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Absract.

In this paper the autonomous neutral equation with distributed delay

$\frac{d^{2}}{dt^{2}}[x(t)+\delta_{1}\int_{0}^{\tau}x(t-s)dr_{1}(s)]+\delta_{2}\int_{0}^{\tau}x(t-s)dr_{2}(s)=0$ ,

where $\delta_{i}=\pm 1,$ $i=1,2$ , is considered. It is proved that the necessary and sufficient condi-
tion for al solutions of this equations to oscilate is that the corresponding characteristic
equation

$z^{2}(1+\delta_{1}\int_{0}^{\tau}e^{-zs}dr_{1}(s))+\delta_{2}/0\tau e^{-z*}dr_{2}(s)=0$

should have no real root.

l.Introduction.

To the problem of obtaining necessary and sufficient conditions for oscilation of $g$

solutions of second an$d$ higher order neutral differential equations the papers $[1]-[5]$ are
devoted. The neutral equations considered are with a finite number of concentrated delays.
The mo$st$ general results were obtained in [1] and [4], in [1] systems of equations being
investigated. The only result in this direction for neutral equations with distributed delay
is the work [6] which concerns first order equations. In the present paper the equation

$\frac{d^{2}}{dt^{2}}[x(t)+\delta_{1}\int_{0}^{\tau}x(t-s)dr_{1}(s)]+\delta_{2}\int_{0}^{\tau}x(t-s)dr_{2}(s)=0$ , (1)

is investigated. It is proved that the necessary and sufficient condition for al solutions of
(1) to oscilate is that the characteristic equation of (1)

$Q(z)=z^{2}(1+\delta_{1}\int_{0}^{\tau}e^{-z\iota}dr_{1}(s))+\delta_{2}\int_{0}^{\tau}e^{-zs}dr_{2}(s)=0$ (2)

should have no real root. The result is a generalization of the work [3].

The present investigation was supported by the Bulgarian Comittee of Science and
Higher Education under Grant MM-7.
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2. Preliminary notes.

We shal say that conditions (A) are met if the folowing conditions hold;

Al. $f\in C([-\tau, \infty),R)$

$A2$ . $f(t)+\delta_{1}\int_{0}^{\tau}f(t-s)dr_{1}(s)\in C^{2}([0, +\infty),R)$

Definition 1. The function $x(t)$ is a solution of (1) if conditions (A) are met. $x(t)$ satifies
(1) for $ t\in[0, \infty$ ) and $x(t)=\phi(t)$ for $t\in[-\tau, 0]$ , where the imitial function $\phi\in C([-\tau,0],R)$ .

We shall say that conditions (B) are met if the folowing conditions hold:

$B1$ . $r_{i}(0)$ and $r_{i}(\tau)>0,i=1,2$

$B2$ . $r_{i}(s)$ are nondecreasing in $[0, \tau],$ $i=1,2$

$B3$ . $r_{1}(s)$ is continuous at the points $=0$

Remark 1. Without loss of generality we may assume that the functions $r_{i}(s),i=1,2$

are continuous from the right.

Introduce the following notation

$\tau_{i}=\inf${ $\epsilon|r_{i}(v)=r_{i}(\tau)$ for $v\in[\epsilon,\tau]$ }, $i=1,2$

In view of Remark lit is clear that $r_{i}(\tau:)=r_{i}(\tau),$ $i=1,2$ .

Definition 2. The solution $x(t)$ of (1) is said to oscillate if the set of its zeros is
unbounded &om above. Otherwise it is $s$aid to be non-oscillating.

Definition 3. The function $f$ is said eventualy to enjoy the property $K$ if there exists
$t_{0}$ such that for $t>t_{0}$ the function $f$ enjoys the property $K$ .

LEMMA 1. Let conditions $(B)$ hold and $\delta_{2}=-1$ . Then equation (1) has at least
on $e$ nonoscillating solution.

PROOF. Since $Q(O)=-r_{2}(\tau)<0$ and $\lim_{z\rightarrow+\infty}Q(z)=+\infty$ , then the characteris-
tic equation (2) has a real root $\lambda_{0}$ . Then the solution of (1) $x(t)=e^{\lambda_{0}\ell}$ is nonoscilating. 1

LEMMA 2. Let $\delta_{2}=1$ . For $eq$uation (1), let conditions $(B)$ hold. Then, $ifx(t)$ is a
solution of (1), then the function$s\alpha x(t-\beta),$ $\int_{0}^{\tau}x(t-s)dr_{1}(s),$ $\int_{\ell-\alpha}^{t-\beta}x(s)ds$ and $\int_{\ell-\alpha}^{\infty}x(s)ds$

( $(x(t)\in L^{1}[t_{0},$ $\infty)$ and $\lim_{\ell\rightarrow\infty}x(t)=0$) are also solutions of (1) for $\alpha,\beta\in R$ , where $ x(t)\in$

$L^{1}[t,\infty)$ and $\lim_{\ell\rightarrow\infty}x(t)=0$ .
PROOF. The assertion of the lemma folows immeadiately from the $earity$ and

autonomy of equation (1). 1
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Denote by $M_{4}$ the set of all solutions of (1) which are at least 4 times continu$0$usly
differentiable and such that

$(-1)^{\nu}w^{(\nu)}(t)>0$ , $\nu=0,1,2,3,4$

$\lim_{\ell\rightarrow\infty}w^{(\nu)}(t)=0$ , $\nu=0,1,2,3$

Denote by $N_{4}$ the set of al solutions of (1) which are at least 4 times continuously differ-
entiable and such that

$w^{(\nu)}(t)>0$ , $\nu=0,1,2,3,4$

$\lim_{\ell\rightarrow\infty}w^{\langle\nu)}(t)=0$ , $\nu=0,1,2,3$

LEMMA 3. Let $x(t)$ be a nonoscillating sol $u$ tion of $eq$uation (1). Then (1) has a
nonoscillating solution $w(t)$ belonging either to the set $M_{4}$ or to the set $N_{4}$ .

