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Abstract

We focus our attention on generalized vector equilibrium problems.

In particular, we formulate a general and unified existence theorem,

present an analysis for the assumptions used in this result, and give

some applications to vector variational inequalities, vector comple-

mentarity problems and vector optimization.
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1 Introduction and preliminaries

In the present paper, we investigate the folowing form of generalized vector

equilibrium problems:

Find $\overline{x}\in C$ such as to satisfy $\varphi(\overline{x},y)\not\leqq K$ (hi) for all $y\in C$ , (GVEP)

where

$\bullet$ $X$ and $E$ are topological vector spaces,

$\bullet$ $C$ is a nonempty closed convex subset of $X$ ,

$\bullet$
$\varphi$ : $C\times C\rightarrow 2^{E}$ is a set-valued map, and
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$\bullet$ $K$ is a set-valued map from $C$ to $E$ .

In particular, we formulate a general existence result, present an analysis
for the assumptions used, and give some applications.

Let us first recall and introduce some concepts about convexity and semi-
continuity for set-valued vector maps. We denote by $\mathcal{F}(C)$ the set of all finite
subsets of $C$ .

1.1 Generalized set-valued convexity
Deflnition 1.1. We say that $\psi;C\times X\rightarrow 2^{E}$ is diagonally quasi convex in
its first argument relatively to $L$ , in short L-diagonally quasi $\omega nvex$ in $x$ , if
for any $A$ in $\mathcal{F}(C)$ and any $y$ in $co(A)$ , we have $\psi(A,y)\not\leqq L(y)$ .

Let us consider the scalar case, that is when $E=R$ and $\psi$ is a numeric
valued function. If we set $L$ $:=$] $-\infty,\gamma$ [ (resp. $L$ $:=$] $\gamma,+\infty$ [) for all $x\in C$ ,
where $\gamma\in\overline{R}$ , then the L-diagonal quasi convexity of $\psi$ in $x$ colapses to the
following:

$\forall A\in \mathcal{F}(C)\forall y\in co(A)$ : $\dot{m}n\psi(x,y)x\in A\leq\gamma$ (resp. $\max_{x\in A}\psi(x,y)\geq\gamma$),

which is the $\gamma$-diagonal quasi convexity (resp. concavity) considered by Zhou
and Chen in [20].

Let us also recal the definition of some concepts of convexity for set-
valued maps related to moving cones in $E$ . Let $(P(y))_{y\in C}$ be a family of
proper $\infty nes$ in $E$ with int $ P(y)\neq\emptyset$ for all $y\in C$ .
Definition 1.2. [$J4/\psi$ : $C\times C\rightarrow 2\dot{u}$ said to be right $P_{y}$ -convex if, for all
$x_{1},x_{2},y\in C$ and all $\lambda\in[0,1]$ , one has

$\psi(\lambda x_{1}+(1-\lambda)x_{2}, y)\subseteq\lambda\psi(x_{1}, y)+(1-\lambda)\psi(x_{2}, y)-P(y)$ .

Deflnition 1.3. [$3J\psi$ is said to be right $P_{y}$ -quasiconvexl if, for all $x_{1},$ $ x_{2},y\in$

$C$ and all $\lambda\in[0,1]$ , one has either

$\psi(\lambda x_{1}+(1-\lambda)x_{2}, y)\subseteq\psi(x_{1}, y)-P(y)$

$or$

$\psi(\lambda x_{1}+(1-\lambda)x_{2}, y)\subseteq\psi(x_{2}, y)-P(y)$ .

1In [3], it is called $P_{y}$-quasiconvex-like, and the left $P_{y}$-quasiconvexity below is called
$P_{y}$-quasiconvex in [13]. When $P$ is constant, it is called type-(v) P-properly $quasi\infty nvex$

in [9].
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It should be mentioned that a right $P_{y}$-convex set-valued map is not nec-
essarily right $P_{y}$-quasiconvex. When $F$ is single-valued and $P$ is constant,
we recover the P-convexity and the properly quasi-P-convexity of [8], respec-
tively. All these concepts reduce to the ordinary convexity and quasiconvexity
when considering the scalar case.

Furthermore, Konnov and Yao [13] work with following set-valued con-
cept.

Definition 1.4. $\int 13J\psi$ is said to be left $P_{y}$ -quasiconvex if, for all $x_{1},$ $x_{2},$ $ y\in$

$C$ and all $\lambda\in[0,1]$ , one has either

$\psi(x_{1},y)\subseteq\psi(\lambda x_{1}+(1-\lambda)x_{2},y)+P(y)$

$\sigma r$

$\psi(x_{2}, y)\subseteq\psi(\lambda x_{1}+(1-\lambda)x_{2},y)+P(y)$ .

