(a^{p^r}) = a^{p^{r-1}}.$$

Repeat to get a = 0.

(3.2) Let $G_1 = \ker F_G$ the Frobenius kernel of G, and $\pi \in \mathbf{Sch}_K(G, G/B)$, $q \in \mathbf{Sch}_K(G/B, G/G_1B)$ the quotient morphisms. The Frobenius morphism $F_{G/B}: G/B \to G/B$ factors through q to induce an isomorphism

$$(8) F: G/G_1B \longrightarrow G/B.$$

We will write \mathfrak{X} (resp. \mathfrak{X}_1) for G/B (resp. G/G_1B). Let $\mathcal{S} = \mathcal{L}_{\mathfrak{X}}((p-1)\rho)$ and $St = \mathcal{S}(\mathfrak{X}) = H^0((p-1)\rho) = L((p-1)\rho)$ the Steinberg module.

Let
$$v_{-} \in St_{-(p-1)\rho} = \{ \mathbf{Sch}_{K}(G, (p-1)\rho)^{B} \}_{-(p-1)\rho}$$
 such that

(9)
$$v_{-|w_0U^+} = 1$$
 (cf. [J], (II.2.6)),

and recall from [K] the Frobenius splitting of G/B associated with v_- . Thus let $\overline{v}_- \in \mathbf{Mod}_{\mathfrak{X}}(\mathcal{O}_{\mathfrak{X}}, \mathcal{S})$ induced by v_- :

(10)
$$\overline{v}_{-}(\mathfrak{U}): 1 \longmapsto v_{-}|_{\mathfrak{U}} \quad \forall \mathfrak{U} \quad \text{open of } \mathfrak{X}.$$

One has an isomorphism (cf. [K], (1.3)(9) and (1.7))

(11)
$$\mathcal{O}_{\mathfrak{X}_1} \otimes_K St \longrightarrow q_* \mathcal{S} \quad \text{via} \quad a \otimes v \longmapsto \widetilde{a \otimes v},$$

where $a \in \mathcal{O}_{\mathfrak{X}_1}(\mathfrak{V}) = \mathbf{Sch}_K(\pi_1^{-1}(\mathfrak{V}), K)^{G_1B}$ with \mathfrak{V} an open of \mathfrak{X}_1 , $\pi_1 = q \circ \pi$, $v \in St = \mathbf{Sch}_K(G, (p-1)\rho)^B$, and

(12)
$$\widetilde{a \otimes v} \in (q_*\mathcal{S})(\mathfrak{V}) = \mathbf{Sch}_K(\pi_1^{-1}(\mathfrak{V}), (p-1)\rho)^B$$
 such that $\widetilde{a \otimes v}(x) = a(A)(x)v(A)(x) \quad \forall x \in \pi_1^{-1}(\mathfrak{V})(A) \quad \text{with} \quad A \in \mathbf{Alg}_K.$

If $f_+ \in (St^*)_{(p-1)\rho}$ is the dual element of v_- , then $\tilde{\sigma}$ defined by the following commutative diagram is the Frobenius splitting of G/B associated with v_-

$$(13) \qquad q_*\mathcal{O}_{\mathfrak{X}} \xrightarrow{\widetilde{\sigma}} \mathcal{O}_{\mathfrak{X}_1} \quad af_+(v)$$

$$q_*\overline{v}_- \downarrow \qquad \uparrow_{\mathcal{O}_{\mathfrak{X}_1} \otimes_K f_+} \uparrow$$

$$q_*\mathcal{S} \xleftarrow{\sim} \mathcal{O}_{\mathfrak{X}_1} \otimes_K St \qquad \downarrow$$

$$\widetilde{a \otimes v} \xleftarrow{} a \otimes v.$$

The structure morphism $q^{\mathfrak{f}}: \mathcal{O}_{\mathfrak{X}_1} \to q_*\mathcal{O}_{\mathfrak{X}}$ induces on each open \mathfrak{V} of \mathfrak{X}_1 an isomorphism

(14)
$$\mathcal{O}_{\mathfrak{X}_1}(\mathfrak{V}) \longrightarrow \{a^p \mid a \in (q_*\mathcal{O}_{\mathfrak{X}})(\mathfrak{V}) = \mathbf{Sch}_K(\pi_1^{-1}\mathfrak{V}, K)^B\}.$$

