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Abstract. In this paper, we shall study the structure of norm-achieved
Toeplitz and Hankel operators and give their applications for the case where they
are paranormal operators. And also we shall prove some property of continuous

functions on the unit circle.

A bounded measurable function ¢ € L* on the circle induces the multipli-
cation operator on L? called the Laurent operator L, given by L,f = ¢f for f €
L2. And the Laurent operator induces in a natural way twin operators on H?2
called Toeplitz operator T¢ given by T,f = PL,f for f € H 2, where P is
the orthogonal projection from L? onto H? and Hankel operator H, given by
H,f = J(I — P)L,f for f € H?, where J is the unitary operator on L? defined
by J(z™™) =2""1, n=0,%1,%2,---.

The following results are well known.

Proposition 1. For f € L?, let f*(z) = f(z) where the bar denotes the
complex conjugate. Then |[f*||l2 = ||fll2 and f* € L2. Particularly, if f € HZ?,
then f* € H? also. Moreover, for ¢ € L®, ||¢*|loc = ||¢llo and ¢* € L.

Particularly, if ¢ is inner, then ¢* is also inner.

Proposition 2. ([1]) Let M be an invariant subspace of L,. Then, in
the case where L, M = M, there exists a characteristic function Xz of some
measurable subset E of the unit circle such that M = L, L? and, in the case
where L, M C M, there exists a unitary Laurent operator L, uniquely, except a
constant multiple of absolute value one, such that M = L,H?2.
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Corollary 1. Let M* = L2 © M be an invariant subspace of L%. Then, in
the case where L} ML = M- there exists a characteristic function x, of some
measurable subset F' of the unit circle such that M+ = L, L? and, in the case
where LM+ C M+, there exists a unitary Laurent operator L4 uniquely, except
a constant multiple of absolute value one, such that M1 = LQTI—E.

Proof. Since M is invariant under L., for the ¢ and F in Proposition 2,
let ¢ =Zgandlet F = {u € C: |u| =1} \ E. Then L, is a unitary Laurent
operator and I — LxE = LxF and, by Proposition 1, we have the conclusion

because L, H? = H2 ¥ {f € H?: £(0) = 0}. O

Corollary 2. ([5]) If ¢ is non-analytic (i.e., ¢ ¢ H°), then the only invarianf:
subspace of L, which is contained in H? is {0} itself.

Proof. Let Mt =V{L;*f: fe [*© H? n=0,1,2,---}. Then it is the
smallest invariant subspace of L, which includes L? © H?. Hence we have only
to prove M+ = L2. Since L, commutes with L, and since L2 © H? is invariant
under L}, M~ is invariant under L}. If M' reduces L., then z"~1 = L'z €
ML (n=1,2,---) because Z € L2 © H? C M~ and hence M+ = L2. If ML
is a non-reducing invariant subspace of L}, then LML C M+ because L, is
unitary and, by Corollary 1, M1 = qu—If for some unitary Laurent operator L,
and LyLy,H? = LM+ C M+ = L,H? and hence L, H? C HZ. Since 1 € HZ,
@ € H? and ¢ € H2N L>™ = H*. This contradicts the hypothesis that @ is non-
analytic. a

Corollary 3. If ¢ is non-co-analytic (i.e., ¢ H>), then the only invariant
subspace of L, which is contained in L2 © HZ is {0} itself.

Proof. Let M = V{L}"f: f € H}, n=0,1,2,---}. Then it is the smallest
invariant subspace of L7, which includes HZ. Hence we have only to prove M =
L?. Since L, commutes with L?, and since H{ is invariant under L,, M is invari-
ant under L,. If M reduces L,, then 2"~ = L{"2 € M (n = 1,2,---) because
z € H3 C M and hence M = L2. If M is a non-reducing invariant subspace of
L., then L, M C M because L, is unitary and, by Proposition 2, M = L,H? for
some unitary Laurent operator Ly and L,L}, H? = L}, M C M = L, H? and hence
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L;‘,H2 C H?. Since 1 € H?, 3 € H? and p € H?> N L™ = H®. This contradicts
the hypothesis that ¢ is non—qo—analytic. ]

Proposition 3. ([5]) If ¢ is a non-constant function in L, then
0p(Ty) Nop(T2) = @ where 0,(T,,) denotes the point spectrum of T,.