1.2 Transfer semicontinuity

Deflnition 1.5. We say that $\varphi$ is K-transfer semicontinuous in $y$ if for any
$(x,y)\in C\times X$ with $\varphi(x,y)\subset K(y)$ , there exist an element $x^{\prime}\in C$ and an
open $V\subset X$ containing $y$ such that $\varphi(x^{\prime},v)\subset K(v)$ for all $v\in V$ .

An equivalent statement is as follows: for each $y\in X$ satisfying

$\forall x\in C\exists y_{\alpha}\rightarrow y$ in $X$ : $\varphi(x,y_{\alpha})\not\leqq K(y_{\alpha})$ ,

we have

$\varphi(x,y)\not\leqq K(y)$ $\forall x\in C$.

Definition 1.6. $\varphi$ is said to be transfer $u.s.c$ . (resp. $l.s.c.$) in $y$ if, for any
$(x,y)\in C\times X$ and any open $N\subset E$ with $\varphi(x,y)\subset N$ (resp. $\varphi(x,y)\cap N\neq\emptyset$)
there exist an element $x^{\prime}\in C$ and an open $V\subset X$ such that $\varphi(x^{\prime},v)\subset N$

(resp. $\varphi(x^{l},v)\cap N\neq\emptyset$) for all $v\in V$ .

Note here that an u.s. $c$ . (resp. l.s. $c.$ ) set-valued bi-map in one of its
arguments is obviously transfer u.s. $c$ . (resp. l.s. $c.$ ). Moreover, the relationship
between the two concepts of transfer continuity, introduced above, is the
following.

Proposition 1.1. If $\varphi$ is transfer $u.s.c$ . in $y$ with compact values and if $K$

has an open graph, then $\varphi$ is K-transfer semicontinuous in $y$ .
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Proof. Let $y\in X$ such that for any $x\in C$ there is a net $(y_{\alpha})$ converging
to $y$ in $X$ with $\varphi(x, y_{\alpha})\not\leqq K(y_{\alpha})$ . Therefore, for every $x\in C$ , there exists
$z_{\alpha}\in\varphi(x, y_{\alpha})$ with $z_{\alpha}\not\in K(y_{\alpha})$ . Passing to a subnet, if necessarily, we can
certainly assume that, for every $x\in C$ there exists $z\in\varphi(x, y)$ such that
$z_{\alpha}\rightarrow z$ . Otherwise, there exists $x^{\prime}\in C$ such that, for every $z\in\varphi(x^{\prime}, y)$ ,
there is an open $N_{z}\subset E$ containing $z$ and satisfying, for every $y_{\alpha}^{\prime}\rightarrow y$

in $X$ and for every $z_{\alpha}^{l}\in\varphi(x^{\prime}, y_{\alpha}^{\prime}),$ $z_{\alpha}^{\prime}\not\in N_{z}$ for $\alpha$ sufficiently large. Since
$\varphi(x^{\prime}, y)\subset\bigcup_{z\in\varphi(x^{l},y)}N_{z}$ and $\varphi(x^{j},y)$ is compact, $\varphi(x^{l},y)\subset N=\bigcup_{1=1}^{1=n}N_{z}$: for
some finite subset $\{z_{1}, \ldots z_{n}\}$ in $\varphi(x^{\prime}, y)$ . Hence, there exists $x^{\prime\prime}\in C$ such
that, for every $y_{\alpha}^{\prime}\rightarrow y$ in $X$ and for $\alpha$ large enough, $\varphi(x^{j\prime},y_{\alpha}^{\prime})\subset N$ because
of the transfer upper semicontinuity of $\varphi$ . But, we can also write, for some
$y_{\alpha}\rightarrow y$ in $X$ and some $z_{\alpha}\in\varphi(x^{\prime\prime},y_{\alpha}),$ $z_{\alpha}\not\in N$ for $\alpha$ large enough. It follows
that $\varphi(x^{\prime\prime}, y_{\alpha})\not\leqq N$ for some $y_{\alpha}\rightarrow y$ in $X$ , which is a contradiction.
The same argument is still applicable to show the assertion on compact
subsets of $X$ . This completes our proof. $\blacksquare$

2 The existence theorem
For the proof of the main result, we need the folowing KKM lemma, which
is a particular case of of the extended version of Fan-KKM theorem [11,
Theorem 2.1].