(3.3) Take $\mathfrak{V} = Bw_0B/G_1B = w_0U^+B/G_1B$ in (3.2), which we will denote by \mathfrak{V}_0 . Then

$$(1) (q_*\mathcal{O}_{\mathfrak{X}})(\mathfrak{V}_0) = \mathbf{Sch}_K(w_0U^+, K)$$

$$\simeq K[y] := K[y_\alpha]_{\alpha \in \mathbb{R}^+}$$

$$\simeq \mathbf{Sch}_K(w_0U^+, (p-1)\rho) = (q_*\mathcal{S})(\mathfrak{V}_0),$$

where $y_{\alpha}(A)(w_0 \prod_{\beta \in R^+} x_{\beta}(A)(a_{\beta})) = a_{\alpha} \ \forall A \in \mathbf{Alg}_K \text{ and } a_{\beta} \in A \text{ with } x_{\beta} : \mathbf{G_a} \to U^+ \text{ the root morphism associated with } \beta \in R^+.$ Under this identification one has a commutative diagram

$$(q_*\mathcal{O}_{\mathfrak{X}})(\mathfrak{V}_0) \simeq K[y]$$

$$(q_*\overline{v}_-)(\mathfrak{V}_0) \downarrow \qquad \qquad \downarrow \mathrm{id}$$

$$(q_*\mathcal{S})(\mathfrak{V}_0) \simeq K[y] \quad a(v|_{w_0U^+})$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$(\mathcal{O}_{\mathfrak{X}_1} \otimes_K St)(\mathfrak{V}_0) \simeq K[y^p] \otimes_K St \quad a \otimes v.$$

Hence choosing a K-basis $(v_i)_i$ of St consisting of weight vectors including v_- , one can write

(3)
$$K[y] = \coprod_{i=1}^{p^{|R^+|}} K[y^p] v_i \text{ with } v_- = 1 \text{ in } K[y].$$

Then for each i

(4)
$$\tilde{\sigma}(\mathfrak{V}_0)|_{K[y^p]v_i} = \begin{cases} \operatorname{id}_{K[y^p]} & \text{if } v_i = v_-, \\ 0 & \text{otherwise.} \end{cases}$$

In particular,

(5)
$$\tilde{\sigma}(\mathfrak{V}_0)$$
 is T -equivariant.

(3.4) Let $\alpha \in S$ and arrange

(1)
$$U^{+} = U_{\alpha} \times \prod_{\beta \in R^{+} \setminus \{\alpha\}} U_{\beta}.$$

One can choose a representative of w_0 in $N_G(T)$ (cf. [J], (II.1.4)) such that

(2)
$$\exists c \in \{\pm 1\} : \forall a \in A \text{ with } A \in \mathbf{Alg}_K, x_{w_0\alpha}(A)(-a)w_0 = w_0x_\alpha(A)(ca).$$

Hence if we write $K[U_{w_0\alpha}] = K[t]$, the $U_{w_0\alpha}$ -module structure on

$$(q_*\mathcal{O}_{\mathfrak{X}})(\mathfrak{V}_0) = \mathbf{Sch}_K(w_0U^+, K) = K[y]$$

is given by the map

(3)
$$K[y] \to K[y,t] = K[y] \otimes_K K[U_{w_0\alpha}]$$
 such that
$$\prod_{\beta \in R^+} y_{\beta}^{n_{\beta}} \longmapsto (y_{\alpha} + ct)^{n_{\alpha}} \prod_{\beta \in R^+ \setminus \{\alpha\}} y_{\beta}^{n_{\beta}}, \quad n_{\beta} \in \mathbf{N}.$$

If we identify $\mathcal{O}_{\mathfrak{X}_1}(\mathfrak{V}_0)$ with $K[y^p] = K[y^p_\beta]_{\beta \in \mathbb{R}^+}$ as in (3.2)(14), then

(4) the $U_{w_0\alpha}$ -module structure on $\mathcal{O}_{\mathfrak{X}_1}(\mathfrak{V}_0)$ is given by (3)

upon restriction.

