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THE SOLVABLE STRUCTURE OF THE $C^{*}$ -ALGEBRAS OF
CERTAIN SUCCESSIVE SEMI-DIRECT PRODUCTS

TAKAHIRO SUDO

ABSTRACT. As the main results we construct finite composition series of group $C^{*}-$

algebras of certain successive semi-direct products of $\mathbb{C}^{n}$ by $R,$ $T$ or $\mathbb{Z}$ such that
their subquotients are tensor products involving commutative $C^{*}$ -algebras, non-
commutative tori and the $C^{*}$ -algebra of all compact operators. As an application,
we estimate the stable rank and connected stable rank of the group $C^{*}$ -algebras of
these connected or disconnected solvable Lie groups. Also, we introduce a class of
$C^{*}$ -algebras that are C’-solvable in some sense.

0. INTRODUCTION

First recall that any simply connected, solvable Lie group $G$ is isomorphic to a
successive semi-direct product by $R$ as follows:

$G\cong(\cdots((\mathbb{R}^{n}x_{\alpha^{1}}\mathbb{R})\rangle\triangleleft\alpha^{2}\mathbb{R})\cdots)\rangle\triangleleft\alpha^{m}\mathbb{R}$

for $n\geq 1$ and $m\geq 0$ and $\alpha^{j}(1\leq j\leq m)$ actions by $\mathbb{R}(cf.[OV$ , Section 3 in Chap-
ter 2]). It has been an interesting and important problem to study the (algebraic)
structure of group $C^{*}$ -algebras for all or certain $G$ . Some remarkable results re-
lated with this problem were obtained by Green [Grl] [Gr2] (for the imprimitivity
theorem for crossed products and simple quotients of group C’-algebras), Pogun-
tke [Pg] (for simple quotients of group $C^{*}$ -algebras of connected Lie groups) and
Rosenberg [Rs] (for group $C^{*}$ -algebras of certain solvable Lie groups with lower
dimensions). On the other hand, we have explicitly studied the structure of group
$C^{*}$ -algebras in the case of semi-direct products of $\mathbb{C}^{n}$ by $\mathbb{R},$

$\mathbb{T}$ or $\mathbb{Z}$ (see [Sd5], [S-
$d10]$ , [Sd6] respectively) and in the case of semi-direct products of $\mathbb{C}^{n}$ by $\mathbb{R}^{n}$ or $\mathbb{Z}^{n}$

with the diagonal actions (see [Sd9], [Sd8] respectively). In this paper we consider
the structure of group C’-algebras of some successive semi-direct products of $\mathbb{C}^{n}$

by $R,$ $\mathbb{T}$ or $\mathbb{Z}$ by using some results of [Sd5], [Sd10], [Sd6] inductively (cf. [Sd7],
[SdlO] for group $C^{*}$ -algebras of certain semi-direct products by the generalized
discrete Heisenberg groups or Heisenberg Lie groups respectively). This attempt
for the problem is still far from the general case, but should be a steady step and
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could be helpful for further study in the future. Indeed, this time we have reached
a new and some reasonable notion of $C$“-algebras being $C^{*}$ -solvable generalizing
the old notion of being solvable.

In details, this paper is organized as follows. In Section 1, we consider the struc-
ture (that is, finite composition series with subquotients that are tensor products
involving commutative $C^{*}$ -algebras, noncommutative tori and the $C^{*}$ -algebra of
all compact operators) of group $C^{*}$ -algebras of successive semi-direct products of
$\mathbb{C}^{n}$ by $\mathbb{R}$ under certain assumptions on actions which allow us to be able to analyze
their group $C^{*}$ -algebras. We also consider the case of solvable Lie groups splitting
by nilradicals in a different view of point. In Sections 2 and 3, under the similar as-
sumptions as in Section 1 we consider the case of successive semi-direct products of
$\mathbb{C}^{n}$ by $\mathbb{T}$ and the case of successive semi-direct products of $\mathbb{C}^{n}$ by $\mathbb{Z}$ , and the cases
of linearlizable connected or disconnected solvable Lie groups. Those assumptions
on actions are somewhat restrictive and technical. In fact, the group $C^{*}$ -algebras
of the Dixmier group and its variations such as the generalized Dixmier groups and
certain semi-direct products by the generalized discrete Heisenberg groups (con-
sidered in [Sd10], [Sd7] respectively) are not contained in the class of the group
$C^{*}$ -algebras studied in those cases. However, the group $C^{*}$ -algebras of successive
semi-direct products in those cases are analyzable or solvable in some sense. In
Section 4, as one application, (as usual) we consider the stable rank estimate for
the analyzable or solvable group $C^{*}$ -algebras of those connected or disconnected
solvable Lie groups. As another one, we consider the case of amenable Lie groups
such as semi-direct products of those solvable Lie groups by compact Lie group-
$s$ . In Section 5, we introduce a class of $C^{*}$ -algebras that are $C^{*}$ -solvable in the
sense that the class should contain all the C’-algebras of solvable Lie groups, and
discuss some basic properties of the class and our related conjectures for group
$C^{*}$-algebras of Lie groups and their stable rank:

Notation: Let $C^{*}(G)$ denote the (full) group $C^{*}$ -algebra of a Lie group $G$

$(cf.[Dx])$ . Let $\hat{G}_{1}$ be the space of all l-dimensional representation of $G$ , and $\hat{G}$

the space of al equivalence classes of irreducible unitary representations of $G$ with
the hull-kernel topology. Let $\mathfrak{U}^{\wedge}$ be the spectrum of a $C^{*}$ -algebra $\mathfrak{U}$ consinting
of all equivalence classes of irreducible representations of $\mathfrak{U}$ . For a locally com-
pact Hausdorff space $X$ , we denote by $C_{0}(X)$ the $C^{*}$ -algebra of all continuous
complex-valued functions on $X$ vanishing at infinity, and let $C(X)=C_{0}(X)$ when
$X$ is compact. Let $\mathfrak{U}x_{\alpha}G$ be the (ful) crossed product of a $C^{*}$ -algebra by $G$ with
$\alpha$ an action, that is, a homomorphism from $G$ to the automorphism group of $\mathfrak{U}$

$(cf.[Pd])$ . We often omit the symbol $\alpha$ in what follows. Let $K$ be the $C^{*}$ -algebra
of all compact operators on a countably infinite dimensional Hilbert space.

1. SUCCESSIVE SEMI-DIRECT PRODUCTS BY $\mathbb{R}$

We first define the following (Lie) semi-direct products:

$G_{n,m}=(\cdots((\mathbb{C}^{n}\rangle\triangleleft\alpha^{1}R)\rangle\triangleleft\alpha^{2}\mathbb{R})\cdots)\rangle\triangleleft\alpha^{m}R$
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for $n\geq 1$ and $m\geq 0$ , where some restricted conditions on the actions $\alpha_{j}(1\leq j\leq$

m) are supposed in what follows. Let $C^{*}(G_{n,m})$ be the group $C^{*}$ -algebra of $G_{n,m}$ .
Then we have the following isomorphism:

$C^{*}(G_{n,m})\cong(\cdots((C^{*}(\mathbb{C}^{n})\rangle\triangleleft_{\alpha^{1}}\mathbb{R})\lambda_{\alpha^{2}}\mathbb{R})\cdots)\lambda_{\alpha^{m}}\mathbb{R}$

where the right hand side means a successive $C^{*}$ -crossed product by $\mathbb{R}$ . Then via
Fourier transform we get $C^{*}(\mathbb{C}^{n})\rangle\triangleleft_{\alpha^{1}}\mathbb{R}\cong C_{0}(\mathbb{C}^{n})\lambda_{\hat{\alpha}^{1}}\mathbb{R}$ , where the action $\hat{\alpha}_{t}^{1}$ is
defined by the complex conjugate of $\alpha_{t}$ for $t\in \mathbb{R}$ via the duality of $\mathbb{C}^{n}$ . If $\alpha^{1}$

is trivial, then $C_{0}(\mathbb{C}^{n})\rangle\triangleleft_{\hat{\alpha}^{1}}\mathbb{R}\cong C_{0}(\mathbb{C}^{n})\otimes C_{0}(\mathbb{R})$ . By the similar reason we may
assume that actions $\alpha^{j}$ are not trivial for all $j$ in what follows.

We now review the structure of $C_{0}(\mathbb{C}^{n})\rangle\triangleleft \mathbb{R}\hat{\alpha}^{1}$ briefly.