Proposition 4. ([2]) T,,Ty is a Toeplitz operator if and only if p or ¢ € H*.
And, in this case, T, Ty = Ty

Proposition 5.

(1) ([2]) A € B(H?) is a Toeplitz operator if and only if T; AT, = A. And, in
particular, A € B(H?) is an analytic Toeplitz operator (i.e., A = T, for some
¢ € H*) if and only if T, A = AT,.

~ (2) (Nehari) A € B(H?) is a Hankel operator if and only if T; A = AT,. Moreover
we can choose the symbol ¢ € L of A = H,, such that ||A]| = [|¢]/co-

|

Proposition 6. ([4]) Let g be a non-constant inner function, and let @
be the orthogonal projection from L? onto K = H?2 © T,H?. If A € B(K)
commutes with QL,Q, then there is a function ¢ in H* such that ||¢]lc = ||A||
and A = QLyQ.

Proposition 7. T,, and H, have the following properties ;
1) T:T,T, =T, T:H,=H,T,

(Hence Ny, iz e H?: H,z = o} is invariant under T,

and Ny, = {0} or Ng, = T,H?, where q is inner)

2) T3 =Ty, Hi=H,
(3) Ta<p+ﬁw = aT‘,, +ﬂT¢, Ha¢+ﬁ¢ = an +,3H¢ for «, B € C
(4) T, = O if and only if ¢ = o,

H, = O if and only if (I — P)p = o (i.e., ¢ € H®)
(5) 1Tl = ILoll = llelloos N1 Holl = min{llo+9llo : 9 € H*} = dist(p, H*).

Now we state here the relations between these twin operators.
Proposition 8. (see [6]) HyH, = T, — T3T, and

HyHp — HyH, =TT, — T,T}.
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Proposition 9. (see [6]) For any ¥ € H*, H,Ty, = H,y and T H, =
H,Ty-.

Proposition 10. (see [6]) The following assertions are equivalent;

(1) Ng, # {0}

(2) [H HY # H?

(3) ¢ = gh for some inner function g and h € H*® such that g and h have no
common non-constant inner factor and that Ny, = T,H2.

Proposition 11. If ¢ and ¢ are in H*, then T,H? C T, H? if and only
if there exists a ¢ € H* uniquely, up to a unimodular constant, such that T}, =
TyTy = Tyy. And then ¢ = 1pg. Particularly, if ¢ and 9 are inner, then g is also
inner. '

Concerning the range inclusion of Hankel operators, we have the following.

Theorem 1. The following assertions are equivalent;

(1) H,, H? C H,, H?

(2) Hy,Hy,, < MH,, H}, for some A >0

(3) There exists a function A € H* such that ||h]lcc < X for some A > 0 and
that H, = H,T, = H,,n.

To prove this theorem, we need the following lemma. We denote the set of
all bounded linear operators on a Hilbert space H by B(#).

Lemma. ([3]) For A, B € B(H), the following assertions are equivalent;
(1) AH C BH
(2) AA* < A\?BB* for some A >0
(3) There exists a C € B(H) such that A = BC.

In particular, there exists a C € B(#) uniquely such that

(a) |IC||? = inf{p: AA* < uBB*}
(b) Na=Ng and (c) CH C[B*H]".

Proof of Theorem 1. By Lemma, we have only to prove (2) implies (3).
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If H,,H; < /\21‘19(,2,H;,2 for some A > 0, then, by Lemma, there exists a
A € B(H?) uniquely such that H,, = H,,A and that

(@) IAI? = inf{u: Hy, H, < pH,,H,} < N2
(b) Nu,, =Na and (c) AH2§[H;2H2]“L2.