PROOF. Without loss of generality we may assume that $x(t)>0$ eventualy. Let

$z(t)=x(t)+\delta_{1}/0\tau x(t-s)dr_{1}(s)$ (3)

$w(t)=z(t)+\delta\int_{0}^{\tau}z(t-s)dr_{1}(s)$ . (4)

Then

$\ddot{z}=-\int_{0}^{\tau}x(t-s)dr_{2}(s)$ (5)

$\ddot{w}=-\int_{0}^{\tau}z(t-s)dr_{2}(s)$ (6)

$w^{(4)}=-\int_{0}^{\tau}\ddot{z}(t-s)dr_{2}(s)$ (7)

From the fact that $x(t)>0$ eventualy it folows that $\ddot{z}(t)<0$ eventually and $w^{\langle 4)}(t)>0$

eventually. Hence the functions $z(t)$ and $w(t)$ are eventually monotonic. IFYom $\ddot{z}(t)<0$ , it
folows that $\dot{z}(t)$ is an eventually decreasing function. Then either

$\lim_{\ell\rightarrow\infty}\dot{z}(t)=-\infty$ (8)

or there erists the finite limit
$\lim_{\ell\rightarrow\infty}\dot{z}(t)=L$ (9)

Let (8) hold. Then $\lim_{\ell\rightarrow\infty}z(t)=-\infty$ . Consequently, $\lim_{\ell\rightarrow\infty}\ddot{w}(t)=+\infty$ , and then
$\lim_{t\rightarrow\infty}w(t)=\lim_{\ell\rightarrow\infty}\dot{w}(t)=+\infty$ . Differentiating (6) and taking into account that
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$\lim_{\ell\rightarrow\infty}\dot{z}(t)=-\infty$ , we obtain that $\lim_{\ell\rightarrow\infty}w^{\langle 3)}(t)=+\infty$ . Thus we proved that if (8)
holds, equation (1) has a solution $w(t)\in N_{4}$ .

Let (9) hold. We shall prove that $L=0$ . Suppose that this is not true. Let $L>0$ . Since
$\dot{z}(t)$ is an eventualy decreasing function, then $\dot{z}(t)>L$ eventualy. Hence $\lim_{\ell\rightarrow\infty}z(t)=$

$+\infty,whence$ we obtain $\lim_{\ell\rightarrow\infty}\ddot{w}(t)=-\infty$ . Consequently, $\lim_{\ell\rightarrow\infty}\dot{w}(t)=-\infty$ . On
the other hand, differentiating (4) and taking into account that $\dot{z}(t)$ is a bounded func-
tion,we obtain that $\dot{w}(t)$ is a bounded function. The contradiction obtained shows that
$L\leq 0$ . Analogously the case $L<0$ is excluded. Thus we proved that $\lim_{\ell\rightarrow\infty}\dot{z}(t)=0$ .
Consequently, $\lim t\rightarrow\infty\dot{w}(t)=0$ . Since $\dot{z}(t)$ is $an$ eventually decreasing function and
$\lim_{\ell\rightarrow\infty}\dot{z}(t)=0$ , then $\dot{z}(t)>0$ eventualy. Hence $z(t)$ is an eventually increasing func-
tion. Differentiating (6) and that taking into account that $\lim_{\ell\rightarrow\infty}\dot{z}(t)=0,\dot{z}(t)>0$

eventualy, we obtain that $\lim_{\ell\rightarrow\infty}w^{(3)}(t)=0$ . Since $w^{\langle 4)}(t)>0$ eventualy, then $w^{(3)}(t)$

is an eventualy increasing function. Hence $w^{(3)}(t)<0$ eventualy. In order to show
that $w(t)\in M_{4}$ , it remains to prove that $\lim_{\ell\rightarrow\infty}w(t)=\lim_{t\rightarrow\infty}$ th$(t)=0$ and $w(t)>$
$0,\dot{w}(t)<0$ and th$(t)>0$ eventualy. Suppose that $\lim_{\ell\rightarrow\infty}z(t)\neq 0$ . FMrom the fact
that $z(t)$ is an eventualy increasing function, it folows that there exist positive con-
stants $\alpha$ and $\beta$ such that either $ z(t)>\alpha$ eventualy, or $ z(t)<-\beta$ eventualy in depen-
dence on the sign of $\lim_{\ell\rightarrow\infty}z(t)$ . Then &om (6) it is immediately seen that there eXtst
positive conatants $\alpha^{\prime}$ and $\beta^{\prime}$ such that $\ddot{w}(t)<-\alpha^{\prime}$ or $\tilde{w}(t)>\beta^{\prime}$ respectively. But then
$\lim_{\ell\rightarrow\infty}$ th $(t)=-\infty$ or $\lim_{\ell\rightarrow\infty}\dot{w}(t)=+\infty$ respectively, which contradict $s\lim_{\ell\rightarrow\infty}\dot{w}(t)=$

$0$ . Hence $\lim_{\ell\rightarrow\infty}z(t)=0$ and then $z(t)<0$ eventualy. Ftom $\lim_{\ell\rightarrow\infty}z(t)=0,(4)$

and (6), it folows that $\lim_{t\rightarrow\infty}w(t)=\lim_{t\rightarrow\infty}\tilde{w}(t)=0$ . This immediately implies that
$w(t)>0,\dot{w}(t)<0,\ddot{w}(t)>0$ . Thus we proved that $w(t)\in M_{4}$ and Lemma 3 is proved. 1

LEMMA 4. For $eq$uation (1) let conditions $(B)$ hold. Let $\delta_{1}=-1$ and

$r_{1}(\tau_{1}^{-})\neq r_{1}(\tau_{1}^{+})$ . (10)

Then a necessary condition for the characteristic equation of (1) to have no real root is
$\tau_{1}<\tau_{2}$ .

PROOF. Suppose that this is not true. Let $\tau_{1}\geq\tau_{2}$ . We shall show that (2) has a
real root. Since $Q(O)>0,then$ it suffices to show that $\lim_{z\rightarrow-\infty}Q(z)=-\infty$ . Let $z<0$ .
IFIom the definition of the Riemann-Stieltjes integral and from (10) it folows that

$\int_{0}^{\tau}e^{-zs}dr_{1}(s)\geq e^{-z\tau_{1}}[r_{1}(\tau_{1}^{+})-r_{1}(\tau_{1}^{+})]$

Let $ r_{1}(\tau_{1}^{+})-r_{1}(\tau_{1}^{-})=\delta$ . Then

$\int_{0}^{\tau}e^{-z\ell}dr_{1}(s)\geq\delta e^{-z\tau_{1}}$ (11)

On the other hand,

$\int_{0}^{\tau}e^{-zs}dr_{2}(s)=\int_{0}^{\tau_{2}}e^{-zs}dr_{2}(s)\leq e^{-z\tau_{2}}r_{2}(\tau_{2})$
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Rom the last inequality and (11) we obtain

$Q(z)<z^{2}(1-\delta e^{-z\tau_{1}})+e^{-z\tau_{2}}r_{2}(\tau_{2})$

for $z<0$ . Then $\lim_{z\rightarrow-\infty}Q(z)=-\infty$ . Thus Lemma 4 is proved. 1

Remark 2. By arguments analogous to the above case it is immediately seen that if the
characteristic equation $Q(z)=0$ has no real root, then $\lim_{a\rightarrow-\infty}Q(z)=\lim_{a\rightarrow+\infty}Q(z)=$

$+\infty$ . Consequently, $\inf_{R}Q(z)>0$ .