Theorem A [Sd5, Theorem 2.1]. The crossed product $C_{0}(\mathbb{C}^{n})\rangle\triangleleft\hat{\alpha}^{1}\mathbb{R}$ for the
semi-direct product $G_{n,1}$ has a finite composition series $\{3_{j}\}_{j=1}^{K}$ whose subquotients
are given by

$J_{j}^{\prime}/7_{j-1}\cong\left\{\begin{array}{ll}C_{0}(\hat{G}_{1})=C_{0}(\mathbb{C}^{n_{0}+u}\times \mathbb{R}), & j=K,\\C_{0}(\mathbb{C}^{n_{0}+s_{J}}\times(\mathbb{C}\backslash \{0\})^{t_{j}}\times \mathbb{T} & )\otimes K, or\\C_{0}(\mathbb{C}^{n_{0}+s_{j}}\times(\mathbb{C}\backslash \{0\})^{t_{j}}\times & )\otimes K, or\\C_{0}(\mathbb{C}^{n_{0}+s_{j}}\times \mathbb{R}_{+}^{u_{j}})\otimes \mathfrak{U}_{\Theta_{j}}\otimes & , for 1\leq j\leq K-1,\end{array}\right.$

where $\mathbb{R}+=(0, \infty)$ , and $\mathfrak{U}_{\Theta_{j}}$ is a noncommutative torus of the form $C(\mathbb{T}^{u_{j}-1})\rangle\triangleleft \mathbb{Z}$ ,
and $0\leq n_{0}\leq n$ and $0\leq s_{j},$ $t_{j}\leq n-n_{0}$ and $2\leq u_{j}\leq n-n_{0}$ and $s_{j}+t_{j}+1\leq n-n_{0}$

and $s_{j}+u_{j}\leq n-n_{0}$ .

Remark. For the proof, we use the Jordan decomposition of $\hat{\alpha}^{1}$ on $\mathbb{C}^{n}$ by taking
a suitable base of $\mathbb{C}^{n}$ and replacing it as the canonical base to obtain the decom-
position of $\mathbb{C}^{n}$ into $\hat{\alpha}^{1}$ -invariant subspaces $\{Y_{1_{j}}\}$ with dim $ Y_{1_{j}}\geq$ dim $Y_{1_{j-1}}$ such
that their corresponding subquotients $2_{K-j+1}/2_{K-j}$ are given in this theorem. In
particular, $Y_{1_{1}}=\mathbb{C}^{n_{0}+u}$ . We denote by $X_{1_{j}}$ the spectrums of the commutative
tensor factors of $J_{j}^{\prime}/2_{j-1}(1\leq j\leq K-1)$ . This convention indexing subquotients
is used in the similar situations in what follows.

Now suppose that all the subquotients $2_{j}/2_{j-1}$ (or their spectrums) are invari-
ant under $\alpha^{2}$ (or $\hat{\alpha}_{2}$ ). Then we may assume that $(C_{0}(\mathbb{C}^{n})\rangle\triangleleft\hat{\alpha}^{1}\mathbb{R})\rangle\triangleleft \mathbb{R}\alpha^{2}$ has a finite
composition series whose subquotients are given by

$(2_{j}/3_{j-1})\rangle\triangleleft \mathbb{R}\cong\alpha^{2}\left\{\begin{array}{ll}C_{0}(\hat{G}_{1})x_{\hat{\alpha}^{2}}\mathbb{R}=C_{0}(\mathbb{C}^{n_{O}+u}\times \mathbb{R})\rangle\triangleleft \mathbb{R}\hat{\alpha}^{2}, & j=K,\\(C_{0}(\mathbb{C}^{n_{0}+s_{j}}\times(\mathbb{C}\backslash \{0\})^{t_{j}}\times \mathbb{T})\lambda_{\hat{\alpha}^{2}}\mathbb{R})\otimes & ,\\(C_{0}(\mathbb{C}^{n_{0}+S_{j}}\times(\mathbb{C}\backslash \{0\})^{t_{j}}x\mathbb{R})\rangle\triangleleft\hat{\alpha}^{2}\mathbb{R})\otimes & ,\\([C_{0}(\mathbb{C}^{n_{0}+s_{j}}\times \mathbb{R}_{+}^{u_{j}})\otimes \mathfrak{U}_{\Theta_{j}}])\triangleleft\alpha^{2}\mathbb{R})\otimes K, & \end{array}\right.$

for $1\leq j\leq K-1$ , where $\hat{\alpha}_{2}$ means the action on the spectrums of the commutative
$C^{*}$ -algebras involved in those crossed products. Note that

$([C_{0}(\mathbb{C}^{n_{0}+s_{j}}\times \mathbb{R}_{+}^{u_{j}})\otimes \mathfrak{U}_{\Theta_{j}}])\triangleleft\alpha^{2}\mathbb{R})$

$\cong([C_{0}(\mathbb{C}^{n0+s_{j}}\times \mathbb{R}_{+}^{u_{j}})\otimes C(\mathbb{T}^{k_{j}})]\rangle\triangleleft\hat{\alpha}^{2}\mathbb{R})\rangle\triangleleft \mathbb{Z}\hat{\alpha}^{1}$ ,
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where $\mathfrak{U}_{\Theta_{j}}=C(\mathbb{T}^{k_{j}})\lambda_{\hat{\alpha}^{1}}\mathbb{Z}$ and $k_{j}=u_{j}-1$ . Thus, it suffices to consider the
following crossed products:

$C_{0}(X_{1_{j}})\rangle\triangleleft \mathbb{R}=\hat{\alpha}^{2}\left\{\begin{array}{l}C_{0}(\mathbb{C}^{n_{2}}x\mathbb{R})\rangle\triangleleft \mathbb{R}\hat{\alpha}^{2}\\C_{0}(\mathbb{C}^{n_{2}}x(\mathbb{C}\backslash \{0\})^{t}\times \mathbb{T})\rangle\triangleleft \mathbb{R}\hat{\alpha}^{2}\\C_{0}(\mathbb{C}^{n_{2}}\times(\mathbb{C}\backslash \{0\})^{t}\times R)\rangle\triangleleft \mathbb{R}\hat{\alpha}^{2}\\C_{0}(\mathbb{C}^{n_{2}}\times \mathbb{R}_{+}^{u}\times \mathbb{T}^{k})\rangle\triangleleft \mathbb{R}\hat{\alpha}^{2}\end{array}\right.$

The crossed products in the alternative are obtained by taking suitable quotients
from

$\left\{\begin{array}{l}C_{0}(\mathbb{C}^{n_{2}+1})x_{\hat{\beta}^{2}}R\\C_{0}(\mathbb{C}^{n_{2}+t+1})x_{\hat{\beta}^{2}}R\\C_{0}(\mathbb{C}^{n_{2}+t+1})x_{\hat{\beta}^{2}}R\\C_{0}(\mathbb{C}^{n_{2}+u+k})\rangle\triangleleft_{\hat{\beta}^{2}}R\end{array}\right.$

respectively. In fact, we can construct liftings from the spaces involved in the
alternative of $C_{0}(X_{1_{j}})\rangle\triangleleft \mathbb{R}\hat{\alpha}^{2}$ to the direct products $\mathbb{C}^{n_{2}+x}$ for $x=1,$ $t+1,$ $u+k$

involved in the crossed products just above by assuming that the action $\hat{\beta}^{2}$ of $\mathbb{R}$ on
the torus direction in $\{0_{n_{2}}\}\times \mathbb{C}$ of $\mathbb{C}^{n_{2}+1}$ with $\mathbb{C}\backslash \{0\}\approx \mathbb{T}\times R+(homeomorphic)$

is trivial and the same as $\hat{\alpha}^{2}$ elsewhere in the first case, where $0_{x}$ means the origin
of $\mathbb{C}^{x}$ , and the action $\hat{\beta}^{2}$ of $\mathbb{R}$ on the origin $0_{t}$ of $\mathbb{C}^{t}$ in $\mathbb{C}^{n_{2}+t+1}$ and on either the
radius direction in $\{0_{n_{2}}\}\times\{0_{t}\}\times \mathbb{C}$ of $\mathbb{C}^{n_{2}+t+1}$ with $\mathbb{C}\backslash \{0\}\approx \mathbb{T}\times R+or$ the
torus direction in $\{0_{n_{2}}\}\times\{0_{t}\}\times \mathbb{C}$ of $\mathbb{C}^{n_{2}+t+1}$ with $\mathbb{C}\backslash \{0\}\approx \mathbb{T}\times \mathbb{R}+is$ trivial
and the same as $\hat{\alpha}^{2}$ elsewhere in the second and third cases respectively, where
we may identify $R+with\mathbb{R}$ , and the action $\hat{\beta}^{2}$ of $R$ on the torus directions in
$\{0_{n_{2}}\}\times \mathbb{C}^{u}\times\{0_{k}\}$ of $\mathbb{C}^{n_{2}+u+k}$ with $(\mathbb{C}\backslash \{0\})^{u}\approx(\mathbb{T}\times \mathbb{R}_{+})^{u}$ and on the radius
directions in $\{0_{n_{2}}\}\times\{0_{u}\}\times \mathbb{C}^{k}$ of $\mathbb{C}^{n_{2}+u+k}$ with $(\mathbb{C}\backslash \{0\})^{k}\approx(\mathbb{T}\times \mathbb{R}_{+})^{k}$ is trivial
and the same as $\hat{\alpha}^{2}$ elsewhere in the forth case. Therefore, we may assume from
Theorem A that $C_{0}(X_{1_{j}})x_{\hat{\alpha}^{2}}R$ has a finite composition series whose subquotients
are given by

