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SOME SPECTRAL PROPERTIES
OF ANALYTIC ELEMENTARY OPERATORS

FUMIHIKO KIMURA

Abstract. In this paper, we shall deal with analytic elementary opera-
tors on $\mathcal{L}(\mathfrak{X})$ . On the approximate point and defect spectra of them, we
shall give a parallel result to the Lumer-Rosenblum’s spectral theorem.
Moreover, we shall give a sufficient condition for that the spectrum and
the right (or left) spectrum of an analytic elementary operator on $\mathcal{L}(\mathfrak{H})$

coinside.

1. INTRODUCTION

Let $\mathcal{L}(\mathfrak{X})$ be the Banach algebra of all bounded linear operators on a complex
Banach space $\mathfrak{X}$ . It has been a problem of essential importance to study the struc-
tures of elementary operators acting on $\mathcal{L}(\mathfrak{X})$ . An elementary operator $\Phi_{A,B}$ is
defined by $\Phi_{A,B}(X)=A_{1}XB_{1}+\cdots+A_{n}XB_{n}$ for all $X\in \mathcal{L}(\mathfrak{X})$ , where $n$ is a
natural number, A $=$ $(A_{1}, \ldots , A_{n})$ and $B=(B_{1}, \ldots B_{n})$ are both n-tuples of
mutually commuting operators in $\mathcal{L}(\mathfrak{X})$ . $\Phi_{A,B}$ is a bounded linear operator on
$\mathcal{L}(\mathfrak{X})$ . Elementary operators have already been studied from various viewpoints.
In particular, the spectral properties of them have been researched deeply by many
authors and been analyzed in great detail. (Especially, in the case where $\mathfrak{X}$ is a
Hilbert space.) In order to state some of those results, we first recall the notations
and the terminologies.

For an operator $T$ acting on a Banach space, $\sigma(T)$ denotes the spectrum of
$T$ , the set of all complex numbers $\lambda$ such that $\lambda-T$ is not invertible. $\sigma_{l}(T)$

is the left spectrum of $T$ , the set of all complex numbers $\lambda$ such that $\lambda-T$ is
not left-invertible. The right spectrum $\sigma_{r}(T)$ is also defined analogously. Clearly,
$\sigma(T)=\sigma_{l}(T)\cup\sigma_{r}(T)$ . Following [2], $\sigma_{\pi}(T)$ denotes the approximate point spectrum
of $T$ , the set of all complex numbers $\lambda$ such that $\lambda-T$ is not bounded below, and
$\sigma_{\delta}(T)$ is the approximate defect spectrum of $T$ , the set of all complex numbers $\lambda$

such that $\lambda-T$ is not surjective. It also follows that $\sigma(T)=\sigma_{\pi}(T)\cup\sigma_{\delta}(T)$ . Note
that $\sigma_{\pi}(T)=\sigma_{l}(T)$ and $\sigma_{\delta}(T)=\sigma_{r}(T)$ hold for Hilbert space operators, but these
relations do not hold in general. We have also to prepare the joint spectrum of
$T=(T_{1}, \ldots T_{n})\in \mathcal{L}(\mathfrak{X})^{(n)}$ . The left joint spectrum of $T$ is defined by

$\sigma_{l}(T)=\{\lambda\in \mathbb{C}^{n}|$ There is no solution $X\in \mathcal{L}(\mathfrak{X})^{(n)}$ to $\sum_{j=1}^{n}X_{j}(\lambda_{j}-T_{j})=I\}$ .

(I stands for the identity operator.) The right joint spectrum $\sigma_{r}(T)$ is defined
analogously.
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In the following statements, S) denotes a Hilbert space. For $\sigma,$
$\tau\subset \mathbb{C}^{n},$ $\sigma\circ\tau$ is

the subset {a $\circ\beta=\sum_{j=1}^{\mathfrak{n}}\alpha_{j}\beta_{j}|\alpha=(\alpha_{1},$ $\ldots\alpha_{n})\in\sigma,$ $\beta=(\beta_{1},$ $\ldots\beta_{n})\in\tau$ } of $\mathbb{C}$.
The spectrum of an elementary operator $\Phi_{A,B}$ on $\mathcal{L}(\mathfrak{H})$ was completely determined
by R. Harte [7].