And then, by Proposition 7 (1), N H,, = T4H 2, where ¢ is a zero function or an
inner function and, by Proposition 9, we have, for any ¢ € H™®,

A*TJ,H* :A*H* T¢- — H* T'(/;"‘ |
=TyH, =T,AH,

Y2

and hence
(A*Ty — Ty A" HL HY = {0}, . @)

Since
(TqA — AT,)H?, Hy H?) = (H?, (T,A — AT,)"H, H?) =0 by (i),

(TqA — AT,)H? C N, H,, = TqH? and Nu,, is invariant under A and hence
[H3 H?~L* is invariant under A*. Since [H * H?~L* is invariant under T* by

Proposmon 7 (2) and (1) and since
(A'T; = T; AW Hy H)™Y = {o} by (i),

the restriction A* I[H* HQ]NLz commutes with the restriction T |[H, H2)~L? and
hence (A* |[H. H2]~L2) commutes with QL.Q = (T |[H. m2~e2)™ *where Q is
the orthogonal projection from L2 onto [H,H 2]~ L?  And, by Proposition 6,
there is a function h in H* such that

1illoo = (A" g, pagese)*ll = 14 gy prapesall < 141 = 1AJ < A
and (A*| . m2j~22)" = QLrQ. And then, for any f € H?, we have
P2

Hj f=AH} f = QL;;H* f
= QT H, f=H, Th-f =ThH; f



by Proposition 9 and H;, =T} Hy, and hence H,, = H,,Th = H,,r by Proposi-
tion 9. O

As a special case of Theorem 1, we have the following.

Theorem 2. H,, is hyponormal (i.e., H,H; < H;H,) if and only if H, =
H T}, for some h € H* such that ||Afje < 1.

Proof. Since H,H, = H,-H}. by Proposition 7 (2), the hyponormality of
H, is equivalent to the existence of a function A € H* such that ||k|lcc < 1 and
that H, = H,-Tn = H}Tr by Theorem 1 and by Proposition 7 (2). 0

Corollary 4. Every hyponormal Hankel operator is normal.

Proof. If H, is hyponormal, then H, = H;T} for some h € H* such that
k|l < 1 by Theorem 2 and, by Propositions 7 (2) and 9,

Hp = H, =T} Hy = H,Th = H3. T

Since h* € H* and ||A*||oc = ||h]|cc by Proposition 1, H = H,,« is also hyponor-
mal by Theorem 2. Therefore H, is normal. O

Remark. It is known that every normal Hankel operator is a scalar (of
absolute value one) multiple of a Hermitian Hankel operator.

Theorem 3. T, is hyponormal if and only if H, = T} H for some function
h € H* such that ||h|lcc < 1.

Proof. By Proposition 8, T, is hyponormal if and only if H;H, < HzHg |
and, by Proposition 7 (2), it is equivalent to Hy,-Hj. < Hgp- HZ. and hence, by
Theorem 1, the hyponormality of T, is equivalent to the existence of a function
h € H* such that ||h||cc < 1 and that H,« = Hp-Th. And, by Proposition 7 (2),

the result follows. O

Theorem 4. The following assertions are equivalent;
(1) {f € H*: || Tofllz = I Tl fll2} # {0} (i-e., T, is norm-achieved)
(2) “-1%" = g for some g € L™ such that |g| = 1 a.e. and that 0 € o,(H,)



(3) ”—T‘ﬁ = gh for some inner functions ¢ and h such that ¢ and A have no
common non-constant inner factor.
In this case, {f € H? : [T, flla = | Tyl flls} = N, -

Proof. (1) = (2) ; If ||T,fll2 = |IT,llll fll2 for some non-zero f € H?, then
we have, for g = ]Tq—‘iin,

7]

I£llz = Ty fllz = 1 Tofll2 = IPLy fll2 < | Lo fll2 < I Fll2

because || L,|| = || Tyl = %31—15”” = 1. Hence T,T,f = f and PLyf = L,f and
hence Hyf = J(I — P)Lyf = o (i.e., 0 € o,(H,)). Since, by Proposition 8,
HjHy =Tjg2 — TgTy, we have Tigo f = f (i.e., 1 € 05(Tjg2)) and, by Proposition
3, |g|? is constant and |g| = 1 a.e.

