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K-THEORY OF CONTINUOUS FIELDS OF QUANTUM TORI

TAKAHIRO SUDO

ABSTRAC’r. In this paper we study K-theory of continuous fields of quantum tori.
For this purpose we review arld compute K-theory of C’-algebras of continuous
functions on the tori and that of the quantum (or noncommutative) tori by obtaining
the formulas for counting generators of their K-groups.

0. INTRODUCTION

Our first motivation for this study is the following:

Problem. Let $\Gamma(X, \{\mathfrak{U}_{t}\}_{t\in X})$ be the $C^{*}$ -algebra of a $co$ntinuous filed on a locally
compact Hausdorff space $X$ with the fibers $\mathfrak{U}_{t}$ . Then how does one compute its
K-groups in terms of the base space $X$ and the fibers $\mathfrak{U}_{t}$ ?

See Fell [F] and Dixmier [Dx] for the theory of continuous fields of C’-algebras.
As a step toward solving the problem, we focus our attention to the case where
$X=\mathbb{T}$“ the tori and $\mathfrak{U}_{t}=\mathfrak{U}_{\Theta}$ the quantum (or noncommutative) tori. Fortunately,
the K-groups of the $C^{*}$ -algebras $C(\mathbb{T}^{n})$ of continuous functions on $\mathbb{T}^{n}$ as well as $\mathfrak{U}_{\Theta}$

are well known. Also, the Bott generator for the $K_{0}$-group of $C(\mathbb{T}^{2})$ and the Rieffel
projections for the $K_{0}$ -group of the quantum 2-tori are well known. However, the
generators of the K-groups of $C(\mathbb{T}^{n})$ and the quantum n-tori for $n\geq 3$ seem to
be little well known in the literature. Therefore, in Section 1 we review and study
the K-groups of $C(\mathbb{T}^{n})$ by obtaining the formulas for counting generators given by
the generalized Bott projections. In Section 2 we review and study the K-groups
of $\mathfrak{U}_{\Theta}$ by obtaining the formulas for counting generators given by the generalized
Riefel projections. Using these explicit formulas for counting generators of the
K-groups, in Section 3 we obtain a partial answer to the Problem.

Notation. Let $C(X)$ be the $C^{*}$ -algebra of all continuous complex-valued func-
tions on a compact Hausdorff space $X$ . Let $K_{*}(\mathfrak{U})for*=0,1$ be the K-groups of a
$C^{*}$ -algebra $\mathfrak{U}$ . See [B1], [RLL], [Wo] for details about the K-theory of $C^{*}$ -algebras.

1. THE $C^{*}$ -ALGEBRAS OF CONTINUOUS FUNCTIONS ON THE TORI

In this section we first briefly recall the K-theory of the C’-algebras of contin-
uous cornplex-valued functions on the tori.
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Proposition 1.1. Let $C(\mathbb{T}^{n})$ be the C’-algebm of continuous functions on the
n-torus $\mathbb{T}^{n}$ . Then

$K_{0}(C(\mathbb{T}^{n}))\cong \mathbb{Z}^{2^{n-1}}$ , and $K_{1}(C(\mathbb{T}^{n}))\cong \mathbb{Z}^{2^{n-1}}$

Proof. This fact is well known. For convenience, we follow the proof as given in
[Wo]. Note that $C(\mathbb{T}^{n})\cong C(\mathbb{T}, C(\mathbb{T}^{n-1}))$ the $C^{*}$ -algebra of continuous $C(\mathbb{T}^{n-1})-$

valued functions on T. Then the following short exact sequence:

$0\rightarrow C_{0}(R, C(\mathbb{T}^{n-1}))\rightarrow C(\mathbb{T}, C(\mathbb{T}^{n-1}))\rightarrow C(\mathbb{T}^{n-1})\rightarrow 0$

is obtained and actually splitting, where the closed ideal $C_{0}(R, C(\mathbb{T}^{n-1}))$ is the
C’-algebra of all continuous $C(\mathbb{T}^{n-1})$-valued functions on $\mathbb{R}$ vanishing at infinity.
Therefore, the following short exact sequences $for*=0,1$ :

$0\rightarrow K_{*}(C_{0}(\mathbb{R}, C(\mathbb{T}^{n-1})))\rightarrow K_{*}(C(\mathbb{T}^{n}))\rightarrow K_{*}(C(\mathbb{T}^{n-1}))\rightarrow 0$

are gained. Thus, $for*=0,1$ ,

$K_{*}(C(\mathbb{T}^{n}))\cong K_{*}(C_{0}(R, C(\mathbb{T}^{n-1})))\oplus K_{*}(C(\mathbb{T}^{n-1}))$

$\cong K_{*+1}(C(\mathbb{T}^{n-1}))\oplus K_{*}(C(\mathbb{T}^{n-1}))$

by using the Bott periodicity $(n\geq 2)$ , where $C_{0}(R, C(\mathbb{T}^{n-1}))\cong C_{0}(\mathbb{R})\otimes C(\mathbb{T}^{n-1})$

and *+1 means *+1 $(mod 1)$ . On the other hand, we have $K_{0}(C(T))\cong Z$ and
$K_{1}(C(\mathbb{T}))\cong Z$ . By induction the proof is complete. $\square $

Remark. This K-theoretic proof is quite convenient and clear. But a trouble would
be to know generators in the K-groups from those isomorphisms in the statement.

From that reason we give an interpretation of Proposition 1.1 by counting the
generalized Bott generators, which might be known to specialists but would not
be found in the literature, as follows:

Proposition 1.2. Let $C(\mathbb{T}^{n})$ be the $C^{*}$ -algebra of continuous functions on the
n-torus $\mathbb{T}^{n}$ . Then for $n\geq 1$ ,

$K_{0}(C(\mathbb{T}^{2n}))\cong \mathbb{Z}0\oplus \mathbb{Z}2\oplus\cdots\oplus \mathbb{Z}2n2n2n2n$

with $2^{2n-1}=\sum_{k=0}^{n}\left(\begin{array}{l}2n\\2k\end{array}\right)$ , and

$K_{0}(C(\mathbb{T}^{2n+1}))\oplus \mathbb{Z}\oplus\cdots\oplus \mathbb{Z}2n2\mathfrak{n}_{0}+12n_{2}+12\mathfrak{n}+1$

with $2^{2n}=\sum_{k=0}^{n}\left(\begin{array}{ll}2n & +1\\2k & \end{array}\right)$ ,
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where the combinations $(_{2k}^{2n}),$ $(^{2r\iota+1}2k)$ correspond to choosing the $gener\cdot ahzed$ Bott
generators $[Q_{k}]$ of $K_{0}(C(\mathbb{T}^{2k}))defir\iota ed$ in the proof below. Also, for $n\geq 1$ ,