Lemma 2.1. Assume that $F,$ $G:C\rightarrow 2^{X}$ satisfy

$(Oi)G(x)\subset F(x)$ for all $x\in C$ ,

(i) $G$ is a KKM map,

(ii) $F$ is transfer closed-valued,

(iii) there is a compact subset $B$ in $X$ such that for each $A\in \mathcal{F}(C)$ there
exists a compact convex $B_{A}$ in $X$ containing $A$ such that

$\cap$ $\overline{G(x)}\cap B_{A}\subset B$ .
$x\in B_{A}\ulcorner C$

Then
$\bigcap_{x\in C}B\cap F(x)\neq\emptyset$

.
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Recall that $G$ is a KKM map when $co(A)\subset\bigcup_{x\in A}G(x)$ for any subset
$A\in \mathcal{F}(C)$ , and that $F$ is transfer closed-valued whenever $y\in X$ and $x\in C$

such that $y\not\in F(x)$ there exists $x^{\prime}\in C$ such that $y\not\in\overline{F(x^{\prime})}$.
Now we are in position to state the following existence theorem for (GVEP)

in topological vector spaces.

Theorem 2.1. Suppose that

(A $0$) $\psi(x, y)\not\leqq L(y)\Rightarrow\varphi(x, y)\not\leqq K(y)\forall x,$ $y\in C$ ;

(A 1) $\psi$ is L-diagonally quasi-convex in $x$ ;

$(A2)\varphi$ is K-tmnsfer semicontinuous in $y$ ;

(A 3) there is a nonempty compact subset $B$ in $X$ such that for each $ A\in$

$\mathcal{F}(C)$ there is a compact convex $B_{A}\subset X$ containin$g$
$A$ such that, for

every $y\in B_{A}\backslash B$ , there exists $x\in B_{A}\cap C$ with

$y\in int_{X}\{v\in X : \psi(x, v)\subseteq L(v)\}$ .

Then there enists $\overline{y}\in B$ such that $\varphi(x,\overline{y})\not\leqq K(\overline{y})$ for all $x\in C$ .

Proof. Define two set-valued maps $F,$ $G:C=X$ as follows:

$F(x)=\{y\in X : \varphi(x, y)\not\leqq K(y)\}$

and
$G(x)=\{y\in X : \psi(x, y)\not\leqq L(y)\}$ .

The existence of a generalized vector equilibrium for $\varphi$ in $B$ with respect to
$K$ is now equivalent to

$\bigcap_{x\in C}B\cap F(x)\neq\emptyset$

Hence, we need only to check the assumptions of Lemma 2.1 for $F$ and $G$ .

(Oi) Let $x\in C$ and let $y\in G(x)$ ; then $\psi(x, y)\not\leqq L(y)$ ; it follows, by
assumption (AO), that $\varphi(x, y)\not\leqq K(y)$ ; thus $y\in F(x)$ .

(i) Let $A\in \mathcal{F}(C)$ and let $y\in coA$ . By assumption (A1), we have $\psi(A, y)\not\leqq$

$L(y)$ . Hence there exists $x\in A$ such that $\psi(x, y)\not\leqq L(y)$ ; that is
$y\in G(x)$ . Hence $co(A)\subset\bigcup_{x\in A}G(x)$ . We conclude that $G$ is a KKM
map.
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(ii) Let us consider $(x, y)\in C\times X$ with $y\not\in F(x)$ . Suppose, contrary to our
claim, that $y\in cl_{X}F(x^{\prime})$ for al $x^{l}\in C$ . Therefore, for every $x^{\prime}\in C$ ,
there is a net $(y_{\alpha})$ in $X$ converging to $y$ and satisfying $\varphi(x^{\prime}, y_{\alpha})\not\leqq$

$K(y_{\alpha})$ . It folows that $\varphi(x^{\prime},y)\not\leqq K(y)$ for al $x^{\prime}\in C$ since $\varphi$ is K-
transfer semicontinuous in $y$ , and hence that $y\in F(x^{\prime})$ for all $x^{\prime}\in C$ ,
a contradiction. We conclude that $F$ is transfer closed-valued.

(iii) It suffices to see that assumption (A3) leads to

$B_{A}\backslash B\subset\bigcup_{x\in B_{A}\cap C}int_{X}G(x)$
;

hence $ B_{A}\cap\bigcap_{x\in B_{A}r\kappa)}cl_{X}G(x)\neq\emptyset$ .

The proof is complete. $\blacksquare$

Theorem 2.1 generalizes [3, Theorem 2.1], which is proved by means of
a Fan-Browder fixed point theorem- an immediate $\infty naequence$ of the Fan-
KKM theorem. As we wil mention in the ‘Assumptions analysis’ subsection,
our hypotheses are more general than those used in [3]. Besides, the scalar
version of this result extends [17, Theorem 4] (we take $C_{A}=co(A\cup R)\cap X$

where $R$ is the convex compact which contains $C$ in [17, Theorem 4, $(4i\ddot{u})$]).
Other particular cases are [1, Theorem 2], [19, Theorem 2.1], [20, Theorem
2.11], [18, Theorem 1], [15, Corolary 2.4], [16, Lemma 2.1] and [4, Theorem
2]. The origin of this kind of results goes back to Ky Fan [7]. His classical
minimax inequality can be deduced from our result by setting $E=R,$ $K(x)=$
$R_{+}^{*}$ and $\varphi(x,y)=\psi(x,y)=f(x,y)-\sup_{x\in}f(x,x)$ for all $x,y\in C$ .