$\left\{\begin{array}{ll}C_{0}(X_{2_{j}}), & \\C_{0}(X_{2_{j}})\otimes K, & \\C_{0}(X_{2_{j}})\otimes(C(\mathbb{T}^{2_{j}})x_{\hat{\alpha}^{2}}\mathbb{Z})\otimes K & j\geq 2\end{array}\right.$

where the spaces $X_{2_{j}}$ are obtained from taking suitable quotients of the spectrums
$X_{1_{j}}$ of the commutative direct factors as in the subquotients in Theorem A. To
sum up we obtain

Lemma 1.1. If the structure of $C_{0}(\mathbb{C}^{n})\rangle\triangleleft \mathbb{R}\hat{\alpha}^{1}$ as in Theorem $A$ is invariant under
$\alpha^{2}$ (or $\hat{\alpha}^{2}$ ), then the crossed product $(C_{0}(\mathbb{C}^{n})x_{\hat{\alpha}^{1}}\mathbb{R})x_{\alpha^{2}}\mathbb{R}$ for the successive semi-
direct product $G_{n,2}$ has a finite composition series whose subquotients are given
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$by$

$\left\{\begin{array}{ll}C_{0}(X_{2_{1}})=C_{0}((G_{n,2})_{1}^{\wedge})=C_{0}(\mathbb{R}^{d_{n,2}}), & for some d_{n,2}\geq 1,\\C_{0}(X_{2_{j}})\otimes K, & \\C_{0}(X_{2_{j}})\otimes(C(\mathbb{T}^{2_{j}})\rangle\triangleleft\hat{\alpha}^{p}\mathbb{Z})\otimes K, p= & ,2,\\C_{0}(X_{2_{j}})\otimes((C(\mathbb{T}^{2_{j}})\rangle\triangleleft\hat{\alpha}^{2}\mathbb{Z})\rangle\triangleleft\hat{\alpha}^{1}\mathbb{Z})\otimes & , for j\geq 2,\end{array}\right.$

and $2_{j}\geq 1$ for $\mathbb{T}^{2_{j}}$ , and $X_{2_{j}}$ are certain locally compact Hausdorff spaces.

By the same analysis as above, we obtain

Lemma 1.2. If the structure of $(C_{0}(\mathbb{C}^{n})\lambda_{\hat{\alpha}^{1}}\mathbb{R})\rangle\triangleleft\alpha^{2}\mathbb{R}$ as in Lemma 1.1 is in-
variant under $\alpha^{3}$ (or $\hat{\alpha}^{3}$ ), then the crossed product $((C_{0}(\mathbb{C}^{n})n_{\hat{\alpha}^{1}}R)\lambda_{\alpha^{2}}\mathbb{R})\lambda_{\alpha^{3}}\mathbb{R}$

for the successive semi-direct product $G_{n,3}$ has a finite composition series whose
subquotients are given by

$\left\{\begin{array}{ll}C_{0}(X_{3_{1}})=C_{0}((G_{n,3})_{1}^{\wedge})=C_{0}(\mathbb{R}^{d_{\mathfrak{n},3}}), & for some d_{n,3}\geq 1,\\C_{0}(X_{3_{j}})\otimes K, & \\C_{0}(X_{3_{j}})\otimes(C(\mathbb{T}^{3_{j}})\rangle\triangleleft\hat{\alpha}^{p}\mathbb{Z})\otimes K, 1\leq & \leq 3,\\C_{0}(X_{3_{j}})\otimes((C(\mathbb{T}^{3_{j}})\rangle\triangleleft\hat{\alpha}^{p_{2}}\mathbb{Z})\lambda_{\hat{\alpha}^{P1}}\mathbb{Z})\otimes & K, 1\leq p_{1}<p_{2}\leq 3,\\C_{0}(X_{3_{j}})\otimes(((C(\mathbb{T}^{3_{j}})x_{\hat{\alpha}^{3}}\mathbb{Z})\rangle\triangleleft\hat{\alpha}^{2}\mathbb{Z})\rangle\triangleleft & \mathbb{Z})\otimes K, for j\geq 2,\end{array}\right.$

and $3_{j}\geq 1$ for $\mathbb{T}^{3_{j}}$ , and $X_{3_{j}}$ are certain locally compact Hausdorff spaces.

Remark. Note that $d_{n,2}\geq d_{n,3}\geq 1$ .
In general, we obtain

Theorem 1.3. If the structures of $C^{*}(G_{n,p})(1\leq p\leq m-1)$ as in Lemmas 1.1
and 1.2 are invareant under $\hat{\alpha}^{p+1}$ respectively, then the group $C^{*}$ -algebm $C^{*}(G_{n,m})$

for the successive semi-direct product $G_{n,m}$ has a finite composition series whose
subquotients are given by

$\left\{\begin{array}{ll}C_{0}(X_{m_{1}})=C_{0}((G_{n,m})_{1}^{\wedge})=C_{0}(\mathbb{R}^{d_{n,m}}), & for d_{n,m}\geq 1,\\C_{0}(X_{m_{j}})\otimes K, & \\C_{0}(X_{m_{j}})\otimes(C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{p}\mathbb{Z})\otimes K, 1\leq & \leq m,\\C_{0}(X_{m_{j}})\otimes((C(T^{m_{j}})\rangle\triangleleft\hat{a}^{p_{2}}\mathbb{Z})\rangle\triangleleft\hat{\alpha}^{p_{1}}\mathbb{Z})\otimes & , 1\leq p_{1}<p_{2}\leq m,\\C_{0}(X_{m_{j}})\otimes(((C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{p_{3}}\mathbb{Z})\rangle\triangleleft\hat{\alpha}^{p_{2}}\mathbb{Z}))\triangleleft & \hat{\alpha}^{p_{1}}\mathbb{Z})\otimes K, 1\leq p_{1}<p_{2}<p_{3}\leq m,\\\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots, & \\C_{0}(X_{m_{j}})\otimes(\cdots((C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{m}\mathbb{Z})x_{\hat{\alpha}^{m-1}} & \mathbb{Z})\cdots x_{\hat{\alpha}^{1}}\mathbb{Z})\otimes K, for j\geq 2,\end{array}\right.$

and $m_{j}\geq 1$ for $\mathbb{T}^{m_{j}}$ , and $X_{m_{j}}$ are certain locally compact Hausdorff spaces.

Remark. If a semi-direct product of the form:

$G=(\cdots((\mathbb{R}^{n}x_{\alpha^{1}}\mathbb{R}))\triangleleft\alpha^{2}\mathbb{R})\cdots))\triangleleft\alpha^{m}R$
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is a quotient of $G_{n,m}$ , then by taking a suitable quotient of $C^{*}(G_{n,m})$ we obtain
the structure of $C^{*}(G)$ as in the theorem. Note that $\hat{G}_{1}$ is isomorphic to $\mathbb{R}^{d}$ for
$d\geq 1$ since $G$ is a simply connected solvable Lie group (cf.[ST2, Lemma 2.1]). The
above successive crossed products by $\mathbb{Z}$ are noncommutative tori, and

$(\cdots((C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{m}\mathbb{Z})\rangle\triangleleft\hat{\alpha}^{m-1}\mathbb{Z})\cdots x_{\hat{\alpha}^{1}}\mathbb{Z})\cong C(\mathbb{T}^{m_{j}})\lambda \mathbb{Z}^{m}$ .

The structure of these crossed products was studied by [Sd5] to decompose in-
to subquotients which are AH-algebras, i.e, inductive limits of homogeneous $C^{*}-$

algebras. The assumption on the structure invariances for $ C^{*}(G_{n,p})(1\leq p\leq$

$m-1)$ is crucial and restricted. In fact, it is known that the group $C^{*}$ -algebras of
the generalized Dixmier groups have subquotients as the $C^{*}$ -algebras of continuous
fields (non-split into tensor products) (cf. [Sd10, Theorems 2.1 and 2.2]). How-
ever, our $C^{*}$ -algebras $C^{*}(G_{n,m})$ are analyzable or solvable in some sense. Also,
it is easy to construct artificially such group $C^{*}$ -algebras of successive semi-direct
products and obtain their structures.

Solvable Lie groups splitting by nilradicals.
It is known that for any simply connected, solvable Lie group $G$ , there exists

the maximal simply connected nilpotent Lie group $N$ (the nilradical of $G$ ) such
that for some $n\in N$ , we have the following exact sequence of groups:

$1\rightarrow N\rightarrow G\rightarrow \mathbb{R}^{n}\rightarrow 1$ .