$ K_{1}(C(\mathbb{T}^{2n}))\cong \mathbb{Z}1\oplus \mathbb{Z}3\oplus\cdots\oplus \mathbb{Z}2r\iota-12n2n2r\iota$

with $2^{2n-1}=\sum_{k=0}^{n-1}\left(\begin{array}{l}2n\\2k+1\end{array}\right)$ , and

$K_{1}(C(\mathbb{T}^{2n+1}))\cong \mathbb{Z}^{()}\oplus z^{()(\ddagger^{1})}\oplus\cdots\oplus \mathbb{Z}2n2r\iota_{1}+12n_{3}+12r\iota 1$

with $2^{2n}=\sum_{k=0}^{n}\left(\begin{array}{ll}2n & +1\\2k & +1\end{array}\right)$ ,

where the combinations $(_{2k+1}2n),$ $(_{2k+1}^{2n+1})$ correspond to choosing both unitary gener-
ators of tensor factors $C(\mathbb{T})$ in $C(T^{2n})\cong\otimes^{2n}C(T)$ (or $C(T^{2n+1})\cong\otimes^{2n+1}C(T)$ )
and the generalized Bott generators of $K_{0}(C(\mathbb{T}^{2k}))$ , that is, the classes $[u_{l}],$ $[V_{k}]$

defined below.

Proof. Following the description of the Bott generator for $K_{0}(C(\mathbb{T}^{2}))$ in the refer-
ence [AP], we define

$K(z)=\left(\begin{array}{ll}0 & z\\\overline{z} & 0\end{array}\right)\in M_{2}(\mathbb{C})$

for $z\in \mathbb{T}$ , and set $S=K(1)$ . Furthermore define unitaries

$Y(t, z)=\exp(i\pi tK(z)/2)\exp(i\pi tS/2)\in M_{2}(\mathbb{C})$

for $t\in[0,1]$ . Then
$Y(1, z)=-\left(\begin{array}{ll}z & 0\\0 & \overline{z}\end{array}\right)$

since $\exp(i\pi V/2)=iV$ for a self-adjoint unitary $V$ in general. Define the function
$P$ on $\mathbb{T}^{2}$ by

$P(e^{2\pi it}, z)=Y(t, z)^{*}\left(\begin{array}{ll}l & 0\\0 & 0\end{array}\right)Y(t, z)$

$\equiv Ad(U(w, z))(1\oplus 0)\in M_{2}(\mathbb{C})\}$

where $U(w, z)=Y(t, z)^{*}$ for $w=e^{2\pi it}\in \mathbb{T},$ $and\oplus means$ the diagonal sum. The
class $[P]$ of $P$ is the Bott generator for $K_{0}(C(T^{2}))$ .

Generalizing the above method, we define the function $Q_{k}$ on $T^{2k}$ by

$Q_{k}(z_{i_{1}}, z_{i_{2}}, \cdots z_{i_{2k}})=$

$Ad(U_{1}(z_{i_{1}}, z_{i_{2}}))Ad(U_{2}(z_{i_{3}}, z_{i_{4}}))\cdots Ad(U_{k}(z_{i_{2k-1}}, z_{i_{2k}}))(1\oplus 0)\in M_{2}(\mathbb{C})$

for $1\leq i_{1}<i_{2}<\cdots<i_{2k-1}<i_{2k}\leq 2n$ (or $2n+1$ ) corresponding to $(_{2k}^{2n})$

(or $(^{2n+1}2k)$ ), where $U_{j}(\cdot, \cdot)=U(\cdot, \cdot)(j\geq 1)$ means the unitary-valued function
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defined above. Since $Q_{k}$ are projection-valued functions, their classes $[Q_{k}]$ become
generators for $K_{0}$ $(C(\mathbb{T}^{2}‘‘))$ (or $K_{0}(C(\mathbb{T}^{2r\iota+1}))$ . If the finite sequences $(i_{1}<i_{2}<$

. . . $<i_{2k-1}<i_{2k}$ ) and $(j_{1}<j_{2}< -- <j_{2l-1}<i_{2l})$ for either $k=l$ or $k\neq l$

are different, then their corresponding functions $QkQ_{\iota}$ are inequivalent in matrix
algebras over $C(\mathbb{T}^{2n})$ (or $C(\mathbb{T}^{2r\iota+1})$ ). Moreover, all the functions $Q_{k}$ are mutually
inequivalent. In fact, since $Q_{k},$ $Q_{l}$ are regarded as functions on $\mathbb{T}^{2n}$ (or $\mathbb{T}^{2n+1}$ ),
there exists a direct product factor $\mathbb{T}$ of $\mathbb{T}^{2n}$ (or $\mathbb{T}^{2n+1}$ ) such that $Q_{k}$ is constant
on the factor $\mathbb{T}$ but $Q_{l}$ is non constant (or vice versa). Thus, if $Q_{k},$ $Q_{l}$ are (stably)
unitarily equivalent, then we have the contradiction. Since all the functions $Q_{k}$

have different components of variables on which their restrictions are constant,
they are mutually inequivalent. By construction, $Q_{k}$ corresponds to en element of
$(_{2k}^{2n})$ (or $(^{2n+1}2k)$ ), and the unit function on $\mathbb{T}^{2n}$ (or $\mathbb{T}^{2n+1}$ ) corresponds to $(_{0}^{2n})$ (or
$(^{2n_{0}+1}))$ .

Furthermore, recall the following binary expansion:

$(1+x)^{m}=\left(\begin{array}{l}m\\0\end{array}\right)+\left(\begin{array}{l}m\\l\end{array}\right)x+\cdots+\left(\begin{array}{l}m\\m\end{array}\right)x^{m}$ .

Set $m=2n$ (or $2n+1$ ). Taking $x=1$ and $x=-1$ , adding both evaluated terms,
and factoring by 2 imply the (counting) formulas in the first part of the statement.
Subtracting the terms we obtain the (counting) formulas in the latter part.

As for the $K_{1}$ -group case, recall that $K_{1}(C(\mathbb{T}))$ is generated by the class of
the generating unitary of $C(\mathbb{T})$ , that is, the function $z(t)=t$ for $t\in \mathbb{T}$ . Also,
$K_{1}(C(\mathbb{T}^{2}))\cong \mathbb{Z}^{2}$ is generated by the classes of two generating unitaries $z_{1}\otimes 1,1\otimes z_{2}$

of $C(\mathbb{T}^{2})\cong C(T)\otimes C(\mathbb{T})$ , where $z_{j}(t)=z(t)$ for $z\in \mathbb{T}$ and $j=1,2$ . Furthermore,
it is known (cf. [Wl, Lemma 3.3]) that $K_{1}(C(\mathbb{T}^{3}))\cong \mathbb{Z}^{4}$ is generated by the classes
of three generating unitaries $u_{1}=z_{1},$ $u_{2}=z_{2},$ $u_{3}=z_{3}$ of $C(\mathbb{T}^{3})\cong\otimes^{3}C(\mathbb{T})$ and
the class of the following function:

$I_{2}+(u_{3}-1)\otimes P_{12}\in M_{2}(C(\mathbb{T}^{3}))$

where $I_{2}$ is the $2\times 2$ identity matrix and $P_{12}$ is the Bott projection corresponding
to the first two variables of $\mathbb{T}^{3}$ , where $u_{3}-1\in C(\mathbb{T})$ .