Theorem A-l (Harte [7, Theorem 3.5]).
The left and right spectra of $\Phi_{A,B}$ on $\mathcal{L}(\mathfrak{H})$ are given by

$\sigma_{l}(\Phi_{A,B})=\sigma_{l}(A)\circ\sigma_{r}(B)$ (1)

and
$\sigma_{r}(\Phi_{A,B})=\sigma_{r}(A)\circ\sigma_{I}(B)$ . (2)

Thus
$\sigma(\Phi_{A,B})=\sigma_{l}(A)\circ\sigma_{r}(B)\cup\sigma_{r}(A)\circ\sigma_{l}(B)$ . (3)

Subsequently, L. A. Fialkow [5] characterized the approximate point and defect
spectra of $\Phi_{A,B}$ on $\mathcal{L}(\mathfrak{H})$ .
Theorem A-2 (Fialkow [5, \S 2, Theorems 2.3,2.8]).

The apprommate point (resp. defect) spectru$m$ and the left (resp. right) spectru$m$

of $\Phi_{A,B}$ on $\mathcal{L}(\mathfrak{H})$ coinside.
$\sigma_{\pi}(\Phi_{A,B})=\sigma_{l}(\Phi_{A,B})$ (4)

and
$\sigma_{\delta}(\Phi_{A,B})=\sigma_{r}(\Phi_{A,B})$ . (5)

In the present note, we shall deal with analytic elementary operators on $\mathcal{L}(\mathfrak{X})$ .
( $\mathfrak{X}$ is an arbitrary Banach space.) Let $A$ and $B$ be in $\mathcal{L}(\mathfrak{X})$ and let $f_{1},$

$\ldots$ , $f_{n}$

(resp. $g_{1},$ $\ldots$ , $g_{n}$ ) be in $\mathcal{A}(\sigma(A))$ (resp. $\mathcal{A}(\sigma(B))$ ). Here $\mathcal{A}(\sigma(T))$ denotes the set
of all complex-valued functions analytic in a neighborhood of the spectrum $\sigma(T)$ of
$T\in \mathcal{L}(\mathfrak{X})$ . An analytic elementary operator $\Psi$ on $\mathcal{L}(\mathfrak{X})$ is defined by

$\Psi(X)=\sum_{j=1}^{\mathfrak{n}}f_{j}(A)Xg_{j}(B)(X\in \mathcal{L}(\mathfrak{X}))$ . (6)

Needless to say, $\Psi$ is an elementary operator on $\mathcal{L}(\mathfrak{X})$ . (The terminology “analytic
elementary operator” was used by Fialkow [6].) For the spectrum of $\Psi$ on $\mathcal{L}(\mathfrak{X})$ ,
there exists a different characterization from Theorem A-l. Indeed, G. Lumer and
M. Rosenblum had obtained the following spectral theorem for $\Psi$ .
Theorem A-3 (Lumer-Rosenblum [8, \S V, Theorem 10]).

The spectrum of $\Psi$ on $\mathcal{L}(\mathfrak{X})$ is given by

$\sigma(\Psi)=\{\sum_{j=1}^{\mathfrak{n}}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma(A),\beta\in\sigma(B)\}$ . (7)

The formula (7) claims that the equation $f_{1}(A)Xg_{1}(B)+\cdots+f_{\mathfrak{n}}(A)Xg_{\mathfrak{n}}(B)=Y$

has a unique solution $X$ for each $Y$ if and only if the complex-valued function $H$

of two variables of the form $H(z, w)=f_{1}(z)g_{1}(w)+\cdots+f_{n}(z)g_{n}(w)$ has no zero
on the Cartesian product $\sigma(A)x\sigma(B)$ . In this paper, for the approximate point
and defect spectra of $\Psi$ , we shall give the following parallel result to Theorem A-3.
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Moreover, in the case where $\mathfrak{X}$ is a Hilbert space, we shall give a sufficient condition
for that $\sigma(\Psi)$ and $\sigma_{r}(\Psi)$ (or $\sigma(\Psi)$ and $\sigma_{l}(\Psi)$ ) coinside.