3 Assumptions analysis
In this section, we analyze the requirements of Theorem 2.1 by presenting
different situations where assumptions $(AO)-(A3)$ hold true. Let $(P(y))_{y\in C}$ a
family of proper convex closed cones on $E$ with int $ P(y)\neq\emptyset$ for al $y\in C$ .

$\bullet$ Pseudomonotonicity

Remark 3.1. (A $0$) holds provided one of the folloutng statements is
satisfied.
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$(a)\varphi=\psi$ and $K=L$ .

$(b)X=C,$ $K(y)=-L(y)=-int$ $P(y),$ $\psi(x,y)=\varphi(y,x)$ for all
$x,$ $y\in C$ , and $\varphi$ is $P_{x}$ -pseudomonotone, that is,

$\varphi(x, y)\not\leqq intP(x)\Rightarrow\varphi(y,x)\not\leqq-int$ $P(x)\forall x,$ $y\in C$.

$\bullet$ Convexity. Suppose that $X=C$ .

Remark 3.2. (A1) holds provided that, for every $y\in C$ , one has either

$(a)\psi(y,y)\not\leqq L(y)$ , and
$(b)$ the set $\{x\in C:\psi(x, y)\subseteq L(y)\}$ is convex,

$or$

(i) $L(y)=-int$ $P(y)$ and $P(y)$ is w-pointed 2

(ii) $\psi(y,y)\subseteq P(y)$ , and

(iii) $\psi$ is left $P_{\nu}$ -quasiconvex.

Indeed, if we suppose in contrary that there exist $x_{1},$ $\ldots$ , $x_{n}\in C$ ,
$\lambda_{1)}\ldots\lambda_{n}\in[0,1]$ , and $y=\sum_{j=1}^{n}\lambda_{j}x_{j}$ such that $\sum_{i=1}^{n}k=1$ and

$\psi(x_{i},y)\subseteq L(y)$ (1)

for each $i=1,$ $\ldots n$ . For the first assertion, assumption (b) shows
that $\psi(y,y)\subseteq L(y)$ , which contradicts (a).
For the second one, (iii) implies

$\psi(x_{i_{0}},y)\subseteq\psi(y, y)+P(y)\subseteq P(y)+P(y)\subseteq P(y)$

for some $i_{0}\in\{1, \ldots n\}$ ; this contradicts (1) since $P(y)$ is w-pointed.
The assertion is proved.

Moreover condition (b) in Remark 3.2 is satisfied provided that $L(y)$ is
convex, and for all $x_{1},$ $x_{2}\in C$ and all $\lambda\in[0,1]$ ,

$\psi(\lambda x_{1}+(1-\lambda)x_{2},y)\subseteq\lambda\psi(x_{1}, y)+(1-\lambda)\psi(x_{2}, y)$ ,

In case of $L(y)=-int$ $P(y),$ $(b)$ holds if either

2A cone $P$ is w-pointed if $P\cap- int$ $ P=\emptyset$ .
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$\psi$ is right P-convex, or
- $\psi$ is right P-quasiconvex.

$\bullet$ Continuity

Remark 3.3. $(A8)$ holalS provided that one of the following statement
is satisfied.

$(a)\varphi$ is (tmnsfer) $u.s.c$ . in $y$ utth compact values and if $K$ has an
open gmph.

$(b)\varphi$ is (tmnsfer) $u.s.c$ . in $y$ and $K(x)=O$ for all $x\in C$ , where $O$

$\dot{u}$ an open subset of $E$ .
$(c)$ For each $x\in C$ , the set $\{y\in X:\varphi(x,y)\not\leqq K(y)\}$ is closed in $C$ .

While the assertion $(c)\Rightarrow(A2)$ is obvious, the other assertions follow
ffom Proposition 1.1.

$\bullet$ Coercivity. Recal first the following definition.

Definition 3.1. We will say that a set-valued map $\phi$ : $D\rightarrow 2^{E}$ is
K-compact if the set $cl\{y\in D:\phi(y)\not\leqq K(y)\}$ is compact in Y.

It has to be observed that this definition is equivalent to the following
fact: there exists a nonempty compact subset $B$ in $D$ such that $\phi(y)\subseteq$

$K(y)$ for al $y\in D\backslash B$ .