Generalizing the method above, we define the functions on $\mathbb{T}^{2k+1}$ :

$V_{k}=I_{2}+(u_{I}-1)\otimes Q_{k}\in M_{2}(C(\mathbb{T}^{2k+1}))$

where $Q_{k}$ are the generalized Bott projections corresponding to $(1\leq i_{1}<i_{2}<$

. . . $<i_{2k}\leq s$), and $u_{l}$ is a generating unitary of a tensor factor $C(\mathbb{T})$ in $ C(\mathbb{T}^{s})\cong$

$\otimes^{s}C(\mathbb{T})$ ($s=2n$ or $2n+1$ ) where $l\neq i_{j}$ for $1\leq j\leq 2k$ . Thus, the pairs $(u_{l}, Q_{k})$

correspond to the combination $(_{2k+1}s)$ . Then the classes $[u_{I}],$ $[V_{k}]$ of $u_{l},$ $V_{k}$ for
$1\leq l\leq s$ and $(_{2k+1}s)(3\leq 2k+1\leq s)$ are mutually distinct in $K_{1}(C(\mathbb{T}^{s}))$ . In fact,
by definition the classes $[u_{l}],$ $[V_{k}]$ are homotopy classes of $u_{l},$

$V_{k}$ in the unitary
groups of matrix algebras over $C(\mathbb{T})$ respectively. Since homotopy classes of $u_{l}$

and $Q_{k}$ are mutually different, the claim follows. Moreover, the classes $[u_{l}],$ $[V_{k}]$

exhaust generators of $K_{1}(C(\mathbb{T}^{s}))$ by the counting formulas above. $\square $
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2. THE QUANTUM TORI

In this section we first briefly recall the K-theory of the quantum tori, which
are also called the noncommutative tori.

Proposition 2.1. Let $\mathfrak{U}_{\Theta_{\iota}}$, be the quantum n-torus generated by unitaries $\{U_{j}\}_{j=1}^{n}$

subject to the commutation relations: $U_{k}U_{j}=e^{2\pi i\theta_{jk}}U_{j}U_{k}$ for $1\leq k,$ $j\leq n$ and
$\Theta_{n}=(\theta_{jk})$ an $n\times n$ skew adjoint matrix. Then

$K_{0}(\mathfrak{U}_{\Theta_{r\iota}})\cong \mathbb{Z}^{2^{r\iota-1}}$ , and $K_{1}(\mathfrak{U}_{\Theta_{n}})\cong \mathbb{Z}^{2^{r\iota-1}}$

Proof. Note that $\mathfrak{U}_{\Theta_{n}}$ is decomposed into a successive crossed product by $\mathbb{Z}$ as
follows:

$\mathfrak{U}_{\Theta_{n}}\cong(\cdots(C(\mathbb{T})\rangle\triangleleft\alpha_{2}\mathbb{Z})\rangle\triangleleft\alpha_{3}\mathbb{Z}\cdots)\rangle\triangleleft \mathbb{Z}\alpha_{n}$

’

where $\alpha_{j}(2\leq j\leq n)$ are actions of $\mathbb{Z}$ defined by $\alpha_{j}(1)=Ad(U_{j})$ for $1\in \mathbb{Z}$ on
$\mathfrak{U}_{\Theta_{j-1}}$ the quantum $(j-1)$ -torus generated by $\{U_{k}\}_{k=1}^{j-1}$ . Thus, use the Pimsner-
Voiculesce exact sequence for K-theory of crossed products of $C^{*}$ -algebras by $\mathbb{Z}$

inductively. $\square $

Remark. A trouble would be to know generators in K-groups from the isomor-
phisms above. Thus, we would like to give an interpretation of Proposition 2.1 by
counting the generalized Rieffel projections in the following.

Let $\mathfrak{U}_{\Theta_{n}}$ denote the quantum n-torus dePned above. We say that $\mathfrak{U}_{\Theta_{n}}$ is irra-
tional if any canonical quantum l-tori $\mathfrak{U}_{\Theta_{l}}(2\leq l\leq n-1)$ in $\mathfrak{U}_{\Theta_{n}}$ generated by
some $U_{j_{1}},$ $U_{j_{2}},$ $\cdots$ , $U_{j_{\iota}}$ with $1\leq j_{1}<j_{2}<\cdots<j_{l}\leq n$ is non-rational, where $\mathfrak{U}_{\Theta_{l}}$

is rational if corresponding components $\theta_{jk}$ in $\Theta_{I}$ are all rational. Note that there
are $(^{n_{I}})$ quantum l-tori of the form $\mathfrak{U}_{\Theta_{\iota}}$ in $\mathfrak{U}_{\Theta_{n}}$ for $2\leq l\leq n-1$ , where $(^{n_{l}})$ means
the combination.

Proposition 2.2. Let $\mathfrak{U}_{\Theta_{\gamma\iota}}$ be the quantum n-torus generated by unitaries $\{U_{j}\}_{j=1}^{n}$

subject to the relations: $U_{k}U_{j}=e^{2\pi i\theta_{jk}}U_{j}U_{k}(1\leq k,j\leq n)$ . Then for $n\geq 1_{f}$

$K_{0}(\mathfrak{U}_{\Theta_{2n}})\cong \mathbb{Z}(2on)\oplus \mathbb{Z}(22n)\oplus\cdots\oplus \mathbb{Z}(22nn)$

$\cong \mathbb{Z}+\sum_{i<j}\mathbb{Z}\theta_{ij}+\sum_{i<j<k<l}\mathbb{Z}\theta_{ijkl}+\cdots+\mathbb{Z}\theta_{12\cdots 2n-1,2n}$

with $2^{2n-1}=\sum_{k=0}^{n}\left(\begin{array}{l}2n\\2k\end{array}\right)$ , and

$K_{0}(\mathfrak{U}_{\Theta_{2n+1}})\cong \mathbb{Z}(2n_{0}+1)\oplus \mathbb{Z}(2n_{2}+1)_{\oplus\cdots\oplus \mathbb{Z}}(2n2n+1)$