Theorem 1. The approximate point and defect spectra of $\Psi$ on $\mathcal{L}(\mathfrak{X})$ satisfy

$\sigma_{\pi}(\Psi)\supseteq\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\pi}(A),$ $\beta\in\sigma_{\delta}(B)\}$ (8)

and

$\sigma_{\delta}(\Psi)\supseteq\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\delta}(A),\beta\in\sigma_{\pi}(B)\}$ . (9)

2. MAIN RESULT

In terms of applications, the most important elementary operator is $\delta_{A,B}$ on
$\mathcal{L}(\mathfrak{X})$ defined by $\delta_{A,B}(X)=AX-XB$ , where $A$ and $B$ are two fixed operators in
$\mathcal{L}(\mathfrak{X})$ . $\delta_{A,B}$ is often called a generalized derivation, and it is an analytic elementary
operator. The approximate point and defect spectra of $\delta_{A,B}$ on $\mathcal{L}(\mathfrak{X})$ have very
simple structures. The next result is due to C. Davis and P. Rosenthal.

Theorem B-l (Davis-Rosenthal [2, \S 4, Theorems 3-5]).
The approximate point and defect spectra of $\delta_{A,B}$ on $\mathcal{L}(\mathfrak{X})$ satisfy

$\sigma_{\pi}(\delta_{A,B})=\sigma_{\pi}(A)-\sigma_{\delta}(B)(=\{\alpha-\beta|\alpha\in\sigma_{\pi}(A), \beta\in\sigma_{\delta}(B)\})$ (10)

and

$\sigma_{\delta}(\delta_{A,B})\supseteq\sigma_{\delta}(A)-\sigma_{\pi}(B)(=\{\alpha-\beta|\alpha\in\sigma_{\delta}(A), \beta\in\sigma_{\pi}(B)\})$ . (11)

Moreover, if $\mathfrak{X}$ is a Hilbert space, then the inclusion (11) can be replaced by $=$ .
Remark 1. In general, the inclusion (11) can be proper. That was already pointed
out in [2].

Our Theorem 1 asserts that Theorem B-l can be partly extended to analytic
elementary operators on $\mathcal{L}(\mathfrak{X})$ . (See the previous section for the definition.) Before
showing our result, we prepare some auxiliary lemmas.

The following well-known duality was already used in the proof of Theorem B-l
in [2].

Lemma 1. For all $T\in \mathcal{L}(\mathfrak{X})$ ,

$\sigma_{\pi}(T^{\uparrow})=\sigma_{\delta}(T)$ (12)

and

$\sigma_{\delta}(T\dagger)=\sigma_{\pi}(T)$ , (13)

where $\tau\uparrow$ denotes the Banach space adjoint of $T$ .

The next claim may also be well-known, but we dare to give here a brief proof
of it.

Lemma 2. If $T\in \mathcal{L}(\mathfrak{X})$ and $||(\lambda-T)x_{k}||\rightarrow 0$ for a sequence of unit vectors $\{x_{k}\}$ ,
then $||(f(\lambda)-f(T))x_{k}||\rightarrow 0$ for all $f\in \mathcal{A}(\sigma(T))$ .
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proof. From the definition of the functional calculus, $f(T)=(1/2\pi i)\int_{\Gamma}f(z)(z-$

$T)^{-1}dz$ for a suitable system of curves $\Gamma$ surrounding $\sigma(T)$ . Since $\lambda\in\sigma_{\pi}(T)\subseteq$

$\sigma(T),$ $f(\lambda)=(1/2\pi i)\int_{\Gamma}f(z)(z-\lambda)^{-1}dz$ by the Cauchy formula. Therefore

$f(\lambda)-f(T)$ $=$ $(1/2\pi i)(\int_{\Gamma}f(z)(z-\lambda)^{-1}dz-\int_{\Gamma}f(z)(z-T)^{-1}dz)$

$(1/2\pi i)\int_{\Gamma}f(z)(z-\lambda)^{-1}(\lambda-T)(z-T)^{-1}dz$

$=$ $\{(1/2\pi i)\int_{\Gamma}f(z)(z-\lambda)^{-1}(z-T)^{-1}dz\}(\lambda-T)$ .