We assume that $G$ splits into the semi-direct product $ N\rangle\triangleleft \mathbb{R}^{n}\alpha$ (a solvable Lie
group splitting by $N$). This is always true if $n=1$ . Unfortunately, $G$ does not
split in general for $n\geq 2$ . The $C^{*}$ -algebra $C^{*}(G)$ for $G$ splitting by $N$ is isomorphic
to the crossed product $C^{*}(N)\rangle\triangleleft\alpha \mathbb{R}^{n}$ . On the other hand, the structure of $C^{*}(N)$

for $N$ a simply connected, nilpotent Lie group was obtained by [Sdl] as follows:

Theorem $A_{2}$ [Sdl, Theorem 3]. Let $N$ be a simply connected, nilpotent Lie
group. Then there exists a finite composition semes $\{2_{j}\}_{j=1}^{k}$ of $C^{*}(N)$ with $2_{0}=0$

and $2_{k}=C^{*}(N)$ such that

$2_{j}/2_{j-1}\cong\left\{\begin{array}{ll}C_{0}(R^{m})=C_{0}(N_{1}) & for m\geq 1, j=k,\\\Gamma_{0}(\Omega_{j}, \{K\}_{\pi\in\Omega_{j}}) & 1\leq j\leq k-1,\end{array}\right.$

where $\hat{N}_{1}$ is the space of all characters of $N$ , and $\Gamma_{O}(\Omega_{j}, \{K\}_{\pi\in\Omega_{g}})$ are the $C^{*}-$

algebras of continuous fields vanishing at infinity over locally compact Hausdorff
spaces $\Omega_{j}$ with the constant fiber $K$ , and the union of $\hat{N}_{1}$ and $\Omega_{j}(1\leq j\leq k-1)$

is $\hat{N}=C^{*}(N)^{\wedge}$ .
Then $C_{0}(\hat{N}_{1})$ is invariant under the action $\alpha$ of $\mathbb{R}$ since $\hat{N}_{1}$ is invariant under

$\hat{\alpha}$ , and $N/[N, N]\cong \mathbb{R}^{m}$ and C’ $(\mathbb{R}^{m})\rangle\triangleleft\alpha \mathbb{R}^{n}\cong C_{0}(\mathbb{R}^{m})x_{\overline{\alpha}}\mathbb{R}^{n}$ with $\hat{\alpha}$ the conjugate
of $\alpha$ via the duality of $\mathbb{R}^{n}$ . Note that

$ C_{0}(R^{m})\rangle\triangleleft\hat{\alpha}R^{n}\cong$ ( $\cdots$ (( $ C_{0}(R^{m})\rangle\triangleleft$ a R) $\lambda_{\hat{\alpha}}R$) $\cdots$ ) $\lambda_{\hat{\alpha}}\mathbb{R}$ .
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We also may assume that the subquotients $\Gamma_{0}(\Omega_{j}, \{K\}_{\pi\in\Omega_{j}})$ split into the $C^{*}-$

tensor products $C_{0}(\Omega_{j})\otimes K$ . In fact, these continuous field $C^{*}$ -algebras of this
type are locally trivial (cf.[Dx, Section 10.8]), and use finite induction associated
with analyzing the coadjoint orbit space as below. Moreover, we assume that those
subquotients are also invariant under $\hat{\alpha}$ . Then note that

$(C_{0}(\Omega_{j})\otimes K)x_{\alpha}\mathbb{R}^{n}\cong(C_{0}(\Omega_{j})\rangle\triangleleft\hat{\alpha}\mathbb{R}^{n})\otimes K$ .
Now note the following commutative diagram:

$N\rightarrow^{\alpha_{t}}N$

$\exp\uparrow$ $\uparrow\exp$

$\mathfrak{R}\rightarrow^{d\alpha_{t}}\mathfrak{R}$

where or is the Lie algebra of $N$ and $d\alpha_{t}$ for $t\in \mathbb{R}^{n}$ is the differential of $\alpha_{t}$ at the
origin, and exp means the exponential map. Also note that

$\mathfrak{R}^{*}$

$\rightarrow^{d\alpha_{t}^{r}}$

$\mathfrak{R}^{*}$

$ q\downarrow$ $\downarrow q$

$\mathfrak{R}^{*}/N\rightarrow^{[\alpha_{t}]}\mathfrak{R}^{*}/N$

where $\mathfrak{R}^{*}$ is the real dual space of or, the quotient space $\mathfrak{R}^{*}/N$ is the coadjoint
orbit space of $N$ under the coadjoint action $Ad^{*}$ of $N,$ $d\alpha_{t}^{*}$ is the transpose of $d\alpha_{t}$ ,
and $[\alpha_{t}]$ is the action induced by $d\alpha_{t}^{*}$ and the quotient map $q$ . By the Kirillov-
Bernat correspondence, the orbit space $\Re*/N$ is homeomorphic to the spectrum
$\hat{N}$ of $N(cf.[Sdl])$ , so that the action $[\alpha_{t}]$ on $\hat{N}$ is in fact given by $[\alpha_{t}][\pi]=[\pi\circ\alpha_{-t}]$

for $[\pi](=\pi)\in\hat{N}$ .
Since $\Omega_{j}$ is a subspace of $\hat{N}$ , it is also regarded as a subspace of $\mathfrak{R}^{*}/N$ , so that

the crossed product $C_{0}(\Omega_{j}))\triangleleft\hat{\alpha}\mathbb{R}^{n}$ is regarded as a subquotient of $C_{0}(R^{l})\lambda_{\hat{\alpha}}\mathbb{R}^{n}$

for $ l\leq$ dim $N$ (this lifting might be nontrivial, however, if necessary we may
analyze directly the subspace of $\mathfrak{R}^{*}$ corresponding to $\Omega_{j}$ via $q^{-1}$ . In this case, the
decomposition for $\mathfrak{R}^{*}$ given in [Sdl, Lemmas 2 and 4] would be useful). Since this
crossed product $C_{0}(\mathbb{R}^{l})\lambda_{\hat{\alpha}}\mathbb{R}^{n}$ is a quotient of $C_{0}(\mathbb{C}^{l})\rangle\triangleleft\hat{\alpha}\mathbb{R}^{n}$ , the crossed product
$C_{0}(\Omega_{j})\rangle\triangleleft \mathbb{R}^{n}\hat{\alpha}$ is a subquotient of $C_{0}(\mathbb{C}^{l})\rangle\triangleleft \mathbb{R}^{n}\hat{\alpha}$ . Therefore, the inductive method
given before Theorem 1.3 also works for this crossed product $C_{0}(\mathbb{C}^{l})\rangle\triangleleft \mathbb{R}^{n}\hat{\alpha}$ . Hence,
summing up we obtain
Proposition 1.4. Let $G$ be a simply connected solvable Lie group splitting by its
nilmdical $N$ so that $G=Nx_{\alpha}\mathbb{R}^{n}$ for some $n\geq 0$ . Suppose that the structure of
$C^{*}(N)$ in Theorem $A_{2}$ is invariant under the action $\alpha$ of $R^{n}$ , and the structures
of the crossed pmducts $C_{0}(\hat{N}_{1})\rangle\triangleleft\hat{\alpha}\mathbb{R}^{s}$ and $C_{0}(\Omega_{j}))\triangleleft\hat{\alpha}\mathbb{R}^{s}$ for $1\leq j\leq k-1$ and
$1\leq s\leq n$ are invariant under the actions of direct factors $R$ in $R^{n}$ respectively,
where the union of $\hat{N}_{1}$ and $\Omega_{j}(1\leq j\leq k-1)$ is the spectrum of $C^{*}(N)$ . Then
the $C^{*}$ -algebm $C^{*}(G)=C^{*}(N\rangle\triangleleft\alpha \mathbb{R}^{n})$ has the same structure with subquotients as
given in Theorem 1.3.

–81–



2. SUCCESSIVE SEMI-DIRECT PRODUCTS BY $\mathbb{T}$

We first recall the following result (cf. [Sd5, Theorem 2.1]):

Theorem $B$ [Sd10, Proposition 3.10]. Let $H=\mathbb{C}^{n}x_{\alpha}\mathbb{T}$ be a semi-direct
product of $\mathbb{C}^{n}$ by $\mathbb{T}$ . Then there exists a finite composition series $\{2_{j}\}_{j=1}^{r}-$ of
$C^{*}(H)$ such that

$2_{j}/2_{j-1}\cong\left\{\begin{array}{ll}C_{0}(\mathbb{C}^{n_{0}}\times \mathbb{Z})=C_{0}(H_{1}), n_{0}\geq 0 & j=r,\\C_{0}(\mathbb{C}^{n_{0}}\times \mathbb{R}^{k_{j}}\times \mathbb{T}^{k_{j}-1})\otimes K & 1\leq j\leq r-1.\end{array}\right.$

Now define connected solvable Lie groups $H_{n,m}$ by the following successive
semi-direct products:

$H_{n,m}=(\cdots((\mathbb{C}^{n}x_{\alpha^{1}}\mathbb{T})\lambda_{\alpha^{2}}\mathbb{T})\cdots)\rangle\triangleleft\alpha^{m}$ T.