$\cong \mathbb{Z}+\sum_{i<j}\mathbb{Z}\theta ij+\sum_{i<j<k<l}\mathbb{Z}\theta ijkl+\cdots+\sum^{2n+1}\mathbb{Z}\theta i_{1}i_{2}\cdots i_{2,\iota-1}i_{2n}$

with $2^{2n}=\sum_{k=0}^{n}\left(\begin{array}{l}+2n1\\2k\end{array}\right)$ ,
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where $\theta_{i_{1}i_{2}\cdots i_{2k}}=\sum_{j=1}^{k}\sum_{l=1}^{k}\theta_{i_{j}i_{k+l}}$ with $1\leq i_{1}<i_{2}<\cdots<i_{2k}\leq 2n$ (or 2$n+1$ ),
and the combinations $(_{2k}^{2n}),$ $(^{2n+1}2k)$ correspond to choosing the generalized Rieffel
projections $E_{k}$ of $K_{0}(\mathfrak{U}\Theta_{2k})$ defined in the proof below. Furthermore suppose that
$\mathfrak{U}_{\Theta_{n}}$ is irrational as defin $ed$ above. Then, for $n\geq 1$ ,

$K_{1}(\mathfrak{U}_{\Theta_{2n}})\cong \mathbb{Z}^{()_{\oplus \mathbb{Z}}()_{\oplus\cdots\oplus \mathbb{Z}}()}2n12n32\mathfrak{n}-12n$

with $2^{2r\iota-1}=\sum_{k=0}^{n-1}\left(\begin{array}{l}2n\\2k+1\end{array}\right)$ , and

$K_{1}(\mathfrak{U}_{\Theta_{2n+1}})\cong \mathbb{Z}\oplus Z\oplus\cdots\oplus \mathbb{Z}2n2n_{1}+12\mathfrak{n}_{3}+\iota 2n1$

with $2^{2n}=\sum_{k=0}^{n}(_{2k}^{2n}:_{1}^{1})$ ,

where the combinations $(_{2k+1}2n),$ $(_{2k}^{2n}\ddagger^{1}1)$ correspond to choosing both unitary genera-
tors $U_{l}of\mathfrak{U}_{\Theta_{2n}}(or\mathfrak{U}_{\Theta_{2n+1}})$ and the generalized Rieffel projections $E_{k}ofK_{0}(\mathfrak{U}_{\Theta_{2k}})$ ,
that is, unitaries $U_{l},$ $V_{k,l}$ defined below.

Proof. We first review the case $n=2$ , that is, $\mathfrak{U}_{\Theta_{2}}=\mathfrak{U}_{\theta}$ with $\theta=\theta_{12}$ the rotation
algebras. It is wel known (cf. [Wo]) that

$ K_{0}(\mathfrak{U}_{\theta})\cong \mathbb{Z}+\mathbb{Z}\theta$ , $K_{1}(\mathfrak{U}_{\theta})\cong \mathbb{Z}+\mathbb{Z}$ ,

where the group $\mathbb{Z}+\mathbb{Z}\theta$ also means an ordered subgroup of the real line $\mathbb{R}$ , the
generators of $K_{0}(\mathfrak{U}_{\theta})$ are the classes of the unit and the Rieffel projection of $\mathfrak{U}_{\theta}$ ,
and the generators of $K_{1}(\mathfrak{U}_{\theta})$ are the classes of two generating unitaries of $\mathfrak{U}_{\theta}$ .

We next consider the case $n=3$ . Recall that $\mathfrak{U}_{\Theta_{3}}$ is regarded as the twisted
crossed product $C^{*}(\mathbb{Z}^{3}, \sigma)$ of $\mathbb{Z}^{3}$ with $\sigma$ a cocycle. Define $C^{*}(\mathbb{Z}^{2}, \sigma_{ij})$ for $1\leq i<$

$j\leq 3$ to be the twisted crossed products of the canonical subgroups $\mathbb{Z}^{2}$ of $\mathbb{Z}^{3}$

corresponding to pairs $U_{i},$ $U_{j}$ of the generators in $\mathfrak{U}_{\Theta_{3}}$ . Then $ C^{*}(\mathbb{Z}^{2}, \sigma_{ij})\cong \mathfrak{U}_{\theta_{j}}.\cdot$

Thus, we have
$K_{0}(\mathfrak{U}_{\Theta_{3}})\cong \mathbb{Z}+\mathbb{Z}\theta_{12}+\mathbb{Z}\theta_{23}+\mathbb{Z}\theta_{13}$ ,

where the generators of $K_{0}(\mathfrak{U}_{\Theta_{3}})$ are the classes of the unit of $\mathfrak{U}_{\Theta_{3}}$ and the Rieffel
projections $e_{ij}$ of $\mathfrak{U}_{\theta_{ij}}$ with the traces $\theta_{ij}(1\leq i<j\leq 3)$ . Recal that the Rieffel
projections $e_{ij}$ of $\mathfrak{U}_{\theta_{ij}}$ are given by

$U_{j}^{*}\overline{g}(U_{i})+f(U_{i})+g(U_{i})U_{j}$

where $f,$ $g\in C(\mathbb{T})$ satisfying some compatible relations (see [Rf], [Wo]).
Moreover, we have

$K_{1}(\mathfrak{U}_{\Theta_{3}})\cong \mathbb{Z}^{3}+\mathbb{Z}$ ,

where three generators of $K_{1}(\mathfrak{U}_{\Theta_{3}})$ correspond to the generating unitaries $U_{j}$ of
$\mathfrak{U}_{\Theta_{3}}(1\leq j\leq 3)$ , and the forth generator is given by the class of the following
unitary:

$1-e_{12}+e_{12}U_{3}w_{3}^{*}e_{12}$ ,
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where $e_{12}$ is the Rieffel projection of $\mathfrak{U}_{\theta_{12}}$ corresponding to $\theta_{12}$ , and $w_{3}$ is a unitary
of $\mathfrak{U}_{\theta_{12}}$ such that $U_{3}^{*}e_{12}U_{3}=w_{3}^{*}e_{12}w_{3}$ , which is deduced from Rieffel) $s$ cancellation
theorem (see [Rf2, Corollary 7.8 and Proposition 8.2] and [Wl, Lemma at p.495])
since $\mathfrak{U}_{\theta_{12}}$ is an irrational rotation algebra.

Generalizing the method above, we define the generalized Rieffel projections in
$\mathfrak{U}_{\Theta_{2k}}$ by

$E_{k}\equiv W_{k}^{*}\overline{g}(V_{k})+f(V_{k})+g(V_{k})W_{k}$ ,

where $V_{k}=U_{i_{1}}U_{i_{2}}\cdots U_{i_{k}}$ , and $W_{k}=U_{i_{k+1}}U_{i_{k+2}}\cdots U_{i_{2k}}$

for $1\leq i_{1}<i_{2}<\cdots<i_{2k}\leq 2n$ (or $2n+1$ ). Note that

$W_{k}U_{k}=\Pi_{j=1}^{k}(\Pi_{l=1}^{k}e^{2\pi i\theta_{i_{j}i_{k+l}}})U_{k}W_{k}$

$=\exp(2\pi i\sum_{j=1}^{k}\sum_{l=1}^{k}\theta_{i_{j}i_{k+\iota}})U_{k}W_{k}$ .