Put $\delta_r = X_{w_0\alpha}^{(r)} \in \text{Dist}(U_{w_0\alpha}), r \in \mathbb{N}$. Then

(5)
$$\delta_r(\prod_{\beta \in R^+} y_{\beta}^{n_{\beta}}) = c^r \binom{n_{\alpha}}{r} y_{\alpha}^{n_{\alpha}-r} \prod_{\beta \in R^+ \setminus \{\alpha\}} y_{\beta}^{n_{\beta}},$$

hence one can write symbolically,

(6)
$$\delta_r = \frac{c^r}{r!} \frac{\partial^r}{\partial y^r_{\alpha}} \quad \text{on} \quad K[y] = \coprod_{i=1}^{p^{|R^+|}} K[y^p] v_i.$$

By the Leibniz rule

(7)
$$\delta_r(av_i) = \sum_{j=0}^r \delta_j(a) \delta_{r-j}(v_i) \quad \forall a \in K[y^p].$$

Assume from now on that p divides r. As the weights of St are $\{(p-1)\rho - \sum_{\beta \in R^+} n_\beta \beta \mid 0 \le n_\beta \le p-1\},$

(8)
$$\delta_{r-j}(v_i) \in (St \mid_{w_0U^+})_{\omega_i+(r-j)w_0\alpha} = 0 \quad \text{if } p \mid j \text{ and } j \neq r,$$

where ω_i is the weight of v_i . Hence in (7)

(9)
$$\delta_r(av_i) = \delta_r(a)\delta_0(v_i) = \delta_r(a)v_i \quad \text{with} \quad \delta_r(a) \in K[y^p].$$

Then by (3.3)(4)

(10)
$$\tilde{\sigma}(\mathfrak{V}_0) \circ \delta_r(av_i) = \begin{cases} \delta_r(a) & \text{if } v_i = v_- \\ 0 & \text{otherwise} \end{cases}$$
$$= \delta_r \circ \tilde{\sigma}(\mathfrak{V}_0)(av_i).$$

Hence for any $r \in \mathbb{N}$ with $p \mid r$,

(11)
$$\tilde{\sigma}(\mathfrak{V}_0) \circ \delta_r = \delta_r \circ \tilde{\sigma}(\mathfrak{V}_0) \quad \text{on} \quad (q_*\mathcal{O}_{\mathfrak{X}})(\mathfrak{V}_0).$$

As w_0U^+B is open dense in G, one has a commutative diagram

$$(q_*\mathcal{O}_{\mathfrak{X}})(\mathfrak{X}_1) \xrightarrow{\tilde{\sigma}(\mathfrak{X}_1)} \mathcal{O}_{\mathfrak{X}_1}(\mathfrak{X}_1)$$

$$\operatorname{res} \Big[\qquad \qquad \Big] \operatorname{res}$$

$$(q_*\mathcal{O}_{\mathfrak{X}})(\mathfrak{V}_0) \xrightarrow{\tilde{\sigma}(\mathfrak{V}_0)} \mathcal{O}_{\mathfrak{X}_1}(\mathfrak{V}_0)$$

with the Dist $(U_{w_0\alpha})$ -module structure on both $q_*\mathcal{O}_{\mathfrak{X}}$ and $\mathcal{O}_{\mathfrak{X}_1}$ compatible with the restrictions. Hence together with (3.3)(5) and (3.2)(14) one obtains

Lemma 3.5 Let $\mathfrak{V} \in \{Bw_0B/G_1B, G/B\}$.

- (i) $\tilde{\sigma}(\mathfrak{V})$ is T-equivariant.
- (ii) If $\alpha \in S$, then for any $r \in \mathbb{N}$ with $p \mid r$,

$$ilde{\sigma}(\mathfrak{V})\circ X_{-lpha}^{(r)}=X_{-lpha}^{(r)}\circ ilde{\sigma}(\mathfrak{V}) \quad on \quad (q_*\mathcal{O}_{G/B})(\mathfrak{V}).$$

(iii)
$$\forall a \in \mathcal{O}_{\mathfrak{X}_1}(\mathfrak{V}), \quad \tilde{\sigma}(\mathfrak{V})(a^p) = a^p.$$

(3.6) Let $\lambda \in X$. Then

(1)
$$q_*\mathcal{L}_{\mathfrak{X}}(p\lambda) \simeq q_*q^*\mathcal{L}_{\mathfrak{X}_1}(p\lambda)$$
 (cf. [CPS], (2.7), [K], (1.8)) $\simeq \mathcal{L}_{\mathfrak{X}_1}(p\lambda) \otimes_{\mathcal{O}_{\mathfrak{X}_1}} q_*\mathcal{O}_{\mathfrak{X}}$ by the projection formula.