Remark 3. Condition (10) is necessary only in the case when $\tau_{1}=\tau_{2}$ . If $\tau_{1}>\tau_{2}$ , then
$Q(z)=0$ has a real root even if $r_{1}(s)$ is continuous at the point $\tau_{1}$ . Choose $\epsilon>0$ so that
$\tau_{1}-\epsilon>\tau_{2}$ . Then

$\int_{0}^{\tau}e^{-z*}dr_{1}(s)\geq\int_{\tau_{1}-\epsilon}^{\tau_{1}}dr_{1}(s)$

$\geq e^{-z(\tau_{1}-\epsilon)}[r_{1}(\tau_{1})-r_{1}(\tau_{1}-\epsilon)]$ .

Rom the definition of $\tau_{1}$ it folows that $\delta_{\epsilon}=r_{1}(\tau_{1})-r_{1}(\tau_{1}-\epsilon)>0$ for any $\epsilon>0$ . Thus
we obtain that

$\int_{0}^{\tau}e^{-z*}dr_{1}(s)\geq\delta_{\epsilon}e^{-z(\tau_{1}-\epsilon)}$ .

Arguing further as in the proof of Lemma 4, it is shown that $\lim_{z\rightarrow-\infty}Q(z)=-\infty$ , i.e.
the equation $Q(z)=0$ has a real root. If $\tau_{1}=\tau_{2}$ and $r_{1}(s)$ is continuous at the point $\tau_{1}$ ,
then nothing definite can be said about whether the equation $Q(z)=0$ has or does not
have real roots. We shal ilustrate this fact by the following eamples.

Let $\tau=2$ .

$r_{1}(s)=\left\{\begin{array}{ll}2s-s^{2} & , 0\leq s\leq 1\\1 & 1<s\leq 2\end{array}\right.$ $r_{2}(s)=\left\{\begin{array}{ll}\epsilon & 0\leq s\leq 1\\1 & 1<s\leq 2.\end{array}\right.$

Then $\tau_{1}=\tau_{2}$ and straightforward calculations yield

$Q(z)=\left\{\begin{array}{ll}z^{2}-2z+2-2e^{-z}+\frac{1}{z}-\frac{1}{z}e^{-z}, & z\neq 0\\1, & z=0\end{array}\right.$

and $\lim_{z\rightarrow-\infty}Q(z)=-\infty$ , $\lim z\rightarrow\infty Q(z)=+\infty$ . Consequently the characteristic equation
(2) has a real root.

For the $s$ame $\tau$ and $r_{1}(s)$ consider the function

$r_{2}(s)=\left\{\begin{array}{ll}0 & 0\leq s<1\\\kappa & 1\leq s\leq 2 (\kappa>0).\end{array}\right.$

Let $\kappa>2$ . Then $\lim_{z\rightarrow-\infty}Q(z)=\lim_{z\rightarrow+\infty}Q(z)=+\infty$ . It is easy to check that for
sufficiently large $\kappa,$ $Q(z)>0$ for al $z$ . Consequently the equation $Q(z)=0$ has no real
root.

$-91-$



LEMMA 5. For equation (1) let condition $(B)$ hold. Let $\delta_{1}=-1$ and $\tau_{1}<\tau_{2}$ . Then
a) if $x(t)\in M_{4}$ , then there exists a solution $w(t)$ of equation (1) such that $w(t)\in M_{4}$

and the set
$\Lambda(w)=\{\lambda>0|-\ddot{w}(t)+\lambda^{2}w(t)\leq 0\}\neq\phi$

b) $ifx(t)\in N_{4}$ , then there exists a solution $w(t)$ ofequation (1) such that $w(t)\in N_{4}$ and
the set $\Lambda(w)\neq\phi$ .

PROOF. a) Let

$w(t)=-[x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]$ (12)

bom Lemma 2, it folows that $w(t)$ is a $s$olution of (1). It is immediately checked that
$w(t)\in M_{4}$ . From $x(t)\in M_{4}$ it folows that $x(t)$ is an eventually decreasing function. Using
this fact and (12), we obtain the estimate

$w(t)<\int_{0}^{\tau}x(t-s)dr_{1}(s)=\int_{0}^{\tau_{1}}x(t-s)dr_{1}(s)\leq x(t-\tau_{1})r_{1}(\tau_{1})$ .

Rom the fact that $x(t)$ is a solution of (1), and from (12), it folows that

$-\ddot{w}(t)+\int_{0}^{\tau}x(t-s)dr_{2}(s)==0$ . (13)

As above,we have the estimate

$0\geq-\ddot{w}(t)+\int_{r_{1}}^{\tau}x(t-s)dr_{2}(s)\geq-\ddot{w}(t)+x(t-\tau_{1})[r_{2}(\tau)-r_{2}(\tau_{1})]$ .

Then from both estimates it folows that

$-\tilde{w}(t)+\frac{r_{2}(\tau)-r_{2}(\tau_{1})}{r_{1}(\tau_{1})}w(t)<0$ .