Set $\theta_{i_{1}i_{2}\cdots i_{2k}}=\sum_{j=1}^{k}\sum_{l=1}^{k}\theta_{i_{j}i_{k+l}}$ . Then the class of the unit of $\mathfrak{U}_{\Theta_{2r\iota}}$ (or $\mathfrak{U}_{\Theta_{2n+1}}$ )

and the classes of $E_{k}$ for $(_{2k}^{2n})$ (or $(^{2n+1}2k)$ ) $(1\leq k\leq n)$ generate $K_{0}(\mathfrak{U}_{\Theta}.)(s=2n$

or $2n+1$ ).
Furthermore, we define the following unitaries in $\mathfrak{U}_{\Theta_{2k}}$ :

$V_{k,l}\equiv 1-E_{k}+E_{k}U_{l}w_{l}^{*}E_{k}$

where $E_{k}$ is the generalized Rieffel projection of $\mathfrak{U}_{\Theta_{2k}}$ corresponding to the finite
sequence $(i_{1}, i_{2}, \cdots i_{2k})$ , and $U_{l}$ is a generating unitary of $\mathfrak{U}_{\Theta_{2n}}$ (or $\mathfrak{U}_{\Theta_{2n+1}}$ ) such
that $l\neq i_{j}$ for $1\leq j\leq 2k$ , and $w_{l}$ is a unitary of $\mathfrak{U}_{\Theta_{2k}}$ such that $U_{l}^{*}E_{k}U_{l}=w_{l}^{*}E_{k}w_{l}$

by Rieffel’s cancellation theorem ([Rf2, Corollary 7.8 and Proposition 8.2]) since
$\mathfrak{U}_{\Theta_{2k}}$ is a non-rational noncommutative torus. Then the classes of $U_{j}(1\leq j\leq 2n$

(or $2n+1$ )) and the classes of $V_{k,l}$ for $(_{2k+1}2n)$ (or $(_{2k}^{2n}\ddagger^{1}1)$ )( $1\leq k\leq n-1$ (or $n)$ )
generate $K_{1}(\mathfrak{U}_{\Theta}.)$ ($s=2n$ or $2n+1$ ). $\square $

Remark. As an example of rational quantum tori $\mathfrak{U}_{\Theta_{n}}$ , it is known that the gener-
ators of $K_{1}(\mathfrak{U}_{\theta}\otimes C(\mathbb{T}))$ for $\mathfrak{U}_{\theta}=\mathfrak{U}_{\Theta_{2}}$ with $\theta$ irrational correspond to two unitary
generators of $\mathfrak{U}_{\theta}$ , the generating unitary $W$ of $C(\mathbb{T})$ , and the unitary defined by

$(1-e)\otimes 1+e\otimes W$,

where $e$ means the Rieffel projection of $\mathfrak{U}_{\theta}$ with the trace $\theta$ (see [Wl, 2.1 for $A_{\theta}^{5,1}]$ ).
Note also that rational quantum tori and their K-theory are reduced to the case
of matrix algebras over $C(\mathbb{T}^{k})$ for some $k$ (cf. [EL]).

3. CONTINUOUS FIELDS OF THE QUANTUM TORI

As an application of the results obtained in the previous sections we have
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Theorem 3.1. Let $\Gamma(\mathbb{T}^{rr\iota}, \{\mathfrak{U}_{\Theta_{rl}^{t}}\}_{t\in JI^{t}}\prime n\iota)$ be the $C^{*}$ -algebra of a continuous field on
$\mathbb{T}^{m}$ with the fibers $\mathfrak{U}_{\Theta_{lt}^{t}}$ the quantum $\gamma l$ -tori generated by unitaries $U_{j}(1\leq j\leq n)$

such that their commutation relations at each $t=(t_{1}, \cdots t_{m})\in \mathbb{T}^{m}$ are given by
$U_{k}U_{j}=t_{1}\cdots t_{m}U_{j}U_{k}(1\leq j<k\leq n)$ . Then the fibers $\mathfrak{U}_{\Theta_{n}^{t}}$ are irrational for
irrational points $t\in \mathbb{T}^{m}=[0,1]^{m}$ (mod 1). Suppose that the constant operator
fields: $\mathbb{T}^{m}\ni t\leftrightarrow U_{j}(1\leq j\leq n)$ belong to $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in \mathbb{T}^{m}})$ . Then $for*=0,1$ ,

$K_{*}(\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in \mathbb{T}^{m}}))\cong K_{*}(C(\mathbb{T}^{m}))\oplus(K_{*}(C^{*}(C(\mathbb{T}^{m}), U_{1}))/K_{*}(C(\mathbb{T}^{m})))$

$\oplus(K_{*}(C^{*}(C(\mathbb{T}^{m}), U_{2}))/K_{*}(C(\mathbb{T}^{m})))\oplus\cdots$

. . . $\oplus(K_{*}(C^{*}(C(\mathbb{T}^{m}), U_{n}))/K_{*}(C(\mathbb{T}^{m})))$

$\cong \mathbb{Z}^{2^{m-1}}\oplus(\oplus_{j=1}^{n}(\mathbb{Z}^{2^{m}}/\mathbb{Z}^{2^{m-1}}))\cong \mathbb{Z}^{(n+1)2^{m-1}}$ ,

where $C^{*}(C(\mathbb{T}^{m}), U_{j})(1\leq j\leq n)$ mean the $C^{*}$ -algebras generated by $C(\mathbb{T}^{m})$ and
$U_{j}$ , and in fact $C^{*}(C(\mathbb{T}^{m}), U_{j})\cong C(\mathbb{T}^{m+1})$ , and $K_{*}(C^{*}(C(\mathbb{T}^{m}), U_{j}))/K_{*}(C(\mathbb{T}^{m}))$

$(*=0,1)$ mean the quotients by the subgroups corresponding to the K-groups of
$C(\mathbb{T}^{m})\cong\Gamma(\mathbb{T}^{m}, \{\mathbb{C}1_{t}\}_{t\in \mathbb{T}^{m}})$ in $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in?1^{m}})$ with $1_{t}$ the unit of $\mathfrak{U}_{\Theta_{n}^{t}}$ for
$t\in \mathbb{T}^{m}$ .