Then $C^{*}(H_{n,m})\cong C_{0}(\mathbb{C}^{n}))\triangleleft(\alpha^{1},\cdots,\alpha^{m})\mathbb{T}^{m}$ since the automorphic action $\alpha^{2}$ of $\mathbb{T}$

is trivial on $\mathbb{T}$ of $\mathbb{C}^{n}x_{\alpha^{1}}\mathbb{T}$ , and inductively, the action $\alpha^{j}$ is trivial on $\mathbb{T}^{j-1}$ of
$H_{n,j-1}$ . By using Theorem $B$ as Theorem A in the previous section, we obtain

Theorem 2.1. If the structures of $C^{*}(H_{n,p})(1\leq p\leq m-1)$ are invariant under
$\hat{\alpha}^{p+1}$ respectively, then the group $C^{*}$ -algebm $C^{*}(H_{n,m})$ for the successive semi-
direct pmduct $H_{n,m}$ has a finite composition series whose subquotients are given
$by$

$\left\{\begin{array}{ll}C_{0}(X_{m_{1}})=C_{0}((H_{n,m})_{1}^{\wedge})=C_{0}(\mathbb{C}^{d_{\mathfrak{n},m}}\times \mathbb{Z}^{m}), & for d_{n,m}\geq 0,\\C_{0}(X_{m_{j}})\otimes K & \end{array}\right.$

for $j\geq 2$ , and $X_{m_{j}}$ are certain locally compact Hausdorff spaces.

Further define connected solvable Lie groups $H_{n,m}^{\prime}$ by the following successive
semi-direct products:

$H_{n,m}^{\prime}=(\cdots((\mathbb{C}^{n}\rangle\triangleleft\alpha^{1}H1)\lambda_{\alpha^{2}}H_{2})\cdots)\lambda_{\alpha^{m}}H_{m}$

where $H_{p}\cong \mathbb{R}$ or $\mathbb{T}(1\leq p\leq m)$ . Then we have

Corollary 2.2. Theorem 1.3 holds when we replace both $G_{n,m}$ and $(G_{n,m})_{1}^{\wedge}$ with
$H_{n,m}^{\prime}$ and $(H_{n,m}^{\prime})_{1}^{\wedge}$ respectively.

Remark. If a successive semi-direct product of the following form:

$H=(\cdots((\mathbb{R}^{n}x_{\alpha^{1}}H_{1})\lambda_{\alpha^{2}}H_{2})\cdots)\lambda_{\alpha^{m}}H_{m}$

with $H_{p}\cong R$ or $\mathbb{T}(1\leq p\leq m)$ is a quotient of $H_{n,m}^{\prime}$ , then we can obtain the
structure of $C^{*}(H)$ by taking a quotient of $C^{*}(H_{n,m}^{\prime})$ .
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Linearizable connected solvable Lie groups.
Recall that a connected solvable Lie group $H$ is linearizable if it has a faithful

finite-dimensional representation. In this case, $H$ is isomorphic to a semi-direct
product $G\lambda \mathbb{T}^{k}$ for $G$ a simply connected solvable Lie group and $k\geq 0$ (cf. [OV,
Theorem 7.1 in page 66]).

Proposition 2.3. Let $H$ be a linearizable connected solvable Lie group so that
$H\cong G\rangle\triangleleft \mathbb{T}^{k}$ for $G$ a simply connected solvable Lie group and $k\geq 0$ . If $C^{*}(G)$

has the structure as given in Theorem 1.3 and this structure is invariant under the
action of $\mathbb{T}^{k}$ , then $C^{*}(H)$ has the structure with noncommutative subquotients as
given in Theorem 1.3 and $C_{0}(\hat{H}_{1})\cong C_{0}(\mathbb{R}^{d}\times \mathbb{Z}^{k})$ for some $d\geq 0$ .

3. SUCCESSIVE SEMI-DIRECT PRODUCTS BY $\mathbb{Z}$

We first recall the following result:

Theorem $C$ [Sd6, Theorem 1.2]. Let $K=\mathbb{C}^{n}x_{\alpha}\mathbb{Z}$ be a semi-direct product
of $\mathbb{C}^{n}$ by $\mathbb{Z}$ . Then there exists a finite composition serees $\{2_{j}\}_{j=1}^{s}$ of $C^{*}(K)$ such
that

$\prime J_{j}/3_{j-1}\cong\left\{\begin{array}{ll}C_{0}(\mathbb{C}^{9}\times \mathbb{T})=C_{0}(H_{1}), g\geq 0 & j=s,\\\{C_{0}(\mathbb{R}^{290+u_{j}})\otimes(C(\mathbb{T}^{u_{j}})C_{0}(X_{j}/\mathbb{Z})\otimes Korx_{\Theta_{j}}\mathbb{Z}) & 1\leq j<s\end{array}\right.$

where $X_{j}$ are certain locally compact Hausdorff spaces with dim $ X_{j-1}\geq$ dim $X_{j}$ ,
$X_{j}/\mathbb{Z}$ are their quotients by the action $\hat{\alpha}$ of $\mathbb{Z}$ , and $u_{j-1}\geq u_{j}$ , and the actions $\Theta_{j}$

of $\mathbb{Z}$ are multi-rotations on $\mathbb{T}^{u_{j}}$ .

Now define disconnected solvable Lie groups $K_{n,m}$ by the following successive
semi-direct products:

$K_{n,m}=(\cdots((\mathbb{C}^{n}\rangle\triangleleft\alpha^{1}\mathbb{Z})\rangle\triangleleft\alpha^{2}\mathbb{Z})\cdots)\rangle\triangleleft \mathbb{Z}\alpha^{m}$ .
Then we have

$C^{*}(K_{n,m})\cong(\cdots((C^{*}(\mathbb{C}^{n})x_{a^{1}}\mathbb{Z})\rangle\triangleleft\alpha^{2}\mathbb{Z})\cdots)\rangle\triangleleft\alpha^{m}\mathbb{Z}$ .
By using Theorem $C$ as in the connected case above, we have

Theorem 3.1. If the structures of $C^{*}(K_{n,p})(1\leq p\leq m-1)$ are invariant under
$\hat{\alpha}^{p+1}$ respectively, then the group $C^{*}$ -algebm $C^{*}(K_{n,m})$ for the successive semi-
direct product $K_{n,m}$ has a finite composition series whose subquotients are given
$by$

$\left\{\begin{array}{ll}C_{0}(X_{m_{1}})=C_{0}((K_{n,m})_{1}^{\wedge})=C_{0}(\mathbb{C}^{d_{n,m}}\times \mathbb{T}^{m}), & for d_{n,m}\geq 0,\\C_{0}(X_{m_{j}})\otimes K, & \\C_{0}(X_{m_{j}})\otimes(C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{p}\mathbb{Z}), 1\leq p\leq m, & \\C_{0}(X_{m_{j}})\otimes((C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{p_{1}}\mathbb{Z})\rangle\triangleleft\hat{\alpha}^{\mathcal{P}2}\mathbb{Z}), 1\leq p & <p_{1}\leq m,\\C_{0}(X_{m_{j}})\otimes((C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{p_{1}}\mathbb{Z})\lambda_{\hat{\alpha}^{p_{2}}}\mathbb{Z})\otimes K, 1 & \leq p_{2}<p_{1}\leq m,\\, & \\C_{0}(X_{m_{j}})\otimes(\cdots((C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{m}\mathbb{Z})x_{\hat{\alpha}^{m-1}}\mathbb{Z})\cdots & x_{\hat{\alpha}^{1}}\mathbb{Z}) for j\geq 2,\end{array}\right.$
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and $m_{j}\geq 1$ for $\mathbb{T}^{m_{j}}$ , and $X_{m_{j}}$ are certain locally compact Hausdorff spaces.

Remark. If a successive semi-direct product of the form:

$K=(\cdots((\mathbb{R}^{n}x_{\alpha^{1}}\mathbb{Z})\rangle\triangleleft\alpha^{2}\mathbb{Z})\cdots)\lambda_{\alpha^{m}}\mathbb{Z}$

is a quotient of $K_{n,m}$ , then by taking a suitable quotient of $C^{*}(K_{n,m})$ we obtain
the structure of $C^{*}(K)$ as in this theorem. Note that $(K_{n,m})_{1}^{\wedge}=X_{m_{1}}$ . Also note
that the actions $\hat{\alpha}^{j}$ on implementary unitaries of $\hat{\alpha}^{j+1}$ are trivial or the reflection
since an automorphic action of $\mathbb{Z}$ on $\mathbb{Z}$ is trivial or the reflection.