Remark 3.4. $(A3)$ holds if one of the folloutng statements is satisfied.
$(a)X$ is compact.
$(b)$ There is $x_{0}\in C$ such that $\psi(x_{0}, \cdot)$ is K-compact.
$(c)$ There is a nonempty compact subset $B$ in $X$ such that for each

$y\in X\backslash B$ there enists $x\in B\cap C$ such that $\psi(x, y)\subseteq L(y)$ .
$(d)$ There is a nonempty compact subset $B$ of $X$ and a compact convex

subset $B^{\prime}\in X$ such that for each $y\in X\backslash B$ there exists $x\in B^{\prime}\cap C$

with

$y\in int_{X}\{v\in X : \psi(x,v)\subseteq L(v)\}$ .
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Besides, when the classical assumption $(c)$ of Remark 3.3 is satisfied,
(A3) holds provided that

$(e)$ there is a nonempty compact subset $B$ in $X$ such that for each
$A\in \mathcal{F}(C)$ there is a compact convex $B_{A}\subset X$ containing $A$ such
that, for every $y\in C\backslash B$ , there exists $x\in B_{A}\cap C$ with $\varphi(x, y)\subseteq$

$K(y)$ .

4 Applications
Throughout this section, and otherwise stated, $C$ is supposed to be a nonempty
closed convex subset in a t.v. $sX$ , and $E$ to be a real topological vector space.
Assume also we are given a family $\{P(x) : x\in C\}$ of convex cones in $E$ with
int $ P(x)\neq\emptyset$ for all $x\in C$ . Also, we denote by $L(X, E)$ the space of all linear
bounded applications from $X$ to $E$ .

4.1 Generalized vector variational like-inequalities

Let us consider a set-valued operator $T$ from $C$ into $L(X, E)$ , and a bifunction
$\eta$ from $C$ to itself. We write for $\Pi\subset L(X, E)$ and $x\in C,$ $\langle\Pi, x\rangle=\{\langle\pi, x\rangle$ :
$\pi\in\Pi\}$ , where $\langle\pi,x\rangle$ denotes the evaluation of the linear mapping $\pi$ at $x$

which is supposed to be continuous on $L(X, E)\times X^{3}$ .
The generalized vector variational inequality problem (GVVLIP) takes

the following form:

Find $\overline{x}\in C$ such that, $\langle T\overline{x}, \eta(y,\overline{x})\rangle\not\subset-int$ $P(\overline{x})\forall y\in C$.

Thus (GVVLIP) is a particular case of (GVEP) if we take

$\varphi(x,y)=\{\langle t, \eta(y, x)\rangle : t\in Tx\}$ .

For the reader’s convenience, we recall the folowing definitions.

Deflnition 4.1. (see $[2J$)
1) $T$ is said to be $\eta$ -pseudomonotone if, for all $x,$ $y\in C$ ,

$\langle Tx, \eta(y, x)\rangle\not\subset-int$ $P(x)\Rightarrow\langle Ty, \eta(y, x)\rangle\not\subset-int$ $P(x)$ .

3A typical situation when $X$ is a reflexive Banach and $E$ is a Banach
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2) $T$ is said to be V-hemicontinuous iffor any $x,$ $y\in C$ and $ t\in$ ] $0,1[$ $T(tx+$

$(1-t)y)\rightarrow T(y)$ as $t\rightarrow 0_{+}$ (that is, for any $z_{t}\in T(tx+(1-t)y)$ there exists
$z\in Ty$ such that for any $a\in C,$ $\langle z_{t}, a\rangle\rightarrow\langle z, a\rangle$ as $t\rightarrow 0_{+}$ ).

It has to be observed that when $T$ is single-valued, we recover the hemi-
continuity used in [5]. If $\eta(x,y)=x-y$ for all $x,y\in C,$ $\eta$ is dropped from
the definition of pseudomonotonicity.

The linearization lemma plays a significant role in variational inequalities.
Chen [5] extended this lemma to the single-valued vector case. For our need in
this subsection, we state it in the set-valued case by using standard Minty’s
argument. Consider the following problem, which may be seen as a dual
problem of (GVVLIP),

Find $\overline{x}\in C$ such that $\langle Ty,\eta(y,\overline{x})\rangle\not\subset-int$ $P(\overline{x})\forall y\in C$. $(GVVLIP^{*})$

Lemma 4.1. Suppose that $\eta(\cdot,x)\dot{u}$ affine and $\eta(x,x)=0$ for each $ x\in$

C. If $T$ is $\eta$-pseudomonotone and V-hemicontinuous then (GVVLIP) and
$(GVVLIP*)$ are equivalent.

Proof. We only need to show that every solution of $(GVVLIP*)$ is a
solution of (GVVLIP); the reverse assertion folows clearly from the $\eta-$

pseudomonotonicity of $T$ . To this end, let $\overline{x}\in C$ such that

$\langle Ty,\eta(y,\overline{x})\rangle\not\subset-int$ $P(b1)\forall y\in C$.

