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On the maximal toral action on aspherical fibered 4-manifolds over S!
Dedicated to Professor Shodré Araki on his 60th birthday
KAzuo Sa1To AND Tsuvost WATABE
Introduction.

In this note,we shall consider piecewise linear closed aspherical 4-manifolds M fibered
over S!. In particular, we consider the following problem ;

(1) Isthe center z(mw1(M)) of the fundamental group of M finitely generated ?

(2) If (1) is affirmative,say,z(m(M)) = Z* (k > 1), then does M admit a topological
action of k- dimensional toral group ?

We say that M admits a maximal toral action when (1) and (2) are true.

In this note,we shall prove the following

THEOREM A. Let M be as above. If rank of the center of the fundamental group
#1(M) is greater than 1,then M admits a maximal torus action.

Concerning the case of rank(z(71(M))) = 1, we shall prove the followings,where F is
the the typical fiber F, p the projection and h the attaching map.

THEOREM B. Assume F is irreducible.If h is a homeomorphism of a finite order,
then M admits a T action.

THEOREM C. Assume F is irreducible. If F admits a maximal toral action and
P«(2(71(M))) = 1, then M admits a maximal toral action.

In this note, we shall use the following notations;

1. Z,R denote the groups of integers or reals respectively.
2. z(@) denotes the center of a group G.

3. Z* denotes the direct sum Z @ -+ @& Z (m times).

4. T* denotes the group SO(2) x .-+ x SO(2) (k times).

5. Let N be a manifold and o : N — N a homeomorphism. Then N denotes the
manifold

RXzN,

where Z acts on R x N by n(z,a) = (z — n,h"(a)).
6. The sequenc of groups and homomorphisms

l — G — G, » Gig » 1

is exact,unless the contrary is stated.
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1.Preliminaries

In this section,we shall list some basic facts and some results on 3-dimensional manifolds.
Let N be a closed 3-dimensional manifold. We refer basic definitions to [H1] and [W].

PROPOSITION 1.1. If N is aspherical and its universal covering N is homeomorphic
to R3,then N has no fake 3-cell.

PROOF. Let p: N — N be the projection and D a 3-cell in N. Then D lifts to
R3 and hence D is not fake. J

COROLLARY 1. Let N be as in Proposition 1.1. Then N = p(N) (p(N) denotes
the Poincare associate of N ).

See [H1]([H1],Chap.10).

COROLLARY 2. If N is aspherical and fibered over S, then N = p(N).
ProrosiTiON 1.2 ([S]). If N is irreducible, then N is prime.

ProrosiTION 1.3. If N is aspherical and fibered over S!,then N is irreducible.

ProoF. Since N is aspherical,N is prime.It follows from 3.13 in [H1] that N is
irreducible.

We can define a homomorphism ([Z]);
Q : Homeo(N)/Isot(N) — Aut(w(N))/Inn(xy(N))

We have the following
THEOREM 1.1([W]). If N is orientable,irreducible and sufficiently large,then  is

injective.

CoROLLARY. Let N be as above and h : N — N a homeomorphism such that
h? : 7 (N) — =i(N) is an inner automorphism. Then there exists a homeomorphism
h': N — N such that h' is isotopic to h and h'™ is isotopic to the identity.

THEOREM 1.2([H1],6.6). If Hy(N) is infinite,then N is sufficiently large.

ProposITION 1.4. If M is aspherical and fiberd over S*,then M is sufficiently large.
PRrOOF. Let M =1 x 4 F. We have the following exact sequence;

— Hi(M) — Hiy(F) 2255 B, y(P) — Hioy(M) > Hioo(F) 2% B, o) —
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Since id — ¢, : Ho(F) — Ho(F) is zero map,we have the following exact sequence;

It follows that the order of Hi(M) = co. Since M is irreducible, it follows from Theorem
4 that M is sufficiently large. I

ProprosITION 1.5. If z(w1(IV)) contains Z? ,then z(w1(N)) is finitely generated.

This follows from Theorem 9.14 in [H1].

ExAMPLE 1. The following gives periodic homeomorphisms ¢; of S* x S*, which
are needed in the sequel, and describes the corresponding manifold Ny, = Nj.