Setting $S=(1/2\pi i)\int_{\Gamma}f(z)(z-\lambda)^{-1}(z-T)^{-1}dz(\in \mathcal{L}(\mathfrak{X})),$
$||(f(\lambda)-f(T))x_{k}||=\square $

$||S(\lambda-T)x_{k}||\leq||S||\cdot||(\lambda-T)x_{k}||\rightarrow 0$ .
Particularly, from Lemmas 1 and 2, we obtain

$f(\sigma_{\pi}(T))\subseteq\sigma_{\pi}(f(T))$ and $f(\sigma_{\delta}(T))\subseteq\sigma_{\delta}(f(T))$ (14)

for all $T\in \mathcal{L}(\mathfrak{X})$ and for all $f\in \mathcal{A}(\sigma(T))$ .
Now, we can show the following main theorem. This is a partial extension

of the Davis-Rosenthal’s Theorem B-l, and also a parallel result to the Lumer-
Rosenblum’s Theorem A-3 in the previous section. The main idea of the following
proof is based on the prook of [2, Theorems 4,5] and [5, Lemma 2.6].

Theorem 1. The approximate point and defect spectra of $\Psi$ on $\mathcal{L}(\mathfrak{X})$ satisfy

$\sigma_{\pi}(\Psi)\supseteq\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\pi}(A),\beta\in\sigma_{\delta}(B)\}$ (15)

and

$\sigma_{\delta}(\Psi)\supseteq\{\sum_{j=1}^{\mathfrak{n}}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\delta}(A),$ $\beta\in\sigma_{\pi}(B)\}$ . (16)

proof. First, we shall prove (15). Let $\alpha\in\sigma_{\pi}(A)$ and let $\beta\in\sigma_{\delta}(B)$ . Then there
exists a sequence of unit vectors $\{x_{k}\}$ such that 11 $(\alpha-A)x_{k}||\rightarrow 0$ and also there
exists a sequence of norm 1 functionals $\{\rho_{k}\}$ such that $||(\beta-B\dagger)\rho_{k}||\rightarrow 0$ (from
Lemma 1). Consider the sequence of norm 1 operators $\{x_{k}\otimes\rho_{k}\}$ . (Here, for a
vector $x$ and a continuous functional $\rho,$ $ x\otimes\rho$ denotes the rank 1 operator defined
by $(x\otimes\rho)y=\rho(y)x$ for all $y\in \mathfrak{X}$ . $ x\otimes\rho$ has the norm $||x\otimes\rho||=||x||\cdot||\rho||.$ ) Set
$\mu=\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)$ . We can show II $(\mu-\Psi)(x_{k}\otimes\rho_{k})\Vert\rightarrow 0$ . Indeed, by an easy
calculation, it follows that

$||(\mu-\Psi)(x_{k}\otimes\rho_{k})||$ $=$ $\Vert\sum_{j=1}^{n}(f_{j}(\alpha)x_{k})\otimes(g_{j}(\beta)\rho_{k})-\sum_{j=1}^{n}(f_{j}(A)x_{k})\otimes(g_{j}(B^{\dagger})\rho_{k})\Vert$

$\sum_{j=1}^{n}|g_{j}(\beta)|\cdot||(f_{j}(\alpha)-f_{j}(A))x_{k}||$

$+\sum_{j=1}^{n}||f_{j}(A)||\cdot||(g_{j}(\beta)-g_{j}(B^{\uparrow}))\rho_{k}||$ .

Since each term of the right-hand side of the above inequality converges to $0$ by
Lemma 2, we conclude that $\mu\in\sigma_{\pi}(\Psi)$ . Thus the inclusion (15) was proved.
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Next, to prove (16), let $\alpha\in\sigma_{\delta}(A)$ and let $\beta\in\sigma_{\pi}(B)$ , and set $\mu=\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)$ .
If we suppose that $\mu-\Psi$ is surjective, then we reach a contradiction. Indeed, if
$\mu-\Psi$ is surjective, then there exists an $M>0$ such that

$||(\mu-\Psi)(X)||\geq M\cdot\inf\{||Y-X|||Y\in ker(\mu-\Psi)\}$ for all $X\in \mathcal{L}(\mathcal{E})$ .
(17)