(2) = (1) ; Since ||T|| = ”—;};L” = 1 and since, by Proposition 8, H;H, =
I — T4Ty, we have T;T,f = f for all f € My, and hence ||Tyfllz = ||fll2-
Therefore [T, fllz = T, Ty fll2 = T, 1 £1lz-

The assertion {f € H? : || T, f|l2 = ||IT, ||l fll2} = N&, is clear. In fact, (1)
implies that {f € H? : || T, fll2 = || T, ||| fll2} € Nu, and (2) implies the converse
inclusion.

The equivalence between (2) and (3) follows from Propositions 7, 9 and 10.0
In the case of Hankel operators, we have the following.

Theorem 5. The following assertions are equivalent;

(1) {f € H?: ||Hoflla = I H,l fllz} # {0} (i-e., H,, is norm-achieved)

(2) ﬂ‘z‘%ﬂ = g + % for some ¢ € H*® and g € L*™ such that |g| = 1 a.e. and
that 0 € o,(T).
In this case, {f € H? : || Hyfll2 = |Hy || fll2} = N, -

Proof. (1) — (2) ; By Proposition 5, there exists a g € L* such that
H"_w_“ Hg and ||Hg|| = ||g]lco- And then H]TF';_T[_ = O and ¢ = TLT g€
H> by Proposition 7. If |H,fll2 = ||H,||||fll2 for some non-zero f € HZ, then
we have ||fllz = [|Hpe flls = [Hgfll2 = I = P)Lefll2 < ILgfllz < IIfll2
because [IZll = llglleo = I1Holl = [Hpp, | = [l = 1. Hence HyH,f = f
and (I — P)Lyf = L,f and hence Tgf = PLyf = o (i.e., 0 € 0,(Ty)). Since, by
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Proposition 8, Hy Hy = Tjg2 — T5Ty, we have Tjg2f = f (i.e., 1 € 0p(Tig2)) and,
by Proposition 3, |g|? is constant and |g| =1 a.e.

(2) - (1) ; By Proposition 7, |Hyll = I|H |l = el = 1. Since, by
Proposition 8, HyHy = I — TgT,, we have HyHyf = f for all f € Nz, and
hence ||H,f|l2 = ||f|l2- Therefore, by Proposition 7, ||Hyfll2 = ||Hya, ¢ fll2 =

|HolllHg fll2 = [Hplll| fl2-
The last assertion of the theorem is clear. In fact, (1) implies that

{f € H?: |H,fll2 = ||HL||II fll2} € Nr, and (2) implies the converse inclusion.l]
Theorem 6. ([5]) For a T, such that ||T,|| =1, if

{f e B T3 fllz = I fll2, n=10,1,2,---} # {0},

then T,, is an isometry.

Proof. For a non-zero f € {f € H? T2 fllz = | fll2, n=0,1,2,---}, we

have ||fll2 = |ITefllz2 = IPLefllz < Ly fll2 < | fll2 because ||Ly|| = [|T, || = 1
by Proposition 7. This implies that T, f = PL,f = L, f and

£l = IT2fll2 = |1 Tp Lo fll2 = IPLL fll2 < LSS ll2 < 1I£ll2

and hence T2f = PL2f = L2 f. Similarly, we have T f = PLg f = Li; f for all
n > 0.

Let N =V{LZf : n=0,1,2,---}. Then NV # {o} is an invariant subspace
of L, contained in H2 and, by Corollary 2, ¢ is analytic, i.e., ¢ € H*. Since, by
Theorem 4, ¢ = gh for some inner functions g and h such that ¢ and A have no
common non-constant inner factor, h = gy and q = ‘%1 for some 6y € [0,27)

and hence ¢ = e~ *%h is inner. Therefore T, is an isometry. O
Theorem 7. For a H, such as ||H,|| =1, if

{f e H? | HZ fllz = Ifll2, n=0,1,2,---} # {o},

then H, is normal.