Under the identification define $\tilde{\sigma}_{p\lambda} \in \mathbf{Mod}_{\mathfrak{X}_1}(q_*\mathcal{L}_{\mathfrak{X}}(p\lambda), \mathcal{L}_{\mathfrak{X}_1}(p\lambda))$ by the commutative diagram

$$(2) \qquad q_* \mathcal{L}_{\mathfrak{X}}(p\lambda) \qquad \xrightarrow{\tilde{\sigma}_{p\lambda}} \qquad \mathcal{L}_{\mathfrak{X}_1}(p\lambda)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Recall the isomorphism $F \in \mathbf{Sch}_K(\mathfrak{X}_1, \mathfrak{X})$ from (3.2)(8). Generalizing (3.2)(14) one has an isomorphism

(3)
$$(F^{-1})_* \mathcal{L}_{\mathfrak{X}}(\lambda) \longrightarrow \mathcal{L}_{\mathfrak{X}_1}(p\lambda) \quad \text{via} \quad a \longmapsto a^p.$$

Proposition 3.7 Let $\lambda \in X$ and $\mathfrak{V} \in \{Bw_0B/G_1B, G/G_1B\}$.

- (i) $\tilde{\sigma}_{p\lambda}(\mathfrak{V})$ is a T-equivariant surjection. In particular, $\tilde{\sigma}_{p\lambda}(\mathfrak{V})$ annihilates all ν -weight spaces with $\nu \in X \setminus pX$.
- (ii) If $\alpha \in S$, then for any $r \in \mathbb{N}$ with $p \mid r$,

$$\tilde{\sigma}_{p\lambda}(\mathfrak{V}) \circ X_{-\alpha}^{(r)} = X_{-\alpha}^{(r)} \circ \tilde{\sigma}_{p\lambda}(\mathfrak{V}) \quad on \quad (q_*\mathcal{L}_{G/B}(p\lambda))(\mathfrak{V}).$$

(iii)
$$\forall a \in ((F^{-1})_* \mathcal{L}_{G/B}(\lambda))(\mathfrak{V}) = \mathcal{L}_{G/B}(\lambda)(q^{-1}\mathfrak{V}),$$

$$\tilde{\sigma}_{p\lambda}(\mathfrak{V})(a^p)=a^p.$$

Proof. As in (3.4)(12) we have only to check the assertions on $\mathfrak{V} = \mathfrak{V}_0 = Bw_0B/G_1B$.

- (i) As $\tilde{\sigma}$ is a split epi, so is $\tilde{\sigma}_{p\lambda}$, hence the sujectivity. The second assertion follows from the identification $\mathcal{L}_{\mathfrak{X}_1}(p\lambda)(\mathfrak{V}_0) \simeq K[y^p_{\beta}]_{\beta \in \mathbb{R}^+}$ with each y^p_{β} having weight $pw_0(\lambda \beta)$.
 - (ii) and (iii) follow from (3.5).
- (3.8) Assume $\lambda \in X^+$. Let $(m_j)_j$ be a K-basis of $H^0(\lambda)$, and let

(1)
$$\Delta_{H^0(\lambda)}: m_j \longmapsto \sum_k m_k \otimes a_{jk}, \quad a_{jk} \in K[G]$$

be the G-module structure on $H^0(\lambda)$. If

$$H_1^0(p\lambda) = \mathcal{L}_{\mathfrak{X}_1}(p\lambda)(\mathfrak{X}_1) = \operatorname{ind}_{G,B}^G(p\lambda),$$

then $(m_j^p)_j$ forms a K-basis of $H_1^0(p\lambda)$ by (3.6)(3) with the G-module structure given by

(2)
$$\Delta_{H_1^0(p\lambda)}: m_j^p \longmapsto \sum_k m_k^p \otimes a_{jk}^p.$$

Define a K-linear bijection
$$[-1](\mathfrak{X}_1): H_1^0(p\lambda) \to H^0(\lambda)$$
 via
(3) $m_i^p \longmapsto m_i$.

Define likewise a K-linear bijection $[-1](\mathfrak{V}_0): \mathcal{L}_{\mathfrak{X}_1}(p\lambda)(\mathfrak{V}_0) \to (q_*\mathcal{L}_{\mathfrak{X}}(\lambda))(\mathfrak{V}_0)$ by the commutative diagram

$$\mathcal{L}_{\mathfrak{X}_{1}}(p\lambda)(\mathfrak{V}_{0}) \xrightarrow{[-1](\mathfrak{V}_{0})} (q_{*}\mathcal{L}_{\mathfrak{X}}(\lambda))(\mathfrak{V}_{0})$$

$$\parallel \qquad \qquad \parallel$$

$$\mathbf{Sch}_{K}(w_{0}U^{+}, p\lambda)^{U_{1}^{+}} \qquad \mathbf{Sch}_{K}(w_{0}U^{+}, \lambda)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$K[y_{\beta}^{p}]_{\beta \in R^{+}} \qquad \longrightarrow \qquad K[y_{\beta}]_{\beta \in R^{+}}$$

$$\Pi y_{\beta}^{pn_{\beta}} \qquad \longmapsto \qquad \Pi y_{\beta}^{n_{\beta}}.$$