Further define disconnected solvable Lie groups $K_{n,m}^{\prime}$ by the following successive
semi-direct products:

$K_{n,m}^{\prime}=(\cdots((\mathbb{C}^{n}\lambda_{\alpha^{1}}L_{1})\lambda_{\alpha^{2}}L_{2})\cdots))\triangleleft L\alpha^{m}m$

where $L_{p}=R,$ $\mathbb{T}$ or $\mathbb{Z}$ for $1\leq p\leq m$ . Then we obtain

Corollary 3.2. If the structures of $C^{*}(K_{n,p}^{\prime})(1\leq p\leq m-1)$ are invariant
under $\hat{\alpha}^{p+1}$ respectively, then the group $C^{*}$ -algebm $C^{*}(K_{n,m}^{\prime})$ for the successive
semi-direct product $K_{n,m}^{\prime}$ has a finite composition series whose subquotients are
given as in Theorems 1.3, 2.1 and 3.1.

Remark. If a successive semi-direct product of the form:

$K=(\cdots((R^{n}\lambda_{\alpha^{1}}L_{1})\lambda_{\alpha^{2}}L_{2})\cdots)\lambda_{\alpha^{m}}L_{m}$

is a quotient of $K_{n,m}^{\prime}$ , then we can deduce the structure of $C^{*}(K)hom$ that of
$C^{*}(K_{n,m}^{\prime})$ .
Linearizable disconnected solvable Lie groups.

We say that a disconnected solvable Lie group $K$ is linearizable if it is isomorphic
to a successive semi-direct product $G\lambda \mathbb{T}^{k}x\mathbb{Z}^{I}$ for $G$ a simply connected solvable
Lie group and $k,$ $l\geq 0$ .
Proposition 3.3. Let $K$ be a linearizable disconnected solvable Lie gmup so that
$K\cong G\lambda \mathbb{T}^{k}\lambda \mathbb{Z}^{l}$ for $G$ a simply connected solvable Lie group and $k,$ $l\geq 0$ . If
$C^{*}(G\rangle c\mathbb{T}^{k})$ has the structure as given in Proposition 2.3, and this structure and
the structures of the successive crossed products $ C^{*}(Gx\mathbb{T}^{k})\chi$ IZ7 $(1 \leq j\leq l-1)$

are invariant under the actions of direct factors $Z$ of $Z^{l}$ respectively, then $C^{*}(K)$

has the structure with noncommutative subquotients as given in Theorem 3.1 and
$C_{0}(\hat{K}_{1})\cong C_{0}(\mathbb{R}^{d}\times \mathbb{Z}^{k}\times \mathbb{T}^{l})$ for some $d\geq 0$ .

4. APPLICATIONS

As for applications given below, we first recall some notation and definition as
follows.
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Let $\mathfrak{U}$ be a $C^{*}$ -algebra. When $\mathfrak{U}$ is nonunital, we always consider its unitization
$\mathfrak{U}^{+}$ . The stable rank of $\mathfrak{U}$ is defined to be the least integer denoted by $sr(\mathfrak{U})$

such that if $sr(\mathfrak{U})\leq n$ , then the open space $L_{n}(\mathfrak{U})$ of all elements $(a_{j})\in \mathfrak{U}^{n}$ with
$\sum_{j=1}^{n}a_{j}^{*}a_{j}$ invertible in $\mathfrak{U}$ is dense in $\mathfrak{U}^{n}$ . The connected stable rank of $\mathfrak{U}$ is defined
to be the least integer denoted by $csr(\mathfrak{U})$ such that if $csr(\mathfrak{U})\leq n$ , then for any
$m\geq n$ , t.he space $L_{m}(\mathfrak{U})$ is connected, this is equivalent to that the connected
component of $GL_{m}(\mathfrak{U})$ with the identity matrix acts transitively on $L_{m}(\mathfrak{U})$ . Some
of the basic properties of the stable rank and connected stable rank are included
in the proof of Theorem 4.1 given below. See the original work [Rfl] for more
details.

As a corollary of Theorem 1.3, by using some formulas of the stable rank and
connected stable rank for $C^{*}$ -algebras we obtain that

Theorem 4.1. Let $G=G_{n,m}$ as in Theorem 1.3. Then

$\left\{\begin{array}{l}\{sr(C^{*}(G))=22\vee\dim_{\mathbb{C}}\hat{G}_{1}\leq\vee\dim_{\mathbb{C}}\hat{G}_{1}sr(C^{*}(G))\leq\dim_{\mathbb{C}}\hat{G}_{1}if\dim\hat{G}_{1}+1,ifiseven\hat{G}_{1}\\csr(C^{*}(G))\leq 2\vee csr(C_{0}(\hat{G}_{1}))=[(\dim\hat{G}_{1}+1)/2]+1\end{array}\right.$

where $\dim_{\mathbb{C}}=[\dim(\cdot)/2]+1$ , and $[x]$ means the maximum integer $\leq x$ , and $\dim(\cdot)$

is the covering dimension, $ and\vee$ is the maximum.

Remark. We may replace $G$ in the statement with its quotient as in Remark of
Theorem 1.3.

Proof. We apply the following formulas by [Rfl, Theorems 3.6, 4.3, 4.4, 4.11 and
6.4] and [Sh, Theorems 3.9 and 3.10] to the finite composition series obtained in
Theorem 1.3:

$sr(2)\vee sr(\mathfrak{U}/2)\leq sr(\mathfrak{U})\leq sr(2)\vee sr(\mathfrak{U}/2)\vee csr(\mathfrak{U}/2)$ ,
$csr(\mathfrak{U})\leq csr(2)\vee csr(\mathfrak{U}/2)$

for an exact sequence of $C^{*}$ -algebras: $0\rightarrow 7\rightarrow \mathfrak{U}\rightarrow \mathfrak{U}/2\rightarrow 0$ , and

$sr(\mathfrak{U}\otimes K)\leq 2$ , $csr(\mathfrak{U}\otimes K)\leq 2$

for any $C^{*}$ -algebra $\mathfrak{U}$ . By [Rfl, Proposition 1.7] and [Sh, p.381] (cf.[Ns]), we have

$\left\{\begin{array}{ll}sr(C_{0}(X))=\dim_{\mathbb{C}}X^{+}, & csr(C_{0}(\mathbb{R}))=2,\\csr(C_{0}(R^{2}))=1, csr(C & (\mathbb{R}^{d}))=[(d+1)/2]+1 for d\geq 3,\end{array}\right.$

where $X^{+}$ means the one-point compactification of a locally compact Hausdorff
space $X$ . Moreover, note that $sr(C^{*}(G))\geq 2$ by [ST2, Lemma 3.7]. $\square $

As a corollary of Theorem 1.3 and Corollary 2.2, we obtain
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Theorem 4.2. Let $G=G_{r\iota m}$ or $H_{n,m}^{\prime}$ as in Theorem 1.3 and Corollary 2.2.
Then

$\left\{\begin{array}{l}\dim_{\mathbb{C}}\hat{G}_{1}\leq sr(C^{*}(G))\leq\dim_{\mathbb{C}}\hat{G}_{1}+1\\csr(C^{*}(G))\leq 2\vee csr(C_{0}(\hat{G}_{1}))=[(\dim\hat{G}_{1}+1)/2]+1\end{array}\right.$

Remark. We may replace $G$ with its quotient as in Remarks of Theorem 1.3 and
Corolary 2.2.

Theorem 4.3. Let $G=G_{n,m},$ $H_{n,m}^{\prime}$ or $K_{n,m}^{\prime}$ as in Theorem 1.3 and Comllaries
2.2 and 3.2. Then

$\left\{\begin{array}{l}\dim_{\mathbb{C}}\hat{G}_{1}\vee(\max_{j\in J}\max_{s\in}s_{j}sr(R_{j,s}/R_{j,s-1}))\\\leq sr(C^{*}(G))\leq(\dim_{\mathbb{C}}\hat{G}_{1}+1)\vee(\max_{j\in J}\max_{s\in S_{j}}csr(R_{j,s}/R_{j,s-1}))\\csr(C^{*}(G))\leq 2\vee csr(C_{0}(\hat{G}_{1}))\vee(\dot{\max}_{j\in J}\max_{s\in S_{j}}csr(R_{j,s}/R_{j,s-1}))\end{array}\right.$

where $J$ is an index set of the subquotients obtained in Theorem 1.3 and Corollaries
2.2 and 3.2 which have some homogeneous subquotients $R_{j,s}/R_{j,s-1}$ for $j\in J$ , and
$\{S_{j}\}_{j\in J}$ are index sets of such homogeneous subquotients $R_{j,s}/R_{j,s-1}$ for $s\in S_{j}$ .
Remark. We may replace $G$ with its quotient as in Remarks of Theorem 1.3 and
Corolaries 2.2 and 3.2. For example, the following subquotient in Theorem 3.1:

$C_{0}(X_{m_{j}})\otimes(\cdots((C(\mathbb{T}^{m_{j}})\rangle\triangleleft\hat{\alpha}^{m}\mathbb{Z})\lambda_{\hat{\alpha}^{m-1}}\mathbb{Z})\cdots x_{\hat{\alpha}^{1}}\mathbb{Z})$

has homogeneous subquotients when the actions $\hat{\alpha}^{p}(1\leq p\leq m)$ are rational
rotations on $\mathbb{T}^{m_{j}}$ , and the stable rank and connected stable rank of such homoge-
neous subquotients are computable by combining some formulas used in the proof
of Theorem 4.1 with [Rfl, Theorem 6.1] and [Rf2, Theorem 4.7] (cf. [Sd7], [Sd8,
Theorem 2.3]). The above theorems 4.1 to 4.3 partially answer Rieffel’s question
[Rfl, Question 4.14] on describing the stable rank of group $C^{*}$ -algebras in terms
of groups. See [Sd2], [Sd3], $\cdots$ , [Sd9], [ST1], [ST2] for some partial results to this
question.