(1) ¢1 =1.N; =8t x §t x S1.
T (M) =<a,Bt:[e,f] = [e,t] = [B,t] =1>.
(2) ¢2(z,y) =(—=2,-y). ¢3=1.
(V) =<a,8,t: [0, =1tat"t =a 1,1t 1 =1 >,
(3) o3(2,9) =(=,~y). ¢3=1.
7 (Ns) =< o, Byt : [, 8] =1, tat™ ' =, tBt™ =71 > .
(4) da(z,y)=(z+y,~y). ¢I=1.
71 (Ny) =< a,B,t: [a,8] =1, tat ' =, tft™ =B~ >.

ExAMPLE 2. The following gives all periodic homeomorphisms (S')® = T and
describes the corresponding manifold My, = M;.

In the following,a, B, v are generators of x1(T3) and

(*) [e,8] =[8)7] =[] =1.

(1) ¢1=1. My =T
(2) ¢g(z,y,z) =2+ -y, "'z)- ¢§ = 1.

T (Mz) =< a,B,7,t: (*)rtat_l =ea,tft™! = aﬂ_11t7t—1 = 7_1 > .
(3) ¢s(z,9,2) = (2,~y,—2). ¢3 = 1.

7‘-1(]‘4-3) =< a::B"Y,t : (*))tat—l = a)t:@t—l = ,B_lgt')'t—l = 7_1 >.
(4) ¢a(z,y,2) = (2,9, —2). ¢Z =1.
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(M) =< a,B,7,t : (¥),tat P = a,tBt ' =Byt P =471 >,
(5) ¢a(z,y,2) =(2+2,9,~2). ¢§=1.
m(Ms) =< a,B,v,t : (¥),tat " P =, tBt P = Byt L = ayl > .
(6) de(z,9,2)=(2+2,~2,y~2). =1
7 (Ms) =< a,B,7,t: (*),tat™! = a,tft™! = y,tyt ' = a1y > .
(1) é1(z,9,2) =(2,—2z,y — 2). ¢%=1.
7(Mr) =< a,B,7,t : (%), tat™ =, tft™ =y, tpt™ = g7y >
(8) ds(z,v,2) =(2,2,~y). ¢5 =1
m(Ms) =< o, B,v,t : (*)ytat ' =, 1Bt L = 4L tqt" =8> .
(9) do(z,9,2) =(2+2,2,—y). 45=1
(M) =< a, B,7,t : (*),tat ' = o, tft " L =y L tqt 1 =aB > .
(10) ¢10(2z,9,2) = (2, -2,y + 2). ¢S, = 1.
71 (M) =< o, B, 71, t : (*),tat™ = 1Bt = 4, iyt =71y >,
(11) ¢1(2,9,2) = (-2, ~y,~2). ¢}, =1
(M) =< o,B,9,t: (¥),tat™ ' =a 1, 1Bt" = 8 tyt" =41 > |
(12) é1:(z,9,2) = (—2+y,9,-2). ¢}, =1
w1 (M) =< a,B,7,t: (¥),tat™  =a 1t = af,tyt =471 >,
(13) ¢1s(z,y,2) = (-2 +2,—2,y—2). ¢35 =1.
T (Mis) =< o, B,7,t : (*),tat ' =" 1,1t = 4, tyt" = 0By > .
(14) é14(=,9,2) =(~2,—2z,y—2). @3, =1.
71 (Mig) =< o, B,7,t: (*),tat™ = a~ L, #8t™ = y,tyt" = g~ 14"1 > |
(15) ¢15(2,9,2) = (—2,2,~y). ¢15=1.
(M) =< o, B,7,t: (*),tat ™' =a~ L tft =y~ Litnt" =8 > .
(16) ¢16(z,y,2) =(—2+2,2,~-y). ¢16=1.

T1(Mig) =< &, B,7,t: (¥),tet ™ =a 1Bt =y tyt" = aff > .
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(17) ¢17(z"y,z) = (—z, -z,y+ z)‘ ¢?7 =1

WI(MI’?) =<a,B,7,t: (*)7tat_1 = a_lft:@t_l =7 t7t—1 = 13—17 >

These follow from results in [H1] and [H2].

3. 4-manifolds

In this section,we shall consider the problem stated in Introduction. Let M be a 4-
dimensional closed aspherical manifold fibered over S! with F as a fiber and a projection
p. We assume F is irreducible. Then we have the following

ProprosiTION. There exists a homeomorphism h : F — F such that M is homeo-
morphic to R xz F,where the group Z acts on R x F by the formula;

n(t,z) = (t — n,k"(2)).
This follows from the standard arguments.

We have the following exact sequence ;

(1) 1 —— 7 (F) — m(M) " .z » 1

Let t € m1(M) be an element such that p,(t)=1€ Z.