Set

(5)
$$\sigma_{p\lambda}[-1] = [-1](\mathfrak{X}_1) \circ \tilde{\sigma}_{p\lambda}(\mathfrak{X}_1) \in \mathbf{Mod}_K(H^0(p\lambda), H^0(\lambda))$$

and

(6)
$$\sigma_{p\lambda}^{0}[-1] = [-1](\mathfrak{V}_{0}) \circ \tilde{\sigma}_{p\lambda}(\mathfrak{V}_{0}) \\ \in \mathbf{Mod}_{K}(\mathcal{L}_{\mathfrak{X}}(p\lambda)(q^{-1}\mathfrak{V}_{0}), \mathcal{L}_{\mathfrak{X}}(\lambda)(q^{-1}\mathfrak{V}_{0})).$$

One has a commutative diagram in \mathbf{Mod}_K

(7)
$$H^{0}(p\lambda) \xrightarrow{\sigma_{p\lambda}[-1]} H^{0}(\lambda)$$

$$\operatorname{res} \int \qquad \qquad \int \operatorname{res}$$

$$\mathcal{L}_{\mathfrak{X}}(p\lambda)(q^{-1}\mathfrak{V}_{0}) \xrightarrow{\sigma_{p\lambda}^{0}[-1]} \mathcal{L}_{\mathfrak{X}}(\lambda)(q^{-1}\mathfrak{V}_{0}).$$

From (3.7) one obtains

Corollary 3.9 Let $\lambda \in X^+$ and $\alpha \in S$.

(i) Both $\sigma_{p\lambda}[-1]$ and $\sigma_{p\lambda}^0[-1]$ annihilate the ν -weight spaces for all $\nu \in X \setminus pX$ while both send each $p\eta$ -weight space onto the η -weight space for $\eta \in X$.

(ii) $\forall r \in \mathbf{N}$, one has

$$X_{-\alpha}^{(r)}\circ\sigma_{p\lambda}[-1]=\sigma_{p\lambda}[-1]\circ X_{-\alpha}^{(pr)}\quad and\quad X_{-\alpha}^{(r)}\circ\sigma_{p\lambda}^{0}[-1]=\sigma_{p\lambda}^{0}[-1]\circ X_{-\alpha}^{(pr)}.$$

(iii) $\forall m \in H^0(\lambda) \text{ and } v \in \mathcal{L}_{G/B}(\lambda)(Bw_0B/B),$

$$\sigma_{p\lambda}[-1](m^p)=m \quad and \quad \sigma_{p\lambda}^0[-1](v^p)=v.$$

4 Proof of the conjecture

Lemma 4.1 Let $\lambda \in X^+$ and recall from (2.9)(4) an injection $h_{\lambda} \in B\mathbf{Mod}(H^0(\lambda), H_B^0(w_0\lambda))$. There is an isomorphism

 $\psi \in B\mathbf{Mod}(\mathcal{L}_{G/B}(\lambda)(Bw_0B/B), H_B^0(w_0\lambda))$ such that $\psi \circ res = h_\lambda$. In particular, $\mathcal{L}_{G/B}(\lambda)(Bw_0B/B)$ is injective in $B\mathbf{Mod}$.

Proof. Put for simplicity $\mathfrak{V}_0^q = q^{-1}\mathfrak{V} = Bw_0B/B = w_0U^+B/B$. Define a K-linear isomorphism

$$\psi: \mathbf{Sch}_K(w_0U^+, \lambda) \longrightarrow \mathbf{Sch}_K(U, w_0\lambda) \quad \text{via} \quad f \longmapsto f(?w_0)$$

with inverse $g \mapsto g(?w_0^{-1})$. One then checks $\psi \in B\mathbf{Mod}$.

On the other hand, the Frobenius reciprocity yields

$$B\mathbf{Mod}(H^0(\lambda), H^0_B(w_0\lambda)) \simeq T\mathbf{Mod}(H^0(\lambda), w_0\lambda) \simeq K,$$

hence, or directly, the assertion follows.

(4.2) Let \mathbf{grA} (resp. \mathbf{grA}_B) be the category of N-graded K-algebras whose homogeneous parts are G- (resp. B-) modules with G- (resp. B-) equivariant multiplication.