On the other hand, from the definition of the functional calculus,

$f_{j}(A)=(1/2\pi i)\int_{\Gamma_{j}}f_{j}(z)(z-A)^{-1}dz$ (18)

where $\Gamma_{j}$ is a system of curves surrounding $\sigma(A)$ for $j=1,$ $\ldots n$ . Let

$M_{j}=\max_{z\in\Gamma_{j}}|f_{j}(z)(z-\alpha)^{-1}|\cdot||(z-A)^{-1}||$ (19)

for $j=1,$ $\ldots n$ and set

$\epsilon=\frac{2\pi M}{8n\cdot\max_{1\leq j\leq n}(M_{j}+1)\cdot\max_{1\leq j\leq n}(||g_{j}(B)||+1)\cdot\max_{1\leq j\leq n}(l(\Gamma_{j})+1)}$

(Here, $l(\Gamma_{j})$ denotes the length of $\Gamma_{j}.$ ) By the assumption (and by Lemma 2), there
exists a norm 1 functional $\rho$ such that I $(\alpha-A^{\uparrow})\rho||<\epsilon$ . For this $\rho$ ,

$||(f_{j}(\alpha)-f_{j}(A^{\dagger}))\rho||<\frac{M}{8n\cdot(||g_{j}(B)||+1)}(j=1, \ldots n)$ . (20)

By the same way, we can find a unit vector $x$ such that

$||(g_{j}(\beta)-g_{j}(B))x||<\frac{M}{8n\cdot(|f_{j}(\alpha)|+1)}(j=1, \ldots, n)$ . (21)

For these $x$ and $\rho$ , we can find a norm 1 operator $C\in \mathcal{L}(\mathfrak{X})$ such that $|\langle Cx, \rho\rangle|>$

$1/2$ . Then, by the assumption that $\mu-\Psi$ is surjective and by (17), there exists an
$X\in \mathcal{L}(\mathcal{E})$ such that

$C=(\mu-\Psi)(X),$ $||X||\leq 2/M$. (22)
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Then
1/2 $<$ $|(Cx,\rho\rangle$ $|$

$=$ $|\langle[(\sum_{j=1}^{\mathfrak{n}}f_{j}(\alpha)g_{j}(\beta))X-\sum_{j=1}^{n}f_{j}(A)Xg_{j}(B)]x,$ $\rho\rangle|$

$\leq$ $\sum_{j=1}^{\mathfrak{n}}|\langle(f_{j}(\alpha)g_{j}(\beta)X-f_{j}(A)Xg_{j}(B))x,\rho\rangle|$

$\leq$ $\sum_{j=1}^{n}|\langle f_{j}(\alpha)X(g_{j}(\beta)-g_{j}(B))x,\rho\rangle|$

$+\sum_{j=1}^{\mathfrak{n}}|\langle Xg_{j}(B)x,$ $(f_{j}(\alpha)-f_{j}(A^{\uparrow}))\rho)|$

$\leq$ $\sum_{j=1}^{\mathfrak{n}}|f_{j}(\alpha)|\cdot||X||\cdot||(g_{j}(\beta)-g_{j}(B))x||$

$+\sum_{j=1}^{n}||(f_{j}(\alpha)-f_{j}(A^{t}))\rho||\cdot||g_{j}(B)||\cdot||X||$

$<$ 1/2

because of (20),(21),(22). But $1/2<1/2$ is an evident contradiction. Thus $\mu-\Psi$

fails to be surjective, that is, $\mu\in\sigma_{\delta}(\Psi)$ and hence the inclusion (16) holds. $0$

Remark 2. It is regrettable that we do not know whether the inclusion (15) can
be replaced by $u=$ or not. (On (16), the equality does not hold in general even
though $\Psi=\delta_{A,B}$ because of Remark 1.) Also, we have not proved the equality of
(16) in the case where $\mathfrak{X}$ is a Hilbert space.