Ftom the definition of $\tau_{1}$ and $\tau_{2}$ it follows that $r_{2}(\tau)=r_{2}(\tau_{2})>r_{2}(\tau_{2}-\epsilon)$ for any $\epsilon>0$ .
Then

$\frac{r_{2}(\tau)-r_{2}(\tau_{1})}{r_{1}(\tau_{1})}>0$

and

$(\frac{r_{2}(\tau)-r_{2}(\tau_{1})}{r_{1}(\tau_{1})})^{2}1\in\Lambda(w)$ .

b) Let $z(t)=-[x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]$ . As in the proof of a) $z(t)$ is a solution of (1) and
$z(t)\in N_{4}$ . Then $z(t)>0$ eventually and especialy. Hence

$x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)<0$ .
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Ftom conditions Bl and B3, it folows that for any $\epsilon>0$ we can choose $\delta_{\epsilon}$ such that for
$ s<\delta_{\epsilon},r_{1}(s)<\epsilon$ . Let $\epsilon<1$ and let $\delta<\delta_{\epsilon}$ . Then $1-r_{1}(\delta)>0$ . Using this inequality and
the fact that $x(t)$ is an eventually increasing function $(x(t)\in N_{4})$ , we obtain

$x(t)<\int_{0}^{\tau}x(t-s)dr_{1}(s)=\int_{0}^{\delta}x(t-s)dr_{1}(s)+\int_{\delta}^{\tau}x(t-s)dr_{1}(s)$

$<x(t)r_{1}(\delta)+x(t-\delta)[r_{1}(\tau)-r_{1}(\delta)]$ .

Consequently,

$x(t)[1-r_{1}(\delta)]<x(t-\delta)[r_{1}(\tau)-r_{1}(\delta)]$

$x(t)<\frac{r_{2}(\tau)-r_{2}(\tau_{1})}{r_{1}(\tau_{1})}x(t-\delta)$

Choose the positive integer $\kappa$ so that $\kappa\delta>\tau_{2}$ . Then from the above inequaJity it folows
that

$x(t)<(\frac{r_{1}(\tau)-r_{1}(\delta)}{1-r_{1}(\delta)})^{\kappa}$ . $x(t-\kappa\delta)<(\frac{r_{1}(\tau)-r_{1}(\delta)}{1-r_{1}(\delta)})^{\kappa}\cdot x(t-\tau_{2})$ .

Since $x(t)$ is a solution of (1) and $x(t)\in N_{4},\ddot{x}(t)>0$ eventualy. Then the following
inequality holds

$-\int_{0}^{\tau}\ddot{x}(t-s)dr_{1}(s)+\int_{0}^{\tau}x(t-s)dr_{2}(s)<0$ .

Using the fact that $x(t)$ and $\ddot{x}(t)$ are eventually increasing functions,we obtain

$-\int_{0}^{\tau}\tilde{x}(t-s)dr_{1}(s)+\int_{0}^{\tau}x(t-s)dr_{2}(s)$

$=-\int_{0}^{\tau}\ddot{x}(t-s)dr_{1}(s)+\int_{0}^{\tau_{2}}x(t-s)dr_{2}(s)$

$\geq x\leftrightarrow(t)r_{1}(\tau)+x(t-\tau_{2})r_{2}(\tau_{2})$

Consequently,

$-\tilde{x}(t)+x(t-\tau_{2})\frac{r_{2}(\tau_{2})}{r_{1}(\tau_{1})}<0$ .

IFYom the last inequality and &om the inequality

$x(t)<(\frac{r_{1}(\tau)-r_{1}(\delta)}{1-r_{1}(\delta)})^{\kappa}x(t-\tau_{2})$ ,

we obtain that
$-\ddot{x}(t)+(\frac{r_{1}(\tau)-r_{1}(\delta)}{1-r_{1}(\delta)})^{\kappa}$ $\frac{r_{2}(\tau_{2})}{r_{1}(\tau_{1})}x(t)<0$ .

Hence
$[(\frac{1-r_{1}(\delta)}{r_{1}(\tau)-r_{1}(\delta)})^{\kappa} \frac{r_{2}(\tau_{2})}{r_{1}(\tau_{1})}]\in\Lambda(x)$ .
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Thus Lemma 5 is proved. 1

LEMMA 6 [4]. For equation (1) let conditions $(B)$ hold.
$(a)$ Let $x(t)$ be a solution of (1), $x(t)\in M_{4}$ and $\Lambda(x)\neq 0$ . Then, if for a given $\omega$ there

erist\mbox{\boldmath $\epsilon$} $M>0$ such that

$(-1)^{\kappa}x^{(\kappa)}(t)>M(-1)^{\kappa}x^{(\kappa)}(t-\omega),\kappa=0,1,2$

then the positive number $\lambda_{0}=\frac{1}{\omega}$ log $\frac{1}{M}$ is an upper bound $of\Lambda(x)$ .
$(b)$ Let $x(T)$ be a solution of (1), $x(t)\in N_{4}$ an$ d\Lambda(x)\neq\phi$ . Then, if for a given $\omega>0$

there exists $M>0$ such that

$x^{(\kappa)}(t)<Mx^{(\kappa)}(t-\omega),\kappa=0,1,2$

then the positive number $\lambda_{0}=\frac{1}{\omega}$ log $\frac{1}{M}$ is an upper $bo$und of $A(x)$ .

LEMMA 7. For equation (1) let conditions $(B)$ hold. $\delta_{1}=-1$ and $\tau_{1}<\tau_{2}$ . Then
$(a)ifx(t)\in M_{4}$ an$ d\Lambda(x)\neq\phi$, then the set $A(x)h$as an upper boun $d$ independent of $x$ .
$(b)$ if $x(t)\in N_{4}$ and $\Lambda(x)\neq\phi,then$ th $e$ set $\Lambda(x)h$as an upper bound independent of $x$ .

PROOF. a). Define $w(t)$ as in (12). Then $w(t)\in M_{4}$ and (13) is met. Using the fact
that $x(t),$ $-\dot{x}(t),\ddot{x}(t)$ are eventualy decreasing functions,from (12) we obtain the estimates

$0<w(t)<r_{1}(\tau_{1})x(t-\tau_{1})$

$0<-\dot{w}(t)<-r_{1}(\tau_{1})\dot{x}(t-\tau_{1})$ (14)
$0<\ddot{w}(t)<r_{1}(\tau_{1})\ddot{x}(t-\tau_{1})$ .

Set $\rho=\frac{1}{2}(\tau_{2}-\tau_{1})$ . Then from (12), we obtain the inequdity

$-\ddot{w}(t)+\int_{\tau_{1}+\rho}^{\tau}x(t-s)dr_{2}(s)\leq 0$ .

IFYom thi $s$ inequality, using the fact that $x(t)$ is an eventualy decreasing function, it foUows
that

$-\tilde{w}(t)+[r_{2}(t)-r_{2}(\tau_{1}+\rho)]x(t-(\tau_{1}+\rho))\leq 0$ .
Let $\gamma=r_{2}(\tau)-r_{2}(\tau_{1}+\rho)$ . Then we obtain the inequality

$-\ddot{w}(t)+\gamma x(t-(\tau_{1}+\rho))\leq 0$

$w^{\langle 3)}(t)-\gamma\dot{x}(t-(\tau_{1}+\rho))\leq 0$
$(1S)$

$-w^{(4)}(t)+\gamma\ddot{x}(t-(\tau_{1}+\rho))\leq 0$ .