Let $\lambda, \mu \in X^+$ and set

(8)
$$\mathfrak{A} = \coprod_{m \geq 0} \mathfrak{A}_m \quad \text{with} \quad \mathfrak{A}_m = H^0(m\lambda) \otimes_K H^0(m\mu).$$

Under the cup product

$$\mathfrak{A} \in \mathbf{grA}.$$

Define also a B-module

(10)
$$\mathfrak{B}_{m} = H_{B}^{0}(mw_{0}\lambda) \otimes_{K} H^{0}(m\mu)$$
$$\simeq \mathcal{L}_{\mathfrak{X}}(m\lambda)(\mathfrak{V}_{0}^{q}) \otimes_{K} H^{0}(m\mu) \text{ by (4.1)}.$$

If $\mathfrak{B} = \coprod_{m \geq 0} \mathfrak{B}_m$, the cup product makes

$$\mathfrak{B} \in \mathbf{gr} \mathbf{A}_B.$$

Under the restriction from \mathfrak{X} to \mathfrak{V}_0^q on the first factor one has

(12)
$$\mathfrak{A} \leq \mathfrak{B}$$
 in $\mathbf{gr} \mathbf{A}_B$.

In the notation of (3.8) define $\sigma \in \mathbf{Mod}_K(\mathfrak{B},\mathfrak{B})$ by

(13)
$$\sigma|_{\mathfrak{B}_m} = \begin{cases} \sigma_{m\lambda}^0[-1] \otimes_K \sigma_{m\mu}[-1] & \text{if } p \mid m \\ 0 & \text{otherwise.} \end{cases}$$

Upon restriction to 21 one has

(14)
$$\sigma|_{\mathfrak{A}_{m}} = \begin{cases} \sigma_{m\lambda}[-1] \otimes_{K} \sigma_{m\mu}[-1] & \text{if } p \mid m \\ 0 & \text{otherwise.} \end{cases}$$

Lemma 4.3 σ is a Frobenius splitting of \mathfrak{B} that stabilizes \mathfrak{A} . In particular, \mathfrak{A} and \mathfrak{B} are both reduced.

Proof. By (3.9)(iii) σ is a left inverse to the p-th power map on \mathfrak{B} , hence \mathfrak{B} is reduced by Ramanathan's lemma (3.1). Moreover, by construction one sees for each $a \in H_B^0(rw_0\lambda)$ and $b \in H^0(ps\lambda)$ with $r, s \in \mathbb{N}$,

$$\sigma^0_{p(r+s)\lambda}[-1](a^p b) = a\sigma^0_{ps\lambda}[-1](b)$$
 in \mathfrak{B}_{r+s} .

Hence σ is a Frobenius splitting of \mathfrak{B} .

(4.4) Let $\nu \in X$, and set

(1)
$$\mathfrak{A}(\nu) = \coprod_{m \geq 0} \mathcal{F}_{m\nu}(\mathfrak{A}_m) \text{ and } \mathfrak{A}^+(\nu) = \coprod_{m \geq 0} \mathcal{F}^+_{m\nu}(\mathfrak{A}_m).$$

By (2.2)(iii)

(2)
$$\mathfrak{A}(\nu) \leq \mathfrak{A}$$
 in $\operatorname{gr} A$ with $\mathfrak{A}^+(\nu) \leq \mathfrak{A}(\nu)$.

If
$$\mathfrak{A}^{0}(\nu) = \mathfrak{A}(\nu)/\mathfrak{A}^{+}(\nu) = \coprod_{m \geq 0} \mathcal{F}_{m\nu}^{0}(\mathfrak{A}_{m})$$
, then
$$\mathfrak{A}^{0}(\nu) \in \operatorname{gr} \mathbf{A}^{\nu}.$$

Define likewise

(4)
$$\mathfrak{B}(\nu) = \coprod_{m \geq 0} \mathcal{F}_{m\nu}(\mathfrak{B}_m), \quad \mathfrak{B}^+(\nu) = \coprod_{m \geq 0} \mathcal{F}^+_{m\nu}(\mathfrak{B}_m),$$

and set

(5)
$$\mathfrak{B}^{0}(\nu) = \mathfrak{B}(\nu)/\mathfrak{B}^{+}(\nu) = \coprod_{m \geq 0} \mathcal{F}_{m\nu}^{0}(\mathfrak{B}_{m}) \in \mathbf{gr} \mathbf{A}_{B}^{\nu}.$$

Then

(6)
$$\mathfrak{A}^0(\nu) \leq \mathfrak{B}^0(\nu) \quad \text{in } \mathbf{gr} \mathbf{A}_B^{\nu}.$$

Also by (4.1) and (2.3)(4)

(7)
$$\mathfrak{B}^0(\nu)$$
 is injective in $B\mathbf{Mod}$.