Let $y\in C$ be fixed and set $y_{t}=ty+(1-t)\overline{x}$ for $t\in[0,1]$ , which is in the
convex subset $C$ . Then

$\langle Ty_{t},\eta(y_{t},\overline{x})\rangle\not\subset$ -int $P(b1)$ .

Hence

$\langle Ty_{t},\eta(y,\overline{x})\rangle\not\subset-int$ $P(\overline{x})$ .

By the V-hemicontinuity of $T$ and the closedness of $E\backslash $ (-int $P(\overline{x})$ ), it follows
that

$\langle T\overline{x},\eta(y,\overline{x})\rangle\not\subset-int$ $P(\overline{x})$ .

The last assertion holds for an arbitrary $y\in C$ . The lemma is proved. $\blacksquare$
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As an application of Theorem 2.1, we are now in position to formulate
the following existence result for (GVVLIP).

Theorem 4.1. Suppose that

(i) the mapping int $P(\cdot)$ has an open graph in $C\times L(X, E)$ ;

(ii) for each $x\in C,$ $\eta(\cdot, x)$ is affne, $\eta(x, \cdot)$ is continuous and $\eta(x, x)=0$;

(iii) $T$ is compact valued, $\eta$-pseudomonotone and V-hemicontinuous;

(iv) there is a nonempty compact subset $B$ in $C$ such that for each $ A\in$

$\mathcal{F}(C)$ there is a compact convex $B_{A}\subset C$ containing $A$ such that, for
every $y\in B_{A}\backslash B$ , there enists $x\in B_{A}\cap C$ utth

$y\in int_{C}\{v\in C:\langle Tv,\eta(x,v)\rangle\subseteq-int P(v)\}$ .

Then (GVVLIP) has at least one solution, which is in $B$ .
$P$rvof. Set $\varphi(x,y)=\langle Tx,\eta(x,y)\rangle,$ $\psi(x,y)=\langle Ty,\eta(x,y)\rangle$ and $K(x)=$

-int $P(x)$ for al $x,y\in C$ . Let us show that the assumptions of Theorem
2.1 are satisfied:
(AO) follows clearly from the $\eta$-pseudomonotonicity of $T$ .
(A1) First we have,

$\bullet$ $\psi(x, x)=\langle Tx,\eta(x,x)\rangle=0\not\in-int$ $P(x)$ for all $x\in C$ , and
$\bullet$ for $y$ being fixed in $C$ , the set

$\{x\in C:\langle Ty,\eta(x,y)\rangle\subseteq-intP(y)\}$

is convex since $\eta(\cdot, y)$ is affine.
Thus conditions (a) and (b) of Remark 3.2 hold, which lead to (A1).
(A2) Fix $x$ in $C$ and let $(y_{\alpha})$ be a net on $C$ converging to $y\in C$ such that

$\langle Tx,\eta(x,y_{\alpha})\rangle\not\subset-int$ $P(y_{\alpha})$ .

Therefore there exists $z_{\alpha}\in Tx$ such that

$\langle z_{\alpha}, \eta(x, y_{\alpha})\rangle\not\in-int$ $P(y_{\alpha})$ .

Since $Tx$ is compact then, passing to a subnet, if necessarily, we may assume
that $z_{\alpha}$ converges to $z\in Tx$ . By the continuity of the map $\eta(x, \cdot)$ and $\langle., .\rangle$ ,
we get $\langle z_{\alpha}, \eta(x, y_{\alpha})\rangle\rightarrow\langle z, \eta(x, y)\rangle$ . Hence, according to (i), we obtain

$\langle z, \eta(x,y)\rangle\not\in-int$ $P(y)$ ;
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thus

$\langle Tx, \eta(x, y)\rangle\not\subset-int$ $P(y)$ .

(A3) follows easily from (iv). Therefore, $hom$ Theorem 2.1, there exists
$\overline{x}\in B$ such that

$\langle Ty, \eta(y,\overline{x})\rangle\not\subset-int$ $P$ (b1) $\forall y\in C$.

Hence $(GVVLIP*)$ has a solution in $B$ , which completes the proof of the
theorem according to Lemma 4.1. $\blacksquare$

The coercivity condition (iv) is better than that formulated in [12], namely,
there is a compact $B$ of $X$ and $x_{o}\in C\cap B$ such that

$(Tx_{o},$ $\eta(x_{o},y)\rangle$ $\subset-int$ $P(y)\forall y\in C\backslash B$ .