3. APPLICATIONS FOR $\Psi$ ON $\mathcal{L}(\mathfrak{H})$

In this section, we shall give a sufficient condition for that the spectrum and the
right (or left) spectrum of an analytic elementary operator $\Psi$ coinside. We shall
deal with only the case where $X$ is a Hilbert space $\mathfrak{H}$ throughout this section. For
$T\in \mathcal{L}(\mathfrak{H}),$ $T^{*}\in \mathcal{L}(\mathfrak{H})$ denotes the Hilbert space adjoint of $T$ .
Deflnition 1. $T\in \mathcal{L}(\mathfrak{H})$ is said to be satisfying the condition (R) if $\sigma(T)=$

$\sigma_{r}(T)=\sigma_{\delta}(T)$ .
Since $\mathfrak{H}$ is a Hilbert space, the second equality above is valid for an arbitrary

$T\in \mathcal{L}(\mathfrak{H})$ . The essential equality of the condition (R) is the first one. Clearly, if
$\tau*$ satisfies the condition (R), then $\sigma(T)=\sigma_{l}(T)=\sigma_{\pi}(T)$ .

The operator $T$ is called hyponormal if $T^{\cdot}T\geq TT^{*}$ . It is well-known that
every hyponormal operator satisfies the condition (R). Let $C_{2}(\mathfrak{H})$ be the two sided
ideal of all Hilbert-Schmidt class operators in $\mathcal{L}(\mathfrak{H})$ . $C_{2}(\mathfrak{H})$ is a Hilbert space with
respect to the inner product $(S, T\rangle$ $=tr(T‘‘ S)$ . According to S. Y. Shaw [10, \S 3], if
$A,$ $B\in \mathcal{L}(\mathfrak{H})$ and $A,$ $B^{*}$ are both hyponormal, then $\delta_{A,B}|_{C_{2}(\emptyset)}$ is also a hyponormal
operator. Thus $\delta_{A,B}|_{C_{2}(\emptyset)}$ satisfies the condition (R), that is, $\sigma(\delta_{A,B}|_{C_{2}(\mathfrak{H})})=$

$\sigma_{r}(\delta_{A,B}|_{C_{2}(ff)})$ . Moreover, according to [3, Theorem 3.20] and [4, Theorem 3.2],
$\sigma(\delta_{A,B})=\sigma(\delta_{A,B}|_{C_{2}(\mathfrak{g})})$ and $\sigma_{r}(\delta_{A,B})=\sigma_{r}(\delta_{A,B}|_{C_{2}(\mathfrak{H})})$ . Thus, if $A$ and $B^{*}$ are
both hyponormal, then the spectrum and the right spectrum of $\delta_{A,B}$ (on $\mathcal{L}(\mathfrak{H})$ )
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coinside. We shall show an extension of the above result as a corollary of Theorem
1.

Corollary 1. If both $A$ and $B^{*}$ satisfy the condition (R), then the spectrum and
the mght spectrum of $\Psi$ coinside.

$\sigma(\Psi)=\sigma_{\delta}(\Psi)=\sigma_{r}(\Psi)$ . (23)

proof. We have to show the first equality. (The second one is a part of the
Fialkow’s Theorem A-2.) We can verify it in the following way.

$\sigma_{\delta}(\Psi)$ $\supseteq$ $\{\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma_{\delta}(A),$ $\beta\in\sigma_{\pi}(B)\}$ (24)

$=$ $\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|a\in\sigma_{r}(A),$ $\beta\in\sigma_{l}(B)$ (25)

$\sum_{j=1}^{n}f_{j}(\alpha)g_{j}(\beta)|\alpha\in\sigma(A),$ $\beta\in\sigma(B)$ (26)

$=$ $\sigma(\Psi)$ . (27)

(24) follows from (16) in Theorem 1, (25) follows from the assumption that $\mathfrak{H}$ is a
Hilbert space, (26) follows from the assumption that $A$ and $B^{*}$ satisfy the condition
(R) and finally, (27) is the Lumer-Rosenblum’s Theorem A-3. Thus $\sigma(\Psi)=\sigma_{\delta}(\Psi)$

follows because $\sigma_{\delta}(\Psi)$ is always the subset of $\sigma(\Psi)$ . $\square $

Analogously, we can also show the next symmetric result.

Corollary 2. If both $A^{*}$ and $B$ satisfy the condition (R), then the spectrum and
the left spectrum of $\Psi$ coinside.