Proposition 4.5 The Frobenius splitting σ of \mathfrak{B} stabilizes $\mathfrak{B}(\nu)$, $\mathfrak{A}(\nu)$, $\mathfrak{B}^+(\nu)$, and $\mathfrak{A}^+(\nu)$ for all $\nu \in X$. Hence σ induces a Frobenius splitting $\sigma^0(\nu)$ of $\mathfrak{B}^0(\nu)$ that stabilizes $\mathfrak{A}^0(\nu)$.

Proof. We will show σ stabilizes $\mathfrak{B}(\nu)$. The rest follows likewise.

As σ vanishes on \mathfrak{B}_m if $p \nmid m$, it is enough to show

(1)
$$\sigma(\mathcal{F}_{pm\nu}\mathfrak{B}_{pm}) \subseteq \mathcal{F}_{m\nu}(\mathfrak{B}_m) \quad \forall m \in \mathbf{N}.$$

By (3.9)(i) one has for all η and $\eta' \in X$

(2)
$$\sigma(H_B^0(pmw_0\lambda)_{\eta} \otimes_K H^0(pm\mu)_{\eta'}) = \begin{cases} H_B^0(mw_0\lambda)_{\frac{1}{p}\eta} \otimes_K H^0(m\mu)_{\frac{1}{p}\eta'} & \text{if } \eta, \eta' \in pX \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, for each $\alpha \in S$, $r \in \mathbb{N}$, and $x \in H_B^0(pmw_0\lambda)_{p\eta}$, $y \in H^0(pm\mu)_{p\eta'}$ with $\eta, \eta' \in X$ one has

(3)
$$X_{-\alpha}^{(r)} \cdot \sigma(x \otimes y) = \sum_{i=0}^{r} (X_{-\alpha}^{(i)} \otimes X_{-\alpha}^{(r-i)}) \sigma(x \otimes y) \quad (\text{cf. } (1.3)(7))$$

$$= \sigma(\sum_{i=0}^{r} (X_{-\alpha}^{(pi)} \otimes X_{-\alpha}^{(p(r-i))})(x \otimes y)) \quad \text{by } (3.9)(\text{ii})$$

$$= \sigma(\sum_{i=0}^{pr} (X_{-\alpha}^{(i)} \otimes X_{-\alpha}^{(pr-i)})(x \otimes y)) \quad \text{by } (2)$$

$$= \sigma(X_{-\alpha}^{(pr)} \cdot (x \otimes y))$$

$$\in \sigma(\mathcal{F}_{mn\nu} \mathfrak{B}_{mn}).$$

Hence $\sigma(\mathcal{F}_{pm\nu}\mathfrak{B}_{pm}) \leq \mathfrak{B}_m$ in $\mathrm{Dist}(U_{-\alpha})\mathbf{Mod}$ for each $\alpha \in S$, so $\sigma(\mathcal{F}_{pm\nu}\mathfrak{B}_{pm}) \leq \mathfrak{B}_m$ in $U_{-\alpha}\mathbf{Mod}$ (cf. (1.3)(5)). Consequently, together with (2) one gets

(4)
$$\sigma(\mathcal{F}_{mn\nu}\mathfrak{B}_{mn}) \leq \mathfrak{B}_m \quad \text{in} \quad B\mathbf{Mod},$$

hence by (2) again

(5)
$$\sigma(\mathcal{F}_{pm\nu}\mathfrak{B}_{pm}) \leq \mathcal{F}_{m\nu}\mathfrak{B}_{m},$$

as desired.

Theorem 4.6 Let $\lambda, \mu \in X^+$. The G-module $H^0(\lambda) \otimes_K H^0(\mu)$ admits a good filtration.