The last two inequaJities of (15) are obtained from (13) just as the first one. Set $\alpha=$

$\frac{1}{8}(\tau_{1}-\tau_{2})$ and integrate (15) from $ t-\alpha$ to $t$ . We obtain

$-\dot{w}(t)+\dot{w}(t-\alpha)+\gamma\int_{-\alpha}^{\ell}x(s-(\tau_{1}+\rho))ds\leq 0$ .
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Using the fact that $\dot{w}(t)<0$ eventualy and that $x(t)$ is an event $a$ully decreasing function,
we obtain the inequality

$\dot{w}(t-a)+\gamma x(t-(\tau_{1}+p))\alpha<0$

$-\dot{w}(t)>\gamma\alpha x(t-(\tau_{1}+\rho)+\alpha)$ .

In the $\epsilon$ame way further two inequalities are derived and we obtain

$-\dot{w}(t)>\gamma\alpha x(t-(\tau_{1}+\rho)+\alpha)$

th $(t)>-\gamma\alpha\dot{x}(t-(\tau_{1}+\rho)+\alpha)$ (16)
$-w^{\langle 3)}(t)>\gamma a\ddot{x}(t-(\tau_{1}+\rho)+\alpha)$ .

Analogously, &om inequalities (16) we obtain the inequalities

$w(\ell)>\gamma\alpha^{2}x(t-(\tau_{1}+\rho)+2\alpha)$

$-\dot{w}(t)>-\gamma\alpha^{2}\dot{x}(t-(\tau_{1}+\rho)+2\alpha)$ (17)
$\ddot{w}(t)>\gamma\alpha^{2}\ddot{x}(t-(\tau_{1}+\rho)+2\alpha)$ .

From the fir$st$ inequdity of (14) and the first inequality of (17) we obtain

$\gamma\alpha^{2}x(t-(\tau_{1}+\rho)+2\alpha)<r_{1}(\tau_{1})x(t-\tau q)$ .

Then

$x(t)>\frac{\gamma\alpha^{2}}{r_{1}(\tau_{1})}x(t-\frac{1}{4}(\tau_{2}-\tau_{1}))$

$-\dot{x}(t)>-\frac{\gamma\alpha^{2}}{r_{1}(\tau_{1})}\dot{x}(t-\frac{1}{4}(\tau_{2}-\tau_{1}))$ (18)

$\ddot{x}(t)>\frac{\gamma\alpha^{2}}{r_{1}(\tau_{1})}\ddot{x}(t-\frac{1}{4}(\tau_{2}-\tau_{1}))$

The last two inequalities in (18) are obtained as the first one. IFtom inequalities (18)
and &om Lemma 6, it follows that the positive number $\lambda_{0}=\frac{4}{\tau_{2}-\tau_{1}}\log\frac{r_{1}(\tau_{1})}{\gamma\alpha^{2}}$ , where $\alpha=$

$\frac{1}{8}(\tau_{2}-\tau_{1})$ and $\gamma=r_{2}(\tau)-r_{2}(\frac{\tau+\tau}{2})$ , is an upper bound of $\Lambda(x)$ which is independent of
the concrete $x\in M_{4}$ .

b) Let $x(t)\in N_{4}$ . Define $w(t)$ as in (12). Then $w(t)\in N_{4}$ and the folowing equdities
are vahid

$w^{\langle\nu)}(t)=-[x^{\langle\nu)}(t)-\int_{0}^{\tau}x^{(\nu)}(t-s)dr_{1}(s)],$ $v=0,1,2$ .

Ibom $w(t)\in N_{4}$ it follows that $w^{(\nu)}(t)>0,$ $v=0,1,2$ . Hence

$-x^{(\nu)}(t)+\int_{0}^{\tau}x^{(\nu)}(t-s)dr_{1}(s)>0$ .
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Using the fact that $x^{(\nu)}(t)$ are increasing functions, just as in the proof of Lemma $5b$), we
obtain that the following inequalities hold

$x^{(\nu)}(t)<\frac{r_{1}(\tau)-r_{1}(\delta_{1})}{1-r_{1}(\delta)}x^{\langle\nu)}(t-\delta),\nu=0,1,2$ ,

where $\delta$ is chosen $as$ in Lemma $5b$ ).
Rom the last inequalities and Lemma 6 it folows that the positive number $\lambda_{0}=$

$\}$ log $\frac{r_{1}(\tau)-r_{1}(\delta)}{1-r_{1}(\delta)}$ is an upper bound of $\Lambda(x)$ which is independent of the concrete $x\in N_{4}.1$

Remark 4. Lemma 7 claims that the number $\lambda_{0}=\frac{4}{\tau’-\tau_{1}}\log\frac{r_{1}(\tau_{1})}{\gamma\alpha}$ , an upper bound of
$\Lambda(x)$ , is positive. The first can be established in the folowing way. Ftom inequality (18)
and bom the fact that $x(t)$ is a dexreasing function when $x(t)\in M_{4}$ , it folows that

$x(t)>\frac{\gamma\alpha^{2}}{r_{1}(\tau_{1})}x(t-\frac{1}{4}(\tau_{2}-\tau_{1}))>\frac{\gamma\alpha^{2}}{r_{1}(\tau_{1})}x(t)$ .

Consequently, $\frac{\gamma\alpha^{2}}{r_{1}(\tau_{1})}<1$ and then log $\frac{r_{1}(\tau_{1})}{\gamma\alpha^{2}}>0$ .
In the same way the case $x(t)\in N_{4}$ is considered.

3. Main Results

THEOREM 1. For $equati$on (1) let conditions $(B)ho1d,\delta_{2}=1,$ $\delta_{1}=1$ . Then each
solution $osci\mathbb{I}ates$ .

PROOF. Suppose that the equation $ha8$ at least one nonoscilating solution $x(t)$ .
Without loss of generarity we may assume that $x(t)>0$ evetualy. By Lemma 3 equation
(1) has a nonoscilaing solution $w(t)$ belonging to the set $M_{4}$ or to the set $N_{4}$ . In both cases
$w(t)$ and th $(t)$ are eventually positive functions. Then eventualy the folowing inequality
holds

$\ddot{w}(t)+\int_{0}^{\tau}\ddot{w}(t-s)dr_{2}(s)+\int_{0}^{\tau}w(t-s)dr_{2}(s)>0$ .