$\sigma(\Psi)=\sigma_{\pi}(\Psi)=\sigma_{l}(\Psi)$ . (28)

In the rest of this paper, we shall show that many classes of Hilbert space oper-
ators satisfy the condition (R).

Deflnition 2. $T\in \mathcal{L}(\mathfrak{H})$ is said to be satisfying the condition (N1) if $\overline{\lambda}\in\sigma_{\pi}(T^{*})$

whenever $\lambda\in\sigma_{\pi}(T)$ .
Definition 3. For $T\in \mathcal{L}(\mathfrak{H})$ , a complex number $\lambda$ is said to be belonging to
$\sigma_{na}(T)$ if there exists a sequence of unit vectors $\{x_{k}\}$ such that I $(\lambda-T)x_{k}||\rightarrow 0$

and $||(\lambda-T)^{*}x_{k}||\rightarrow 0$ simultaneously. $\sigma_{na}(T)$ is called the normal approximate
point spectrum of T. $T\in \mathcal{L}(\mathfrak{H})$ is said to be satisfying the condition (N2) if
$\sigma_{\pi}(T)=\sigma_{na}(T)$ .
Remark 3. If $T$ satisfies the condition (N2), then $T$ satisfies also the condition
(N1). The relation $\sigma_{\pi}(T)\supseteq\sigma_{na}(T)$ is valid for an arbitrary operator $T\in \mathcal{L}(\mathfrak{H})$ .
But there exists an operator $S$ such that $\sigma_{na}(S)=\emptyset$ . On the contrary, $\sigma_{\pi}(T)$

is non-void for every $T$ because $\sigma(T)$ has the (non-empty) boundary $\partial\sigma(T)$ and
$\partial\sigma(T)\subseteq\sigma_{\pi}(T)$ .

Proposition 1. If $T$ satisfies the condition (N1), then $T$ satisfies the condition
(R).
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proof. We have only to verify that $\sigma_{\pi}(T)\subseteq\sigma\delta(T)$ whenever $T$ satisfies the
condition (N1). Suppose that $\lambda\in\sigma_{\pi}(T)$ . Then $\overline{\lambda}\in\sigma_{\pi}(T^{*})=\sigma_{l}(T^{*})$ .

$Thus\square $

$\lambda\in\sigma_{r}(T)=\sigma_{\delta}(T)$ .
Example 1. $T\in \mathcal{L}(\mathfrak{H})$ is called dominant if $(\lambda-T)\mathfrak{H}\subseteq(\lambda-T)^{*}\mathfrak{H}$ for all $\lambda\in \mathbb{C}$.
The dominant operator $T$ satisfies the condition (N2) because of the following well-
known fact. $T$ is dominant if and only if there exists a $M_{\lambda}>0$ for all $\lambda\in \mathbb{C}$ such
that $M_{\lambda}\Vert(\lambda-T)x||\geq||(\lambda-T)^{*}x||$ for all $x\in \mathfrak{H}$ . The class of dominant operators
is very large. (It is clear that every hyponormal operator is dominant.) See [11] for
more informations for dominant operators.

Example 2. p-hyponormal operators and $\log\leftarrow hyponormal$ operators satisfy the
condition (N2). $T\in \mathcal{L}(\mathfrak{H})$ is called p-hyponormal if $(T^{*}T)^{p}\geq(TT^{\cdot})^{p}$ for $0<p<$
$\infty$ . M. Ch6 and T. Huruya showed that every $l\succ hyponormal$ operator satisfies the
condition (N2) in [1]. $T\in \mathcal{L}(\mathfrak{H})$ is called log-hyponormal if $T$ is invertible and
$\log(T^{*}T)\geq\log(TT‘)$ . In [12], K. Tanahashi has shown that every log-hyponormal
operator also satisfies the condition (N2).

Example 3. Recently, S. M. Patel introduced a new class of Hilbert space operators
in [9]. An operator $T\in \mathcal{L}(\mathfrak{H})$ is called quasi-isometry if $T^{*2}T^{2}=T^{*}T$ . For example,
isometries and idempotents on $\mathfrak{H}$ enjoy this relation. Patel showed that every quasi-
isometry satisfies the condition (N1).
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