Proof. Put $M = H^0(\lambda) \otimes_K H^0(\mu)$. Consider the G-filtration of M by $\mathcal{F}^0_{\nu}(M)$, $\nu \in X$ (2.2)(iii). It suffices by (2.7)(iv) to show

(1)
$$\mathcal{F}_{\nu}^{0}(M) = \mathcal{F}_{\nu}E(\mathcal{F}_{\nu}^{0}(M)) \quad \forall \nu \in X.$$

For that, as $\mathcal{F}^0_{\nu}(M) = \mathfrak{A}^0(\nu)_1$, it will be enough to show more generally

(2)
$$\mathfrak{A}^{0}(\nu) = \mathcal{F}E(\mathfrak{A}^{0}(\nu)).$$

One has in $\mathbf{gr} \mathbf{A}_B^{\nu}$

(3)
$$\mathfrak{A}^{0}(\nu) \leq \mathcal{F}E(\mathfrak{A}^{0}(\nu)) \leq E_{B}(\mathfrak{A}^{0}(\nu))$$
 by (2.9)
 $\leq E_{B}(\mathfrak{B}^{0}(\nu))$ as $\mathfrak{A}^{0}(\nu) \leq \mathfrak{B}^{0}(\nu)$ in $\mathbf{gr}\mathbf{A}_{B}^{\nu}$
 $= \mathfrak{B}^{0}(\nu)$ as $\mathfrak{B}^{0}(\nu)$ is already injective by (4.4)(7).

As $\mathfrak{A}^{0}(\nu)$ is reduced by (4.5), if (2) failed, then (2.12) would imply

(4) $\exists m \in \mathbf{N}^+ \text{ and } a \in \mathcal{F}E(\mathfrak{A}^0(\nu))_m \setminus \mathfrak{A}^0(\nu)_m : a^p \in \mathfrak{A}^0(\nu)_{pm}.$

Then by (4.5) one would have

(5)
$$a = \sigma^0(\nu)(a^p) \in \sigma^0(\nu)(\mathfrak{A}^0(\nu)_{pm}) = \mathfrak{A}^0(\nu)_m,$$

absurd.

References

- [AM] Atiyah, M.F. and Macdonald, I.G., Introduction to Commutative Algebra, Reading 1969 (Addison-Wesley)
- [CPS] Cline, E., Parshall, B. and Scott, L., A Mackey imprimitivity theory for algebraic groups, Math. Z. 182 (1983), 447-471
- [DG] Demazure, M. and Gabriel, P., Introduction to Algebraic Geometry and Algebraic Groups, Amsterdam 1980 (North-Holland)
- [D1] Donkin, S., Rational Representations of Algebraic Groups, LNM 1140 Berlin (Springer-Verlag)
- [D2] Donkin, S., Good filtrations of rational modules for reductive groups, Proc. Symp. Pure Math. 47, 69-80 Arcata 1987 (AMS)
- [F] Fulton, W., Algebraic Curves, Reading 1981 (Benjamin)
- [H] Humphreys, J.E., Linear Algebraic Groups, GTM 21, New York 1975 (Springer-Verlag)
- [J] Jantzen, J.C., Representations of algebraic groups, Orlando 1987 (Academic Press)
- [K] Kaneda M., The Frobenius morphism of Schubert schemes, J. Alg. (to appear)
- [M1] Mathieu, O., Construction d'un groupe de Kac-Moody et applications, Comp. Math. **69** (1989), 37-60
- [M2] Mathieu, O., Filtrations of G-modules, Ann. Sci. ENS **23** (1990), 625-644

- [MR] Mehta, V.B. and Ramanathan, A., Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. Math. 122 (1985), 27–40
- [Mi] Miyanishi M., Daisuukikagaku, Tokyo 1990 (Shoukabou)
- [P] Paradowski, J., Filtrations of modules over the quantum algebra, (to appear)
- [R] Ramanathan, A., Equations defining Schubert varieties and Frobenius splitting of diagonals, IHES Pub. Math. 65 (1987), 61–90
- [RR] Ramanan, S. and Ramanathan, A., Projective normality of flag varieties and Schubert varieties, Inv. Math. 79 (1985), 217-224
- [S] Springer, T.A., Linear Algebraic Groups, PM 9, Boston 1981 (Birkhäuser)
- [vdK] van der Kallen, W., Frobenius Splittings and B-modules, Tata Inst. Fund. Res. 84, Berlin 1993 (Springer-Verlag)
- [W] Wang J.-p., Sheaf cohomology of G/B and tensor products of Weyl modules, J. Alg. 77 (1982), 162-185

Department of Mathematics Faculty of Science Niigata University Niigata 950-21

Present address: Department of Mathematics Faculty of Science Osaka City University Sumiyoshi-ku Sugimoto, Osaka 584

 $e ext{-}mail\ address: F00500@sinet.ad.jp}$

Received August 20, 1994