Proof. Since, by Theorem 5, ¢ = g+ for some ¥ € H* and g € L*™ such
that |g| = 1 a.e. and that 0 € 0p(Ty). And hence H, = Hy by Proposition 7.
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For a non-zero f € {f € H? : ||[H}fll2 = ||fll2, n = 0,1,2,---}, we have
1£ll2 = 1y fllz = IJ(Z = P)Lyflls = | = P)Lofll2 < I Lofllz < [|fll2 because
ILgll = llgllc = 1. This implies that (I — P)L,f = L,f and Hyf = JL,f.
Since [|flla = |H2fllz = (I = P)LeJLofllz < ILgJLofllz < IIflla, we have
(I = P)LgJLyf = LyJLyf = JLg-Lyf and H.f = Lg-Lgf. Analogously, since
1fll2 = IH2fll2 = (I = P)LoLgLoflla < ILyLgLyflla < IIfll2, we have (I —
P)LyLg-Lyf = LgLg«Lyf and Hgf = JLgLgz-Lyf. Similarly, we have (I —
P)(LgLg-)"Lof = (LgLg)"Lyf and (I — P)J(Lg-Ly)"f = J(Lz+Lg)"f for all
n > 0.

Let N = V{L%-..Lyf : n = 0,1,2,---}. Then N' # {o} is an invariant
subspace of L,g- contained in L2 © H? and, by Corollary 3, gg* is co-analytic,
i.e., gg* € H* and hence u = gg* is inner because |[gg*| = |g| |¢g*| = 1 a.e. Since
u'u = gg'gg* = 1, © = u* € H* and hence u is a constant of absolute value one
because u € H®NH>™ = {A\1: XA € C}. Therefore g* = €% g for some 8, € [0, 27)

and we have the conclusion. O

We say that a bounded linear operator A on a Hilbert space H is paranormal
if || Az||2 < ||A%z|| ||z|| for all z € H. It is known that every hyponormal operator

is paranormal.

Theorem 8. If T, is norm-achieved paranormal, then T, is a scalar multiple

of an isometry.

Proof. We may assume that ||T,| = 1.
Let M = {f € H? : ||T,fll2 = ||fll2}- Then , by the hypothesis, M # {0}
and, by the paranormality of T,,, T,M C M. In fact, if f € M, then we have

IA13 = £ ll2 IT2Fll2 > I To£13 = 11 £113
and || T2f|l2 = || fll2 = |IT, f||2 and hence T, f € M. Therefore
€ H T2l = fley n=0,1,2,-} # {o}
and T, is an isometry by Theorem 6. o

In the case of Hankel operators, we have the following.
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Theorem 9. If H,, is norm-achieved paranormal, then H,, is normal.

Proof. We may assume that ||H,|| = 1.
Let M = {f € H? : ||Hyf|l2 = ||fll2}- Then, by the same reason as in the
proof of Theorem 8, H,M C M # {0} and

{f€H2 : ”H;f"2= "f"27 n=0,1,2,---}7’={0}

and hence H,, is normal by Theorem 7. O

Since, for any f € H?, ||HgfI3 = | HofI3+((HyHz— HyH,)f, f), any two
intersection of the following three sets Ny, N, H, and N HzHz—HyH, is contained
in the rest set. And if T, is hyponormal, then, by Proposition 8,

((HzHp — H3HL)f, f) = |(TyT, — T,T;)? f||} and we have easily that

NH¢ = NHu, ﬂNH_%Ha_H;H,, = Nu, n-/\fT;,T‘,,—T(,,T.;-

Theorem 10. If T, is hyponormal and if Ny g Nr:1,-T,T:, then, for

some inner function g, T; T, is normal or equal to 7.

Proof. Since, by Theorem 3 and by Proposition 9,
H, = T;; Hz = Hgp- for some function h € H*
such that ||hl|e < 1, (1)
we have, by Proposition 7,

@ = ph* + u for some u € H® (2)

and T0T, — T,TZ = HZHz — H,H, = H%(I — TyT})Hp by Proposition 8 and
hence
(I - ThT}:)H¢NT;T‘P—T¢T‘; = {0} (3)

because || Tj;|| = ||Ta|l = l|hllc < 1. Since HeNTst,-T,7; # {0} by the as-
sumption, there exists, by (3), a non-zero vector y € H¢NT;T¢_T¢T; such that
TwT;y = y and we have || Ty y|l2 = |ly|l2 and hence T} is norm-achieved. Thus,
by Theorem 4, |h| = 1 a.e. and h is inner because h € H® by (1). Therefore h*
is also inner by Proposition 1.