Hence $w(t)$ caanot be a solution of (1). IFYom the contradiction obtained it folows that
each $s$olution of (1) oscilates. Thus Theorem 1 is proved. 1

THEOREM 2. For equation (1) let conditions $(B)ho1d,\delta_{2}=1,\delta_{1}=-1$ . $Moreover,let$

condition (10) hold. Then the necessary and suficient condition for each solution of (1) to
oscilla$te$ is that the characteristic equation (2) should have no real root.

PROOF. In order to prove the theorem it suffices to prove that equation (1) has a
nonoscilating solution if and only if (2) has at least one real root. If (2) has a $re$al root $z_{0}$ ,
then $x(t)=e^{z_{\circ}t}$ is a nonoscilating solution. We shall prove that if (1) $h$as a nonoscilating
solution $y(t)$ , then the characteristic equation (2) has a real root. Suppose that thi$s$ is
not true,i.e. (2) has no real root. Ftom the fact that $y(t)$ is a nonoscilating solution,by
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Lemma 3, it folows that equation (1) has a solution $x(t)$ belonging to the set $M_{4}$ or to
the set $N_{4}$ . Let $x(t)\in M_{4}$ . From the assumption that the characteristic equation (2) has
no real root and from (10), by Lemma 4, it folows that $\tau_{1}<\tau_{2}$ . Therefore, the conditions
are met,under which Lemma 5 and Lemma 7 are valid. By Lemma $5a$) without loss of
generality we may assume that $\Lambda(x)\neq\phi$ , and let $\lambda^{\prime}\in\Lambda(x)$ . By Lemma $7a$) the set $\Lambda(x)$

is bounded from above, and let $\lambda_{0}$ be an upper bound of $\Lambda(x)$ (independent of $x$). Let
$\lambda\geq\lambda^{\prime}$ and $\lambda\in\Lambda(x)$ . Set

$z(t)=F_{1}x=-[x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]$

$w(t)=F_{2}z=-\lambda\dot{z}(t)+\ddot{z}(t)$

$u(t)=F_{3}w=\frac{d}{dt}[w(t)-\int_{0}^{\tau}w(t-s)dr_{1}(s)]+\int_{0}^{\tau}\int_{-\tau}^{\ell-\iota}w(\nu)dvdr_{2}(s)+\lambda^{2}\int_{\ell-\tau}^{\ell}w(s)ds$ . (19)

It is aesy to check that $z(t),$ $w(t),$ $u(t)$ are solution of (1) and belong to the set $M_{4}$ . We
shal show that $(\lambda^{2}+m_{0})\#\in\Lambda(u)$ , where

$m_{0}=\frac{m}{e^{\lambda_{0}\tau}[1+r_{1}(\tau)+\frac{r_{2}(\tau)}{\lambda^{2}}]},$ $m=\inf_{R}Q(z)$ . (20)

For this purpose,we have to prove that $-\ddot{u}(t)+(\lambda^{2}+m_{0})u(t)\leq 0$ .
Let $\phi(t)=-e^{\lambda\ell}\dot{w}(t)$ . From $w(t)\in M_{4}$ it follows that $\phi(t)>0$ eventually.

$\dot{\phi}(t)=e^{\lambda\ell}[-\ddot{w}(t)-\lambda\dot{w}(t)]$

$=e^{\lambda\ell}[-z^{(4)}(t)+\lambda^{2}\ddot{z}(t)]$

$=e^{\lambda\ell}[\frac{d^{2}}{dt^{2}}[\frac{d^{2}}{dt^{2}}(x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]$

$-\lambda^{2}\frac{d^{2}}{dt^{2}}[x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]\}$

$=e^{\lambda\ell}[-\int_{0}^{\tau}\ddot{x}(t-s)dr_{2}(s)+\lambda^{2}\int_{0}^{\tau}x(t-s)dr_{2}(s)]$

$=e^{\lambda\ell}\int_{0}^{\tau}[-\ddot{x}(t-s)+\lambda^{2}x(t-s)]dr_{2}(s)\leq 0$ .

The last inequality folows &om the fact taht $\lambda\in\Lambda(x)$ . Thus we showed that $\phi(t)$ is a
nonincreasing function. YMrom the definition of $\phi(t)$ it folows that $\dot{w}(T)=-e^{-\lambda\ell}\phi(t)$ .
Integrating this equality $bomt$ to $t_{1}$ and passing to the limit as $ t_{1}\rightarrow+\infty$ , we obtain

$w(t)=\int_{0}^{\infty}e^{-\lambda s}\phi(s)ds\leq\frac{1}{\lambda}e^{-\lambda e}\phi(t)$ .
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Then for any $\omega<\tau$ the following estimate is valid.

$\int_{\ell-\tau}^{\ell-\omega}w(s)ds\leq\frac{1}{\lambda}\int_{-\tau}^{\ell-\omega}\phi(s)ds\leq\frac{1}{\lambda^{2}}e^{-\lambda}\phi(t-\tau)(e^{\lambda r}-e^{\lambda\omega})$

Hence we have the inequality

$\int_{\ell-\tau}^{t-\omega}w(s)ds\leq\frac{1}{\lambda^{2}}e^{-\lambda\tau}\phi(\ell-\tau)(e^{\lambda}-e^{\lambda\omega})$ . (21)

Differentialing tWice (19),$we$ obtain

$\ddot{u}(\ell)=\frac{d}{dt}\{\frac{d^{2}}{dt^{2}}[w(t)-\int_{0}^{\tau}w(t-s)dr_{1}(\epsilon)]\}+\int_{0}^{\tau}$ [$\dot{w}(t-s)-$ ib$(t-\tau)$] $dr_{2}(s)$

$+\lambda^{2}[\dot{w}(t)-\dot{w}(t-\omega)]$

$=-\frac{d}{d\ell}1/0\tau w(t-s)dr_{2}(\epsilon)]+\int_{0}^{\tau}\dot{w}(t-s)dr_{2}(s)-r_{2}(\tau)\dot{w}(t-\tau)$

$+\lambda^{2}[\dot{w}(t)-\dot{w}(t-\tau)]$ .