Moreover, we consider the case of (non-solvable) amenable Lie groups as follows:

Theorem 4.4. Let $M$ be a semi-direct pmduct $Gx_{\beta}L$ of a compact connected
Lie group $L$ by a connected or disconnected successive semi-direct product $G$ as
given in Theorem 1.3 and Corollaries 2.2 and 3.2. Suppose that the structure of
$C^{*}(G)$ given there is invariant under the action $\hat{\beta}$ of L. Then $C^{*}(M)$ has a finite
composition series such that its subquotients are given by

$\left\{\begin{array}{ll}C_{0}(G_{1})x_{\hat{\beta}}L, & \\(C_{0}(X_{m_{j}})n_{\hat{\beta}}L)\otimes K, & \\(([C_{0}(X_{m_{j}})\otimes C(\mathbb{T}^{m_{j}})]\rangle\triangleleft_{\hat{\beta}}L)x_{\hat{\alpha}^{p}}\mathbb{Z})\otimes K, & 1\leq p\leq m,\\([C_{0}(X_{m_{j}})\otimes C(\mathbb{T}^{m_{j}})]\rangle\triangleleft_{\hat{\beta}}L)\rangle\triangleleft \mathbb{Z}\hat{\alpha}^{p}, 1\leq p & \leq m,\\\ldots\ldots\ldots\ldots\ldots\ldots\ldots\ldots, & \\((\cdots([C_{0}(X_{m_{j}})\otimes C(\mathbb{T}^{m_{j}})]x_{\hat{\beta}}L))\triangleleft\hat{\alpha}^{m}\mathbb{Z}\cdots & x_{\hat{\alpha}^{1}}\mathbb{Z})\otimes K,\\(\cdots([C_{0}(X_{m_{j}})\otimes C(\mathbb{T}^{m_{j}})]x_{\hat{\beta}}L)x_{\hat{\alpha}^{m}}\mathbb{Z}\cdots) & \lambda_{\hat{\alpha}^{1}}\mathbb{Z}.\end{array}\right.$
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Remark. The structures of the crossed products $C_{0}(\hat{G}_{1})\lambda_{\hat{\beta}}L$ and $([C_{0}(X_{m})\otimes$

$C(\mathbb{T}^{m_{j}})]\rangle\triangleleft_{\hat{\beta}}L$ are analyzable, and their stable rank and connected stable rank are
computable (cf. [Sd3]). Also, we may take $L$ as $SO(n)$ for an example. On the
other hand, if $L$ is replaced by a non-compact connected semi-sirnple Lie group
such as $SL_{n}(\mathbb{R})$ , then $M$ is non-amenable (cf. [Sd2]). But, the same theorem holds
under the same assumptions in the case of the full group $C^{*}$ -algebra $C^{*}(M)$ (this
would be true for the reduced group $C^{*}$ -algebra of $M$ ).

In particular, by using [Sd3, Proposition 3.9] we have

Proposition 4.5. With the notation as above, if $G$ is a simply connected solvable
Lie group, then

$sr(C_{0}(\hat{G}_{1})\lambda_{\hat{\beta}}L))=(2\wedge\dim_{\mathbb{C}}(\hat{G}_{1}/L))\vee\dim_{\mathbb{C}}(\hat{G}_{1}^{L})$

$where\wedge means$ the minimum, and $\hat{G}_{1}/L$ is the orbit space $of\hat{G}_{1}$ by $L$ , and $\hat{G}_{1}^{L}$ is
the fixed point subspace of $\hat{G}_{1}$ .

Remark. With the same technique as the case of $G$ being simply connected, the
proof of [Sd3, Proposition 3.9] also works for the case where $G$ is taken as in
Corolaries 2.2 and 3.2 and for the case of ( $[C_{0}(X_{m_{j}})\otimes C(\mathbb{T}^{m_{j}})]\rangle\triangleleft_{\hat{\beta}}L$ above.

Remark. Also, we may define that an amenable Lie group $M$ is linearizable if it is
isomorphic to a successive semi-direct product $G\rangle\triangleleft L\rangle\triangleleft \mathbb{Z}^{k}$ for $G$ a simply connected
solvable Lie group and $L$ a compact (connected) Lie group and $k\geq 0$ . In this case,
we can obtain that $C^{*}(M)$ has the structure as given in Theorem 4.4.

5. $C^{*}$ -SOLVABLE $C^{*}$ -ALGEBRAS

We first recall the following definition (cf. [Sc, p. 449]):

Definition 5.1. Let $\mathfrak{U}$ be a $C^{*}$ -algebra. We say that $\mathfrak{U}$ is solvable if there exists
a composition series $\{2_{j}\}_{j=0}^{\infty}$ of closed ideals of $\mathfrak{U}$ with $2_{0}=0$ such that the union
$\bigcup_{j=0}^{\infty}2_{j}$ is dense in $\mathfrak{U}$ and each subquotient $J_{j}^{\prime}/3_{j-1}$ has the following isomorphism:

$2_{j}/2_{j-1}\cong C_{0}(X_{j})\otimes K(H_{j})$

for $X_{j}$ a locally compact Hausdorff space and $K(H_{j})$ the $C^{*}$ -algebra of all compact
operators on a Hilbert space $H_{j}$ .

Remark. Note that the Hilbert space $H_{j}$ may be finite or infinite dimensional. In
particular, $K(\mathbb{C})=\mathbb{C}$ . Since any commutative $C^{*}$ -algebra is isomorphic to $C_{0}(X)$

for $X$ a locally compact Hausdorff space and $C_{0}(X)\otimes K(H)$ has the same repre-
sentation theory as $C_{0}(X)$ , that is, $(C_{0}(X)\otimes K(H))^{\wedge}=C_{0}(X)^{\wedge}$ , this definition
seems to be suitable. If the above composition series is finite, then this defini-
tion for being solvable is more Ptting in a sense. However, this class of solvable
$C^{*}$ -algebras does not contain the class of the $C^{*}$ -algebras of solvable Lie groups.

From this remark, we give the following new definition:
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Definition 5.2. Let $\mathfrak{U}$ be a $C^{*}$ -algebra. We say that $\mathfrak{U}$ is C’-solvable if there
exists a finite composition series $\{2_{j}\}_{j=0}^{n}$ of closed ideals of $\mathfrak{U}$ with $2_{0}=0$ and
$7_{n}=\mathfrak{U}$ such that each subquotient $2_{j}/\mathcal{D}_{j-1}$ is isomorphic to one of the following
$C^{*}$ -algebras:

$\left\{\begin{array}{l}C_{0}(X_{j})\\C_{0}(X_{j})\otimes K(H_{j})\\C_{0}(X_{j})\otimes K(H_{j})\otimes \mathfrak{U}_{\Theta_{j}}\\C_{0}(X_{j})\otimes K(H_{j})\otimes\Gamma_{0}(Y_{j}, \{C_{0}(Z_{y_{j}})\otimes K(H_{y_{j}})\otimes \mathfrak{U}_{\Theta_{\nu_{j}}}\}_{y_{j}\in Y_{j}})\end{array}\right.$

where $\mathfrak{U}_{\Theta_{j}}$ are noncommutative tori generated by unitaries $U_{k}(1\leq k\leq n_{j})$

subject to the relations $U_{k}U_{l}=e^{2\pi i\theta_{kl}}U_{l}U_{k}$ for $\Theta_{j}=(\theta_{kI})_{k,l=1}^{n_{j}}$ and $\theta_{kl}\in R$ ,
and $\Gamma_{0}(Y_{j}, \{C_{0}(Z_{y_{j}})\otimes K(H_{y_{j}})\otimes \mathfrak{U}_{\Theta_{y_{j}}}\}_{y_{j}\in Y_{j}})$ mean the $C^{*}$-algebras of continuous
fields vanishing at infinity on localy compact Hausdorff spaces $Y_{j}$ with fibers
$C_{0}(Z_{y_{j}})\otimes K(H_{y_{j}})\otimes \mathfrak{U}_{\Theta_{\nu_{j}}}$ for $Z_{y_{j}}$ locally compact Hausdorff spaces and $H_{y_{j}}$ finite
or infinite dimensional Hilbert spaces and $\mathfrak{U}_{\Theta_{y_{j}}}$ noncommutative tori, and these
tensor factors of the fibers may vary over $y_{j}\in Y_{j}$ .
Remark. By definition, solvable $C^{*}$ -algebras with finite composition series in the
sense of Definition 5.1 are $C^{*}$ -solvable. As typical examples, the $C^{*}$ -algebra of the
Mautner group has a subquotient of the form $C_{0}(X)\otimes K\otimes \mathfrak{U}_{\Theta}$ (see [Sd5, Theorem
2.1]), and the $C^{*}$ -algebra of the Dixmier group has a subquotient of the form:

$C_{0}(X)\otimes K\otimes\Gamma_{0}(Y, \{C_{0}(Z)\otimes K\otimes \mathfrak{U}_{\Theta_{y}}\}_{y\in Y})$

(see [SdlO, Theorems 2.1 and 2.2]). Since the $C^{*}$ -algebras of solvable Lie groups
should be solvable, this definition seems to be more suitable than Definition 5.1.
Note that possible simple subquotients of $C^{*}$ -solvable $C^{*}$ -algebras are given by
either $\mathbb{C},$ $M_{n}(\mathbb{C}),$ $K,$ $K\otimes \mathfrak{U}_{\theta},$ $\mathfrak{U}_{\theta}$ or $\mathfrak{U}_{\theta}\otimes M_{n}(\mathbb{C})$ , where $\mathfrak{U}_{\theta}$ is a simple noncom-
mutative torus. At this moment we believe in that this definition 5.2 is right, but
it might be necessary to add more members to subquotients in the definition. See
more discussion below.

Then our conjecture is the following:

Conjecture I. Let $G$ be a connected solvable Lie group. Then the group $C^{*}-$

algebm $C^{*}(G)$ of $G$ is $C^{*}$ -solvable in the sense of Definition 5.2.

Remark. We have already obtained some positive evidences to this conjecture.
See [Sd5, Theorem 2.1] for the case of semi-direct products of $\mathbb{C}^{n}$ by $R$ including
the Mautner group, and [Sd10, Theorems 2.1 and 2.2] for the case of generalized
Dixmier groups including the Dixmier group, and [Sd9, Theorem 1.4] for the case
of generalized Mautner groups of the form $\mathbb{C}^{n}\lambda_{\alpha}\mathbb{R}^{m}$ with $\alpha$ a multi-rotation. But
the general case remains open. Also, it is known by [Pg, Theorem 2] that simple
subquotients of $C^{*}(G)$ for $G$ a connected solvable Lie group are given by either $\mathbb{C}$ ,
$K$ or $K\otimes \mathfrak{U}_{\theta}$ , where $\mathfrak{U}_{\theta}$ is a simple noncommutative torus.

As a variation of the above conjecture, we may state the folowing:
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Conjecture II. Let $G$ be a disconnected solvable Lie group. Then the $C^{*}$ -algebm
$C^{*}(G)$ of $G$ is $C^{*}$ -solvable.

Remark. See [Sd6, Theorems 1.2 and 2.1], [Sd7, Theorem 1.1], [Sd8, Theorems
1.7 and 2.1] for some results supporting this Conjecture II. We may define that a
disconnected solvable Lie group is a (disconnected) Lie group with a finite normal
series such that its subquotients are commutative Lie groups such as the product
groups: $\mathbb{R}^{s}\times \mathbb{T}^{k}\times \mathbb{Z}^{l}\times F$ for $s,$ $k,$ $l\geq 0$ and $F$ a finite commutative group.

Proposition 5.3. Let $G$ be a connected solvable Lie group. If the $C^{*}$ -algebm
$C^{*}(G)$ of $G$ is $C^{*}$ -solvable, then

$sr(C_{0}(\hat{G}_{1}))\leq sr(C^{*}(G))\leq 2\vee sr(C_{0}(\hat{G}_{1}))\vee csr(C_{0}(\hat{G}_{1}))$ ,
$csr(C^{*}(G))\leq 2\vee sr(C_{0}(\hat{G}_{1}))\vee csr(C_{0}(\hat{G}_{1}))$

where $\hat{G}_{1}$ means the space of all chamcters of $G$ .

Proof. See the proof of Theorem 4.1. Note that any irreducible representation of
$C^{*}(G)$ is either one or infinite dimensional. Also, by [Gr2, Theorem 3.3] or [Pg,
Theorem 2] any simple subquotient of $C^{*}(G)$ is stable or one-dimensional. $\square $

Remark. The above estimates are not true in general in the case of disconnected
solvable Lie groups. For this, see Theorem 4.3.

Our conjecture for the stable rank of group $C^{*}$ -algebras of connected solvable
Lie groups is the following:

Conjecture III. Let $G$ be a connected solvable Lie group. Then

$sr(C_{0}(\hat{G}_{1}))\leq sr(C^{*}(G))\leq 2\vee sr(C_{0}(\hat{G}_{1}))\vee csr(C_{0}(\hat{G}_{1}))$ ,

csr $(C^{*}(G))\leq 2\vee sr(C_{0}(\hat{G}_{1}))\vee csr(C_{0}(\hat{G}_{1}))$ .

Remark. This conjecture follows from the Conjecture I. Even if the Conjecture I
is false, this Conjecture III could be true. See [Sd3, Theorem 3.10], [Sd4, Theorem
3.1], [Sd5, Corollaries 2.3 and 3.3], [Sd9, Corollary 2.2], [Sd10, Corolaries 3.8 and
4.3], [ST1, Theorem 3.6] and [ST2, Theorem 3.9] for some affirmative results on
this conjecture.

In a general setting, we have

Proposition 5.4. Let $\mathfrak{U}$ be a $C^{*}$ -solvable $C^{*}$ -algebm. If any simple subquotient
of $\mathfrak{U}$ is stable or one-dimensional, then

$sr(C_{0}(\hat{\mathfrak{U}}_{1}))\leq sr(\mathfrak{U})\leq 2\vee sr(C_{0}(\hat{\mathfrak{U}}_{1}))\vee csr(C_{0}(\hat{\mathfrak{U}}_{1}))$ ,
$csr(\mathfrak{U})\leq 2\vee sr(C_{0}(\hat{\mathfrak{U}}_{1}))\vee csr(C_{0}(\hat{\mathfrak{U}}_{1}))$
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where $\hat{\mathfrak{U}}_{1}$ means the space of all characters of $\mathfrak{U}$ , and a C’-algebra $\mathfrak{B}$ is stable if
$\mathfrak{B}\otimes K\cong \mathfrak{B}$ .

Remark. This is the case in Definition 5.2 such that $K(H_{j})=K$ and $K(H_{y_{J}})=K$ ,
that is, they are the the $C^{*}$ -algebra of compact operators on a countably infinite
dimensional Hilbert space. Note that

$r_{0}(Y_{j}, \{C_{0}(Z_{yj})\otimes K\otimes \mathfrak{U}_{\Theta_{y_{j}}}\}_{y_{j}\in Y_{j}})\cong\Gamma_{0}(Y_{j}, \{C_{0}(Z_{y_{j}})\otimes \mathfrak{U}_{\Theta_{v_{j}}}\}_{yj}\in Y_{j})\otimes K$

since for any $n\in N$ ,

$\mathfrak{B}\equiv\Gamma_{0}(Y_{j}, \{C_{0}(Z_{y_{j}})\otimes M_{n}(\mathbb{C})\otimes \mathfrak{U}_{\Theta_{y_{j}}}\}_{y_{j}\in Y_{j}})$

$\cong\Gamma_{0}(Y_{j}, \{C_{0}(Z_{y_{j}})\otimes \mathfrak{U}_{\Theta_{y_{j}}}\}_{y_{j}\in Y_{j}})\otimes M_{n}(\mathbb{C})\equiv \mathfrak{D}\otimes M_{n}(\mathbb{C})$ ,

which is deduced from that the canonical open continuous map from the primitive
ideal space of $\mathfrak{D}$ to $Y_{j}$ induces an open continuous map from the primitive ideal
space of $\mathfrak{B}$ to $Y_{j}(cf.[Le])$ .

Finally, at this moment we have

Proposition 5.5. The class of $C^{*}$ -solvable $C^{*}$ -algebms is closed under the fol-
lowing opemtions:

(1) Stable isomorphism
(2) Taking closed ideals, quotients and extensions
(3) Taking tensor products

Proof. It is obvious. $\square $

Remark. In Definition 5.2, if we allow to take countably infinite composition series
of closed ideals with their union dense in $\mathfrak{U}$ , then the class is closed under taking
inductive extensions. However, it is unclear whether the class is stable under the
operations: (4) taking inductive limits (this would be hopeless) and (5) taking
crossed products by amenable groups, in particular, whether all the group $C^{*}-$

algebras of amenable groups belong to the class. It is known that nuclear $C^{*}-$

algebras are closed under the operations (1) to (5) (cf. [B1]).
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