4.2 Vector complementarity problems
A natural extension of the classical nonlinear complementarity problem,
$(CP)$ for short, is considered as follows. Let $T$ be a single-valued opera-
tor from $C$ , which is supposed to be a convex closed cone, to $L(X, E)$ . The
vector complementarity problem considered in this subsequent, $(VCP)$ for
short, is to find $\overline{x}\in C$ such that

$\langle T(\overline{x}),\overline{x}\rangle\not\in intP(\overline{x})$ , and $\langle T(\overline{x}),y\rangle\not\in-int$ $P(\overline{x})$ for al $y\in C$.

This problem collapses to $(CP)$ when $E=R$ and $P(x)=R_{+}$ for al $x\in C$ .
By means of vector variational inequalities, we can formulate the following

existence theorem for $(VCP)$ .

Theorem 4.2. Suppose that

(i) the set-valued map int $P(\cdot)$ has an open graph in $C\times L(X,E)$ ;

(ii) $T$ is pseudomonotone and hemicontinuous;

(iv) there is a nonempty compact subset $B$ in $C$ such that for each $ A\in$

$\mathcal{F}(C)$ there is a compact convex $B_{A}\subset C$ containing $A$ such that, for
every $y\in B_{A}\backslash B$ , there $e\dot{m}tsx\in B_{A}\cap C$ utth

$y\in int_{C}\{v\in C:\langle Tv, x-v\rangle\in-int P(v)\}$ .
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Then $(VCP)$ has at least one solution, which is in $B$ .

Proof. It is clear that all the assumptions of Theorem 4.1 are satisfied
with $\eta(x, y)=x-y$ for all $x,$ $y\in C$ . Therefore there exists $\overline{x}\in B$ such that

$\langle T\overline{x}, z-\overline{x}\rangle\not\in-int$ $P(\overline{x})\forall z\in C$. (2)

Since $C$ is a convex cone, then setting in (2), $z=0$ and $z=y+\overline{x}$ for an
arbitrary $y\in C$ , we get respectively

$\langle T\overline{x},\overline{x}\rangle\not\in intP(\overline{x})$ and $\langle T\overline{x}, y\rangle\not\in-int$ $P(\overline{x})$ .

Hence we conclude that hi is also a solution to $(VCP)$ . $\blacksquare$

4.3 Vector optimization
Here, to convey an idea about the use of vector variational-like inequalities
in vector optimization which involves smooth vector mappings, we prove the
existence of solutions to weak vector optimization problems, (WVOP) for
short, by considering the concept of invexity. Let us state the problem as
follows.

Find $\overline{x}\in C$ such that $\phi(y)-\phi(\overline{x})\not\in-int$ $P$ for all $y\in C$ , (WVOP)

where $\phi:C\rightarrow E$ be a given vector-valued function and $P$ is a given convex
cone in $E$ .

Let $\eta$ : $C\times C\rightarrow X$ be a given function, and denote by $\nabla\phi$ the R\’echet
derivative of $\phi$ once the latter is assumed to be R\’echet differentiable.

Definition 4.2. Suppose that $\phi$ is Fk\’echet differentiable. $\phi$ is said to be
P-invex urith respect to $\eta$ if

$\phi(y)-\phi(x)-\langle\nabla\phi(x), \eta(y, x)\rangle\in P$ $\forall x,y\in C$.

If $E=R$ and $P=R^{+}$ then we recover the real invexity introduced by
Hanson [10] and later labeled so by Craven [6] due to its “ invariance” under
“ convex” transformations.

Theorem 4.3. Suppose that $P$ is a convex cone in $E$ with $ intP\neq\emptyset$ , and
let $\phi$ : $C\rightarrow E$ be a Fbl\’echet differentiable mapping. Assume that
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(i)
$x,y\in C\langle\nabla\phi(x), \eta(y, x)\rangle\not\in-int$

$P$ implies ($\nabla\phi(y),\eta(y, x)\rangle$ $\not\in-intP$ for all

(ii) $\phi$ is P-invex utth respect to $\eta$ ;

(iii) $\nabla\phi\dot{u}$ hemicontinuous;

(iv) for each $x\in C,$ $\eta(\cdot, x)$ is affine, $\eta(x, \cdot)$ is $\omega ntinuous$ and $\eta(x, x)=0$;

(v) there is a compact subset $B$ in $X$ such that for every finite subset $A$ in $C$

there is a compact convex $C_{A}\subset X$ containing $A$ such as to satisfy, for
every $y\in C\backslash B$ , there $e\dot{m}tsx\in C_{A}\cap C$ with $(\nabla\phi(x),$ $\eta(x,y)\rangle$ $\in-int$ $P$ .

Then (WVOP) has at least one solution.