Therefore
$\tilde{u}(t)=-r_{2}(\tau)\dot{w}(t-\tau)+\lambda^{2}[\dot{w}(t)-\dot{w}(t-\tau)]$ .

Substituing $\dot{w}(t)=-e^{-\lambda\ell}\phi(t)$ into the last inequality,we obtain

$-\tilde{u}(t)=r_{2}(\tau)e^{-\lambda\langle t-\tau)}\phi(t-\tau)+\lambda^{2}[e^{-\lambda\ell 4^{\ell)}}-e^{-\lambda(\ell-\tau)}\phi(t-\tau)]$ . (22)

IMom (19), taking into account that $\dot{w}(t)=-e^{-\lambda t}\phi(t)$ and inequality (21), we obtain the
esitimate

$u(t)\leq-e^{-\lambda t}\phi(t)+/0\tau e^{-\lambda(\ell-\cdot)}\phi(t-s)dr_{1}(s)$

$+\frac{1}{\lambda^{2}}e^{-\lambda\ell}\phi(t-\tau)\int_{0}^{\tau}(e^{\lambda\tau}-e^{\lambda})dr_{2}(s)$

$+e^{-\lambda 2}\phi(t-\tau)(e^{\lambda\tau}-1)$ (23)

Then &om (22) and (23) we obtain

$-\tilde{u}(t)+\lambda^{2}u(t)\leq\lambda^{2}\int_{0}^{\tau}\phi(t-s)dr_{1}(s)$

$-e^{-\lambda\ell}\phi(t-\tau)\int_{0}^{\tau}e^{\lambda\iota}dr_{2}(s)-\lambda^{2}e^{-\lambda\ell}\phi(t-\tau)$

$\leq e^{-\lambda\ell}\phi(t-\tau)[-\lambda^{2}+\lambda^{2}\int_{0}^{\tau}e^{\lambda\ell}dr_{1}(s)-\int_{0}^{\tau}e^{\lambda}dr_{2}(s)]$ .
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IFMrom the definition of $m$ it folows that $Q(\lambda)\geq m$ . Hence

$\lambda^{2}-\lambda^{2}\int_{0}^{\tau}e^{-\lambda s}dr_{1}(s)+\int_{0}^{\tau}e^{-\lambda s}dr_{2}(s)\geq m$

$\lambda^{2}+\lambda^{2}\int_{0}^{\tau}e^{-\lambda\iota}dr_{1}(s)-\int_{0}^{\tau}e^{-\lambda\ell}dr_{2}(s)\leq-m$ .

This inequality holds for all real $\lambda$ . Replacing $\lambda by-\lambda,we$ obtain the inequality

$-\lambda^{2}+\lambda^{2}\int_{0}^{\tau}e^{\lambda s}dr_{1}(s)-\int_{0}^{\tau}e^{\lambda s}dr_{2}(s)\leq-m$ .

Using $ti8inequdity,we$ obtain the estimate

$-\ddot{u}(t)+\lambda^{2}u(t)\leq e^{-\lambda\ell}\phi(t-\tau)(-m)$ .

Hence
$-\ddot{u}(t)+(\lambda^{2}+m_{0})u(t)\leq e^{-\lambda\ell}\phi(t-\tau)(-m)+m_{0}u(t)$ . (24)

IFMrom (23), taking into account that $\phi(t)>0$ eventually and that $\phi(t)$ is an eventually
nonincreasing function, we obtain

$u(t)\leq\int_{0}^{\tau}e^{-\lambda(\ell-\cdot)}\phi(t-s)dr_{1}(s)+\frac{1}{\lambda^{2}}e^{-\lambda\ell}\phi(t-\tau)e^{\lambda\tau}r_{2}(\tau)$

$+e^{-\lambda\ell}\phi(t-\tau)e^{\lambda\tau}$

$\leq e^{-\lambda t}\phi(t-\tau)e^{\lambda_{O}\tau}[1+r_{1}(\tau)+\frac{r_{2}(\tau)}{\lambda^{2}}]$

$=e^{-\lambda\ell}\phi(t-\tau)\frac{m}{m_{0}}$ .

Then from (24) it folows that

$-\ddot{u}(\ell)+(\lambda^{2}+m_{0})u(t)\leq 0$ .

Consequently, $(\lambda^{2}+m_{0})$ } $\in\Lambda(u)$ . Set $x_{0}=x,x_{1}=Fx=F_{3}(F_{2}(F_{1}x)),x_{2}=Fx_{1},$ $\ldots,x_{n}=$

$Fx_{\mathfrak{n}-1}$ . It is easy to check that $x_{\mathfrak{n}}\in M_{4}$ for any positive integer $n$ .

$\lambda\in\Lambda(x_{0}),$ $(\lambda^{2}+m_{0})^{\frac{1}{2}}\in\Lambda(u)=\Lambda(x_{1})$ .

Therwfore, $(\lambda^{2}+2m_{0})*\iota\in\Lambda(x_{2})$ . For any positive integer $n$ we have $(\lambda^{2}+nm_{0})^{L}*\in A(x_{\mathfrak{n}})$

and since $m_{0}>0$ , then $\lim_{\mathfrak{n}\rightarrow\infty}(\lambda^{2}+nm_{0})^{\frac{1}{2}}=+\infty$ which contradicts the fact that $\lambda_{0}$ is
an upper bound of $\Lambda(x_{\mathfrak{n}})$ for any positive integer $n$ .

Let $x(t)\in N_{4}$ . IFMrom Lemma 4 it follows that $\tau_{1}<\tau_{2}$ . Without loss of generality we
may assume,by Lemma $Sb$), that the set $\Lambda(x)\neq\phi$ . Let $\lambda^{\prime\prime}\in\Lambda(x)$ . By Lemma $7b$) there
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erist $s\lambda_{0}>0$ such that $\Lambda(x)$ is bounded above ( $\lambda_{0}$ is independent of $x$). For $\lambda\geq\lambda^{\prime\prime}$ and
$\lambda\in\Lambda(x)$ consider the functions

$z(t)=-[x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]$

$w(t)=\lambda\dot{z}(t)+\ddot{z}(t)$

$u(t)=-\frac{d}{dt}[w(t)-\int_{0}^{\tau}w(t-s)dr_{1}(s)]$

$+\int_{0}^{\tau}\int_{-s}^{t+\tau}w(v)dvdr_{2}(s)+\lambda^{2}\int^{\ell+\tau}w(s)ds$ (25)

It $is$ immediately verified that the functions $z(\ell),w(t),u(t)$ are solutions of (1) and belong
to the set $N_{4}$ . Let

$m_{0}=\frac{m}{\int_{0}^{\tau}e^{-\lambda^{\prime\prime}\ell}dr_{1}(s)+e^{\lambda_{0}\tau}(1+\frac{r’(\tau)}{\lambda^{l}})}$ . (26)

We shall shows that $(\lambda^{2}+m_{0})^{\frac{1}{2}}\in\Lambda(u)$ . For this purpose it suffices to prove $that-\tilde{u}(t)+$

$(\lambda^{2}+m_{0})u(t)\neq 0$ .
Let $\phi(t)=e^{-\lambda\ell}\dot{w}(t)$ . From $w(t)\in N_{4}$ it follows that $\phi(t)>0$ eventually.