Proof. First note that $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{\mathfrak{n}}^{t}}\}_{t\in \mathbb{T}^{m}})$ is regarded as the $C^{*}$ -algebra generat-
ed by those unitaries $U_{j}(1\leq j\leq n)$ and commuting unitaries $ Z_{k}(1\leq k\leq$

m) such that $C(\mathbb{T}^{m})\cong C^{*}(Z_{1}, \cdots Z_{m})$ the $C^{*}$ -algebra generated by $\{Z_{k}\}_{k=1}^{m}$ .
Thus, the first direct summands of those K-groups in the statement correspond to
$K_{*}(C^{*}(Z_{1}, \cdots Z_{m}))(*=0,1)$ .

Since the unitaries $Z_{k}(1\leq k\leq m)$ and $U_{j}$ commute, we have

$C^{*}(C(\mathbb{T}^{m}), U_{j}))\cong C(\mathbb{T}^{m+1})$

for $1\leq j\leq n$ . Note that we have the following inclusions:

$C^{*}(Z_{1}, \cdots Z_{m})\subset C^{*}(C(\mathbb{T}^{m}), U_{j}))\subset\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in \mathbb{T}^{m}})$

by the assumption on $U_{j}$ . Since the K-groups of $C^{*}(Z_{1}, \cdots Z_{m})\cong C(\mathbb{T}^{m})$ are
included in those of $C^{*}(C(\mathbb{T}^{m}), U_{j}))\cong C(\mathbb{T}^{m+1})$ , the following mutually disjoint
quotients:

$K_{*}(C^{*}(C(\mathbb{T}^{m}), U_{j}))/K_{*}(C(\mathbb{T}^{m}))$

for $*=0,1$ and $1\leq j\leq n$ are embedded in the K-groups of $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in \mathbb{T}^{m}})$ .
Their mutual disjointness follows from the analysis for Proposition 1.2. In fact,
the generalized Bott projections involved with $U_{j}$ are mutually inequivalent for
different $j$ .

Furthermore, we have the following inclusions:

$\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{k}^{t}}\}_{t\in \mathbb{T}^{m}})\subset\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in \mathbb{T}^{m}})$

for $2\leq k\leq n$ , where there are $(_{k}^{n})$ -inclusions for $k$ fixed by choosing k-generators of
$\mathfrak{U}_{\Theta_{k}^{t}}$ among n-generators of the fibers $\mathfrak{U}_{\Theta_{n}^{t}}$ . Thus, the following mutually disjoint
quotients:

$\oplus K_{*}(r(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{k}^{t}}\}_{t\in F^{m}}’))/\oplus k-1n$
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for $*=0,1$ and $1\leq k\leq n$ are embedded in the K-groups of $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta^{t},\iota}\}_{t\in \mathbb{T}^{m}})$ .
However, these quotients are all trivial because the fibers are noncomIllutative tori,
and the generators of their K-groups are given by the generalized Rieffel projections
as in Proposition 2.2, but they are not continuous at the point $(1, \cdots 1)\in \mathbb{T}^{m}$

since they are not definable at the point. Note that there are no non-trivial pro-
jections of $\mathfrak{U}_{\Theta_{n}^{(1}}$ , $1$ ) $=C(\mathbb{T}^{n})$ . Therefore, the K-classes of the generalized Rieffel
projections of the fibers do not produce those for $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in \mathbb{T}^{m}})$ . Hence, in
other words, the K-groups of the Pbers are not continuous over $\mathbb{T}^{m}$ . Note also
that any projection (or unitary) of matrix algebras over $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{r\iota}^{t}}\}_{t\in \mathbb{T}^{m}})$ does
produce projections (or unitaries) of matrix algebras over the fibers. $\square $

Remark. The structure of continuous fields on $\mathbb{T}^{m}$ is crucial to the K-groups
of the $C^{*}$ -algebras of continuous fields. For example, if the relations $U_{k}U_{j}=$

$t_{1}\cdots t_{m}U_{j}U_{k}$ are constant, that is, $t_{1}\cdots t_{m}=z_{1}\cdots z_{m}$ for $(t_{1}, \cdots t_{m})\in \mathbb{T}^{m}$ and
some fixed $z=(z_{1}, \cdots z_{m})\in \mathbb{T}^{m}$ , then $\Gamma(\mathbb{T}^{m}, \{\mathfrak{U}_{\Theta_{n}^{t}}\}_{t\in T^{m}})\cong C(\mathbb{T}^{m})\otimes \mathfrak{U}_{\Theta_{n}^{z}}$ . In
particular, both K-groups in the case where $m=1$ and $n=2$ are $\mathbb{Z}^{4}$ .

Now recall that the discrete Heisenberg group $H_{3}^{d}$ of rank 3 is defined by the
following matrices:

$\left(\begin{array}{lll}1 & a & c\\0 & 1 & b\\0 & 0 & 1\end{array}\right)\in GL_{3}(\mathbb{Z})$ .

Corollary 3.2. Let $C^{*}(H_{3}^{d})$ be the group $C^{*}$ -algebra of $H_{3}^{d}$ . Then

$K_{0}(C^{*}(H_{3}^{d}))\cong \mathbb{Z}^{3}$ , and $K_{1}(C^{*}(H_{3}^{d}))\cong \mathbb{Z}^{3}$ .

Proof. By definition, the group $H_{3}^{d}$ is isomorphic to the semi-direct product $\mathbb{Z}^{2}\rangle\triangleleft \mathbb{Z}\alpha$

with the action $\alpha$ defined by $\alpha_{a}(c, b)=(c+ab, b)$ for $a,$ $b,$ $c\in \mathbb{Z}$ . Hence, $C^{*}(H_{3}^{d})$

is isomorphic to the crossed product $C^{*}(\mathbb{Z}^{2})x_{\alpha}\mathbb{Z}$ (cf. [Pd] for crossed products
of $C^{*}$ -algebras). By the Fourier transform, $C^{*}(\mathbb{Z}^{2}))\triangleleft\alpha \mathbb{Z}\cong C(\mathbb{T}^{2})\rangle\triangleleft\hat{\alpha}\mathbb{Z}$ , where the
action $\hat{\alpha}$ is defined by $\hat{\alpha}_{a}(z, w)=(z, z^{a}w)$ for $z,$

$w\in \mathbb{T}$ . Moreover, we have

$C(\mathbb{T}^{2})\rangle\triangleleft\hat{\alpha}\mathbb{Z}\cong\Gamma(\mathbb{T}, \{\mathfrak{U}_{\theta^{z}}\}_{z\in \mathbb{T}})$ ,

where $\mathfrak{U}_{\theta^{z}}$ mean the quantum 2-tori for $z=e^{2\pi i\theta_{z}}\in \mathbb{T}$ with $\theta_{z}\in[0,1]$ . Let
$U_{1},$ $U_{2}$ be two unitary generators of $\mathfrak{U}_{\theta^{z}}$ with the commutation relation $U_{2}U_{1}=$

$e^{2\pi i\theta_{z}}U_{1}U_{2}$ . Using Theorem 3.1, we obtain

$K_{*}(\Gamma(\mathbb{T}, \{\mathfrak{U}_{\theta^{z}}\}_{z\in \mathbb{T}}))\cong K_{*}(C(\mathbb{T}))\oplus K_{*}(C^{*}(C(\mathbb{T}), U_{1}))/K_{*}(C(\mathbb{T}))$

$\oplus K_{*}(C^{*}(C(\mathbb{T}), U_{2}))/K_{*}(C(\mathbb{T}))$

$\cong\oplus^{3}K_{*}(C(\mathbb{T}))\cong \mathbb{Z}^{3}$ $for*=0,1$ .