Proof. First, $byvirtueofTh\infty rem4.lwithT:=\nabla\phi$ , we get

$\langle\nabla\phi(\overline{x}),\eta(y,\overline{x})\rangle\not\in-int$ $P\forall y\in C$.

Then the P-invexity of $\phi$ allows us to $\infty nclude$ . $\blacksquare$

Acknowledgments. The first author would like to appreciate the warm
hospitality of Niigata university during his stay between May and October,
2001 at the Graduate School of Scienoe and Technology. Financial support
by he Matsumae International Foundation is gratefully acknowledged.

References
[1] G. Allen, Variational inequalities, complementarity problems, and du-

ality $th\infty rems$ , Joumal of Mathematical Anatysis and Applications 58
(1977), 1-10.

[2] Q. H. Ansari, On Generalized Vector Variational-Like Inequalities, Ann.
Sci. Math. Qu\’ebec 19 No. 2 (1995), 131-137.

[3] Q. H. Ansari and J.-C. Yao, An Existence ${\rm Re} sult$ for the Generalized
Vector Equilibrium Problem, Applied Mathematics Letters 12 (1999),
53-56.

–162–



[4] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Une alternative non
lin\’eaire en analyse convexe at applications, Compte Rendu de l’Acad\’emie
des Sciences Paris S\’erie I 295 (1982), 257-259.

[5] G. Y. Chen, Existence of Solutions for a Vector Variational Inequality:
An Extension of Hartman-Stampacchia Theorem, Joumal of optimiza-
tion Theory and Applications 74 (1992), 445-456.

[6] B. D. Craven, Invex Functions and Constrained Local Minima, Bulletin
of the Austmlian Mathematical Society, 24 (1981), 357-366.

[7] Ky Fan, A minimax inequality and application, in “Inequalities” (Edited
by O. Shisha) Vol. 3, pp. 103-113, Academic Press, New York, 1972.

[8] F. Ferro, Minimax type $th\infty rems$ for n-valued functions, Annali $di$

Matematica $Pumed$ Applicata 32 (1982), 113-130.

[9] P. Gr. Georgiev and T. Tanaka, Vector-valued set-valued variants of Ky
Fan’s inequality, Journal of Nonlinear and Convex Analysis, 1 (2000),
245-254.

[10] M. A. Hanson, On Sufficiency of Kuhn Tucker Conditions, Joumal of
Mathematical Analysis and Applications 80 (1981), 545-550.

[11] E. M. Kalmoun and H. Riahi, Topological KKM Theorems and Gen-
eralized Vector Equilibria on G-Convex Spaces with Applications, Pm-
ceedings of the Ameri can Mathematical Society, 129 (2001), 1335-1348.

[12] E. Kalmoun and H. Riahi, Generalized Vector Equilibrium Problems and
Applications to Variational and Hemivariational Inequalities, Joumal of
optimization Theory and Applications, under revision.

[13] I. V. Konnov and J. C. Yao, Existence of Solutions for Generalized
Vector Equilibrium Problems, Joumal of Mathematical Analysis and
Applications 233 (1999), 328-335.

[14] W. Oettli and D. Schl\"ager, Existence of equilibria for monotone mul-
tivalued mappings, Mathematical Methods of Opemtions Research 48
(1998), 219-228.

–163–



[15] K.-K Tan, J. Yu and X.-Z. Yuan, Some new minimax inequalities and
applications to existence of equilibria in H-spaces, Nonlinear Analysis
24 (1995), 1457-1470.

[16] E. Tarafdar and X.-Z Yuan, Generalized variational inequalities and its
applications, Nonlinear Analalysis Theory Methods and Applications 30
(1997), 4171-4181.

[17] G. Tian, Generalizations of the FKKM $th\infty rem$ and the Ky Fan min-
imax inequality with applications to maximal elements, prioe equilib-
rium, and complementarity, Joumal of Mathematical Analysis and Ap-
plications 170 (1992), 457-471.

[18] C. L. Yen, A minimax inequality and its applications to variational
inequalities, Pacific Joumal of Mathematics 97 (1981), 477-481.

[19] X. Z. Yuan, The study of minimax inequalities and applications to
economies and variational inequalities, Memoirs of the American Math-
ematical Society 132 (1998), N. 625.

[20] J. X. Zhou and G. Chen, Diagonal convexity conditions for problems
in convex analysis and quasi-variational inequalities, Joumal of Mathe-
matical Analysis and Applications 132 (1988), 213-225.

E. M. Kalmoun and H. Riahi
Cadi Ayyad University, Faculty of Science Semlalia, Department of Mathe-
matics, B.P. 2390, Mamrakech-40000, Morocco.

T. Tanaka
Graduate School of Science and Technology, Niigata University, Niigata 950-
2181, Japan.

Received September 21, 2001

–164–