$\dot{\phi}(t)=-e^{-\lambda\ell}[\ddot{w}(t)+\lambda\dot{w}(t)]$

$=-e^{-\lambda\ell}[-z^{(4)}(t)+\lambda^{2}\ddot{z}(t)]$

$=-e^{-\lambda t}\{\frac{d^{2}}{dt^{2}}[\frac{d^{2}}{dt^{2}}(x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]$

$-\lambda^{2}\frac{d^{2}}{dt^{2}}[x(t)-\int_{0}^{\tau}x(t-s)dr_{1}(s)]\}$

$=-e^{-\lambda t}[-\int_{0}^{\tau}\ddot{x}(t-\epsilon)dr_{2}(s)+\lambda^{2}\int_{0}^{\tau}x(t-\epsilon)dr_{2}(s)]$

$=-e^{-\lambda\ell}\int_{0}^{\tau}[-\ddot{x}(t-s)+\lambda^{2}x(t-s)]dr_{2}(s)\geq 0$

The last inequality folows &om the fact that $\lambda\in\Lambda(x)$ . Hence the function $\phi(t)$ is even-
tualy nondecreasing. Rom the definition of $\phi(t)$ we obtain

$\dot{w}(t)=e^{\lambda\ell}\phi(t)$ . (27)

As in [5], we extend the definition of the functions $w^{(k)}(t),$ $k=0,1,2$ so that they should
be continuous, positive and increasing in $(-\infty,\infty)$ and $\lim_{t\rightarrow+\infty}w^{(k)}(t)=0,$ $k=0,1$ be
valid. Then, in view of (27), we get

$w(t)=\int_{-\infty}^{\ell}\dot{w}(s)ds=\int_{-\infty}^{t}e^{\lambda s}\phi(s)ds$

$\leq\phi(t)\int_{-\infty}^{p}e^{\lambda s}ds=\frac{1}{\lambda}e^{\lambda\ell}\phi(t)$ .
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Ftom this inequality we obtain the estimate

$\int_{-\omega}^{\ell+\tau}w(s)ds\leq\frac{1}{\lambda}\int_{t-\omega}^{\ell+\tau}e^{\lambda\ell}\phi(s)ds\leq\frac{1}{\lambda^{2}}\phi(t+\tau)[e^{\lambda\tau}-e^{-\lambda\omega}]e^{\lambda\ell}$ .

Hence
$\int_{-\omega}^{\ell+\tau}w(s)ds\leq\frac{1}{\lambda^{2}}\phi(t+\tau)[e^{\lambda\tau}-e^{-\lambda\omega}]e^{\lambda\ell}$ . (28)

Just as in the proof of the case $x(t)\in M_{4}$ of (25), using (27),(28) and the fact that $\phi(t)$

is an eventually nobdecreasing function, we obtain the inequality

$-\ddot{u}(t)+\lambda^{2}u(t)$

$\leq e^{\lambda\ell}\phi(t+\tau)[-\lambda^{2}+\lambda^{2}\int_{0}^{\tau}e^{-\lambda s}dr_{1}(s)-\int_{0}^{\tau}e^{-\lambda\iota}dr_{2}(s)]$

$\leq e^{\lambda\ell}\phi(t-\tau)(-m)$ .
The last inequality folows bom the inequality $-Q(\lambda)\leq-m$ , where $Q(z)=0$ is the
characteristic equation of (1). Itom (25) there folows the estimate for the function $u(t)$

$u(t)\leq-e^{\lambda\ell}\phi(t)+\int_{0}^{\tau}e^{\lambda(\ell-s)}\phi(t-s)dr_{2}(s)$

$+\frac{1}{\lambda^{2}}\int_{0}^{\tau}e^{\lambda t}\phi(t+\tau)(e^{\lambda\tau}-e^{-\lambda})dr_{2}(s)$

$+e^{\lambda\ell}\phi(t+\tau)e^{\lambda\tau}$

$\leq\int_{0}^{\tau}e^{\lambda(\ell-\cdot)}\phi(t-s)dr_{1}(s)$

$+\frac{1}{\lambda^{2}}\int_{0}^{\tau}e^{\lambda\ell}\phi(t+\tau)e^{\lambda\tau}dr_{2}(s)+e^{\lambda t}\phi(t+\tau)e^{\lambda\tau}$

$\leq e^{\lambda\ell}\phi(t+\tau)[\int_{0}^{\tau}e^{-\lambda*}dr_{1}(s)+\frac{1}{\lambda^{2}}e^{\lambda\tau}r_{2}(\tau)+e^{\lambda\tau}]$

$\leq e^{\lambda\ell}\phi(t+\tau)[\int_{0}^{\tau}e^{-\lambda^{\prime}\ell}dr_{1}(s)+e^{\lambda_{O}\tau}(1+\frac{r_{2}(\tau)}{\lambda 2})]$

$=e^{\lambda t}\phi(t+\tau)\frac{m}{m_{0}}$ .

Consequently,

$-\ddot{u}(t)+(\lambda^{2}+m_{0})u(t)=-\ddot{u}(t)+\lambda^{2}u(t)+m_{0}u(t)$

$\leq e^{\lambda\ell}\phi(t+\tau)(-m)+m_{0}e^{\lambda\ell}\phi(t+\tau)\frac{m}{m_{0}}$

$=0$ .
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Thus we prove that $(\lambda^{2}+m_{0})\#\in\Lambda(u)$ . We complete the proof of Theorem 2 ust as the
proof on the case $x(t)\in M_{4}.1$
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