Remark. This corollary was first proved by [AP, Proposition 1.4] using the Pimser-
Voiculesce exact sequence. Thus, our proof above is quite different from their result
since our method is based on continuous fields of C’-algebras.
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Furthermore, recall that the generalized discrete Heisenberg group $H_{2n+1}^{d}$ of
rank $2n+1$ is defined by the following matrices:

$\left(\begin{array}{lll}1 & a & c\\0_{n}^{t} & 1_{n} & b^{t}\\0 & 0_{n} & 1\end{array}\right)\in GL_{n+2}(\mathbb{Z})$ ,

where $a=(a_{j}),$ $b=(b_{j}),$ $0_{n}=(0)\in \mathbb{Z}^{n},$ $c\in \mathbb{Z}$ and $b^{t},$ $0_{n}^{t}$ are the transposes of $b$ ,
$0_{n}$ respectively, and $1_{n}$ is the $n\times n$ identity matrix. Then we obtain the folowing:
Theorem 3.3. Let $C^{*}(H_{2n+1}^{d})$ be the group $C^{*}$ -algebra of $H_{2n+1}^{d}$ . Then

$K_{0}(C^{*}(H_{2n+1}^{d}))$

$\cong\left\{\begin{array}{ll}\mathbb{Z}^{2n+1}\oplus Z^{2^{2}()}2n\oplus \mathbb{Z}^{2^{4}()_{\oplus\cdots\oplus \mathbb{Z}^{2^{2m}}}()}n42m2m & \\\oplus \mathbb{Z}^{2^{3}()_{\oplus \mathbb{Z}^{2^{5}}}()()}3nns\oplus\cdots\oplus z^{2^{2m-1}}z_{m-1}^{2m} & n=2m,\\z^{2n+1}\oplus \mathbb{Z}^{2^{2}()_{\oplus \mathbb{Z}^{2^{4}}}()_{\oplus\cdots\oplus \mathbb{Z}^{2^{2m}}}()}2nn42m+12m & \\\oplus \mathbb{Z}^{2^{3}()_{\oplus \mathbb{Z}^{2^{5}}}()_{\oplus\cdots\oplus \mathbb{Z}^{2^{2m+1}}}(\ddagger^{1})}3nnS2m2m1 & n=2m+1,\end{array}\right.$

$=\mathbb{Z}^{2n+1}\oplus \mathbb{Z}^{2^{2}()_{\oplus \mathbb{Z}^{2^{3}}}()_{\oplus\cdots\oplus \mathbb{Z}^{2^{\mathfrak{n}}}}()}n2n3\mathfrak{n}n$

$=\mathbb{Z}^{1+2()+2^{2}()+\cdots+2^{\mathfrak{n}}()}n12nnn=\mathbb{Z}^{3^{\mathfrak{n}}}$ , and
$K_{1}(C^{*}(H_{2n+1}^{d}))$

$\cong\left\{\begin{array}{ll}\mathbb{Z}^{2n+1}\oplus \mathbb{Z}^{2^{3}()_{\oplus \mathbb{Z}^{2^{5}}}()_{\oplus\cdots\oplus \mathbb{Z}^{2^{2m-1}}}()}3\mathfrak{n}nS2m-12m & \\\oplus \mathbb{Z}^{2^{2}()_{\oplus \mathbb{Z}^{2^{4}}}()_{\oplus\cdots\oplus \mathbb{Z}^{2^{2m}}}()}n2n42m2m & n=2m,\\\mathbb{Z}^{2n+1}\oplus \mathbb{Z}^{2^{3}()_{\oplus \mathbb{Z}^{2^{s}}}()_{\oplus\cdots\oplus \mathbb{Z}^{2^{2m+1}}}(\ddagger^{1})}n3nS2m2m1 & \\\oplus \mathbb{Z}^{2^{2}()()_{\oplus\cdots\oplus \mathbb{Z}^{2^{2m}}}()}n2\oplus z^{2^{4}}4n2m+12m & n=2m+1,\end{array}\right.$

$=\mathbb{Z}1\oplus \mathbb{Z}^{2^{2}}n2n3nn$

$=Z^{1+2()+2^{2}()+\cdots+2^{n}()}n1n2nn=Z^{3^{n}}$ ,

where $C^{*}(H_{2n+1}^{d})\cong\Gamma(\mathbb{T}, \{\mathfrak{U}_{\Theta^{z}}\}_{z\in F}’)$ with the fibers $\mathfrak{U}_{\Theta^{z}}$ the quantum $2n$ -tori iso-
morphic to the tensor produ $ct\otimes^{n}\mathfrak{U}_{\theta^{z}}$ of the quantum 2-tori $\mathfrak{U}_{\theta^{z}}$ for $z=e^{2\pi i\theta_{z}}\in \mathbb{T}$ ,
and the combination $(_{2k}^{n})$ (or $(_{2k+1}n)$ ) corresponds to choosing $2k$ -tensor factors
$\otimes^{2k}\mathfrak{U}_{\theta^{z}}of\otimes^{n}\mathfrak{U}_{\theta^{z}}$ , and the power $2^{2k}$ (or $2^{2k+1}$ ) corresponds to choosing either the
generalized Bott projections associated with commuting unitaries, each of which is
chosen from two unitaries of each factor $\mathfrak{U}_{\theta^{z}}$ of the $2k$ -tensor factors (or those
projections and generating unitaries, each of which is chosen from two unitaries
of one factor $\mathfrak{U}_{\theta^{z}}$ of the $2k$ -tensor factors) in the $K_{0}$ (or $K_{1}$ )-case, and the combi-
nation $(_{2k+1}n)$ (or $(_{2k}^{n})$ ) and the power $2^{2k+1}$ (or $2^{2k}$ ) correspond to the choosings
above and the unitary generator of $C(\mathbb{T})$ for $\mathbb{T}$ the base space (respectively).