And then ¢ = (ph* +T)h* +u = ¢ + Th* + u by (2) and
uh* +u = 0. (4)

Since HgTh+ = Hyp» = H_, = O by Propositions 7 and 9, {0} # Th-H? C Ny
and, by Proposition 10,

u = gk for some inner function q and k € H*®

such that ¢ and k have no common non-constant inner factor

and that Ny_ = T, H?. (5)
And since u = kq by (5), HgT, = Hy,=H, =0 and

{o} # T,H*> C Nu_ (6)

and hence, by Proposition 10,

k = ¢'k’ for some inner function ¢’ and k' € H™®

such that ¢’ and k¥’ have no common non-constant inner factor

and that NHF = Tq/ Hz. (7)
Thus TyH? C Ty H? by (6) and (7) and, by Proposition 11, there exists an inner
function g uniquely, up to a unimodular constant, such that

q=4g. (8)

Since ¢ and k£ have no common non-constant inner factor by (5), ¢’ is constant
and k is also constant because k € H* by (7) and hence, by (5),

u=MAq forsome Xe€C. (9)
Then, by (4), we have AGh* 4+ A\g = o0 and
AR* +Ag% = o. (10)

If A =0, then u = o by (9) and ¢ = Bh* by (2) and hence Tj;.T, = T.
If A # 0, then h* = ——;—qz by (10) and, by (2) and (9),

A A
©q = {?ﬁ (——X—qz) +Aq}a= —5 g+ AL

X
because T, commutes with T;;. O

and hence ¥ = g = ——%—E-{— Al. Therefore Ty, = TyT, = —-)l-TJ, + Al is normal



Let A be the uniform closure of polynomials in z and let C be the set of
continuous complex-valued functions on {z € C: |z| = 1}. Then C is the uniform

closure of polynomials in z and Z by the Stone-Weierstrass theorem.
The following results are well known.
Proposition 12. If ¢ € C, then dist(yp, H>) =dist(p, A).
Proposition 13. (Hartman) H,, is compact if and only if ¢ € C + H*.
By the analogous method as in the proof of Theorem 5, we have the following.

Theorem 11. If ¢ € C + H*, then there exists a u € H* uniquely such
that | — u| = dist(p, H*) a.e.

Proof. Since ||Hy|| = min{|j¢ — ¢|loo : ¥ € H>®} = dist(p, H®) by
Proposition 7, there exists a u; € H* such that || H,|| = ||¢ — u1]|co-

Firstly, we shall prove the uniqueness of the existence of such a u;. If there
exists an another uy; € H* such that ||H,|| = ||¢ — u2|/00, then

Hy uw, =Hgpu, =H,

by Proposition 7 and it is compact by Proposition 13 and norm-achieved and
hence there exists a non-zero vector f € H? such that, for each j =1, 2,

VM 15 ll2 = WHp flls = |Hg—uy Fll2 = | = P) L fll
< sy Fll2 < Wl £z = N 1712
because [|Ly—u, | = lp — t51loo = ||, |l. Then
Hy oy Hyu,f = |H|?f and (I—P)Lys,f= Ly, f
and hence Ty, o, f = 0, i.e., 0 € 0p(Tp—u;). Since

Tui—uaf =Tpuef —Tpmu, f =0

and since uy —uz € H*, T;; _,.f = o and u; — u; is constant by Proposition 3

and hence u; — us = o.
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Since H;,_,, Hy o, =Ty, 2 — T, Tp—u, by Proposition 8,

p—ui p—u
|Hol?f = Tipouy2 f, iy [Holl? € 0p(Tip—u,2)
and, by Proposition 3, | — u;]? is constant and hence

o —wi] = || H,l| = dist(p, H®) a.e. O

Corollary 5. For every ¢ € C, there exists a u € H* such that |¢ — u] is
non-zero constant.

Proof. In the case where ¢ € C \ A, the existence of such a u follows from
Theorem 11 and Proposition 12. And, in the other case, for example, we may take
u=p—=z. O
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