Proof. By definition, the group $H_{2n+1}^{d}$ is isomorphic to the semi-direct product
$\mathbb{Z}^{n+1}x_{\alpha}\mathbb{Z}^{n}$ with the action $\alpha$ defined by $\alpha_{a}(c, b)=(c+\sum_{j=1}^{n}a_{j}b_{j}, b)$ for $a=$

$(a_{j}),$ $b=(b_{j})\in \mathbb{Z}^{n},$ $c\in \mathbb{Z}$ . Hence, $C^{*}(H_{2n+1}^{d})\cong C^{*}(\mathbb{Z}^{n+1})\rangle\triangleleft\alpha \mathbb{Z}^{n}$ . By the Fourier
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transform, $C^{*}(\mathbb{Z}^{n+1})x_{\alpha}\mathbb{Z}^{r\iota}\cong C(\mathbb{T}^{r\}+1})x_{\hat{\alpha}}\mathbb{Z}^{n}$ , where the action $\hat{\alpha}$ is defined by
a$a(z, w)=(z, (z^{a_{g}}w_{j}))$ for $z\in \mathbb{Z}$ and $w=(w_{j})\in \mathbb{T}^{n}$ . Moreover, we have

$C(\mathbb{T}^{r\iota+1})\lambda_{\hat{\alpha}}\mathbb{Z}^{r\iota}\cong\Gamma(\mathbb{T}, \{\mathfrak{U}_{\Theta^{z}}\}_{z\in \mathbb{T}})$ ,

where $\mathfrak{U}_{\Theta^{z}}=C(\mathbb{T}^{n})x_{\alpha^{z}}\wedge \mathbb{Z}^{n}$ mean the quantum $2n$-tori for $z=e^{2\pi i\theta_{z}}\in \mathbb{T}$ with
$\theta_{z}\in[0,1]$ and $\Theta^{z}=(\theta_{jk})_{j,k=1}^{2n}$ with $\theta_{j,j+n}=\theta_{z}(1\leq j\leq n)$ and $\theta_{jk}=0$ otherwise,
where $\hat{\alpha}^{z}$ is the restriction of $\hat{\alpha}$ to $\{z\}\times \mathbb{T}^{n}$ in $\mathbb{T}^{n+1}$ . Note that $\mathfrak{U}_{\Theta^{z}}\cong\otimes^{n}\mathfrak{U}_{\theta^{z}}$

the tensor product of $n$ copies of the quantum 2-torus $\mathfrak{U}_{\theta^{z}}$ . Let $\{U_{j}\}_{j=1}^{2n}$ be $2n$

unitary generators of $\mathfrak{U}_{\Theta^{z}}$ with the commutation relation $U_{j+n}U_{j}=e^{2\pi i\theta_{z}}U_{j}U_{j+n}$

for $1\leq j\leq n$ . By using Theorem 3.1 (in part), $K_{*}(\Gamma(\mathbb{T}, \{\mathfrak{U}_{\theta^{z}}\}_{z\in \mathbb{T}}))$ contains

$K_{*}(C(\mathbb{T}))\oplus K_{*}(C^{*}(C(\mathbb{T}), U_{1}))/K_{*}(C(\mathbb{T}))$

$\oplus K_{*}(C^{*}(C(\mathbb{T}), U_{2}))/K_{*}(C(\mathbb{T}))\oplus\cdots$

. $\oplus K_{*}(C^{*}(C(\mathbb{T}), U_{2n}))/K_{*}(C(\mathbb{T}))$

$\cong\oplus^{2n+1}K_{*}(C(\mathbb{T}))\cong \mathbb{Z}^{2n+1}$

for $*=0,1$ . Since the fibers $\mathfrak{U}_{\Theta^{z}}$ are non-irrational, we need to further consider
commuting unitaries among the generators of $\mathfrak{U}_{\Theta^{z}}$ and $C(\mathbb{T})$ for $\mathbb{T}$ the base space
and the generalized Bott generators associated with them. However, this can
be done as stated above and done in Proposition 1.2. Furthermore, we use the
following binary expansion:

$(1+2x)^{n}=1+\left(\begin{array}{l}n\\1\end{array}\right)2x+\left(\begin{array}{l}n\\2\end{array}\right)(2x)^{2}+\cdots+\left(\begin{array}{l}n\\n\end{array}\right)(2x)^{n}$ .

Take $x=1$ . Then

$3^{n}=1+\left(\begin{array}{l}n\\1\end{array}\right)2+\left(\begin{array}{l}n\\2\end{array}\right)2^{2}+\cdots+\left(\begin{array}{l}n\\n\end{array}\right)2^{n}$ . $\square $

Remark. This theorem could be obtained by using the Pimsner-Voiculesce’s six-
term exact sequence for K-groups of crossed products of C’-algebras by $\mathbb{Z}$ (cf.
[B1], [Wo]) repeatedly. However, chasing the maps on the K-groups involved in
the six-term exact sequences of K-groups associated with the successive crossed
products by $\mathbb{Z}$ such as $C(\mathbb{T}^{n+1})\rangle\triangleleft\hat{\alpha}\mathbb{Z}^{n}\cong(\cdots(C(\mathbb{T}^{n+1})\rangle\triangleleft \mathbb{Z})\rangle\triangleleft \mathbb{Z}\cdots)\rangle\triangleleft Z$ is somewhat
complicated in general. Thus, our computing method above seems to be better in
those cases.

Remark. Moreover, it is shown by [LP] that the (twisted) group $C^{*}$ -algebras
of (certain) two-step nilpotent discrete groups including the generalized discrete
Heisenberg groups of Theorem 3.3 are decomposed into continuous fields of $C^{*}-$

algebras on the duals of their centers with fibers isomorphic to matrix algebras over
the quantum tori. Since K-groups are stable under taking tensor products with
matrix algebras over $\mathbb{C}$ , K-groups of (most of) those (twisted) group $C^{*}$ -algebras
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in that case can be cornputed by Theorem 3.1. See also [PR] for K-theory of twist-
ed group $C^{*}$ -algebras, for which it is shown to be the same $\Re$ that of (untwisted)
group $C^{*}$ -algebras in many cases. Note that their formulations are quite different
from our direct ones.
Remark. As the final remark our method (of Theorems 3.1 and 3.3) seerns to
be giving a general principle for solving the Problem in the introduction, that
is, if we once know projections and unitaries of the fibers generating their K-
groups, and their continuity (or discontinuity) over the base spaces, then one can
(almost) determine the classes of the K-groups of the $C^{*}$ -algebras $\Gamma(X, \{\mathfrak{U}_{t}\}_{t\in X})$ of
continuous fields. However, in general, it is hard to know projections and unitaries
of the fibers (or general $C^{*}$ -algebras), and also hard to know their continuity (or
discontinuity).
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