The following Propositions are easily proved.

ProPoSITION 3.1. Ifat™ (n > 1) is contained in z(w1(M)), h?(B) = o~ !Ba for
B any element of =1 (F).

ProprosITION 3.2. If z(w1(F)) is finitely generated, then z(x(M)) N = (F) =
z(m1(F))Pe.

We consider the oriented double F of F = Ng, N4. Recall F is written as follows. Define
an action of Z on R x T? by the formula; n(z, (21, 23)) = (2 — n,h2(21,22)). Then F is
homeomorphic to the orbit space (R x T?2)/Z.Then F is represented as the orbit space
(R x T?)/2Z.We write element of F and F as [z, (z1,2;)]1 and [z, (21, 22)]o,respectively.
Then the natural covering map = : # — F is given by =z, (z1,22)]0 = [2,(21,22)1
and the non-trivial covering transformation w : # — F given by w(z, (z1,23)]o = [z —
1, ho(21,22)]o.

We have the following
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THEOREM 3.3. If F = Ny, Ny and 2(my(F))*» = Z? ,then h lifts to a homeomr-
phism h of F.
Proor. We shall consider only F = N4. Recall that

w(F)=<a,B,t:[a,f] =l tat" ! =atft ' =af~! >

z(x(F)) =< a,t? >

Since h,(t?) = t?,z(x(F)) is h,-invariant. This implies that there exists a homeomorphism
h: F — F such that the following diagram is commutative.

1 —— 7 (F) —— = (F) » Zy » 1
(2) li». lh. lid
1] ——— 7r1(1.7’) — my(F) » Zg » 1

Note that we can speak of rank of z(w1(M)) since w1 (M) is torsion free.

3.1. The case of rank z(m(M))=4.

We have the following

ProposiTIoN 3.3([H1],11.6). Let G be a group. If the index of z(G) in G is
finite,then [G, G](=commutator group) is finite.

It follows from this that = (M) = Z*. Then M is homeomorphic to T*.
3.2. The case of rank z(71(M)) =3.

It follows from (1) that rank of z(x1(F)) is at least 2 . Proposition 1.5 shows that
z(w1(F)) and hence z(w1(M)) is also finitely generated.

PROPOSITION 3.5. pez(m(M)) # 1.

ProoF. Assume the contrary. We have
z(mi(M)) N7 (F) C 2(7(F)) C m(F).

It follows from Proposition 3.4 that x1(F) & Z® and hence F = T, From the assump-
tion,we have

z(m(M)) C {(,0): @ € m(F)},

and hence we have

z(m(M)) C = (F).
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Since 7 (F) is abelian,we have 7;(F)/z(x1(M)) is finite.Consider the commutative dia-
gram;

1 ——s 2(my(M)) —— my(F) —— my(F)/a(m(M)) — 1

Lol I
1 —— z(m(M)) —— m(F) —— my(F)/2(m1(M)) —— 1
It is clear that A, is of finite order and A, is identity,and hence h, is of finite order,which
contradicts the assumption.
ProrosITION 3.6. F is one of T3, Ng, N,.

Proor. It follows from Theorem 3.2 that there exists a subgroup 22 of x;(F) with
finite index. Then 7y(F) is finitely generated. It follows from [H1]([H1] Theorem 12.10)
that F is one of 7%, N3, Ny. 1§

ProrosiTION 3.7. h is of finite order.

PROOF. Assume the contrary. If F is orientable,it follows from Theorem 1.1 that
h. is also of infinite order modulo Inn(1(F)),which contradicts Proposition 3.5. If F is
not orientable,consider the orientable double F It follows from Proposition 3.3 that A lifts
to homeomorphism h : F — F. We put M = F,; Then it is clear that h, is of infinite
order mod Inn(w(F)) if and only if h. is of infinite order mod Inn(x(F)). §

3.2.1. The case of F = T3,

We have the following
THEOREM 3.1. If F = T3, then M admits a maximal toral action.

PROOF. Note that M is one of manifolds in Example 2. Since z(m(M)) =
yM = My or Ms. We can define a T®-action on Mj as follows ;
First define of R3 on R x T° by the formula ;

(2,9, 2)(t, (21, 22, 23)) = (t + 2, ((ezp(27iy) 2y, (ezp(27iz)z;, 23)).

This is compatible with the action of ¢5. It is easy to show that this action induces an
action of 7%,

3.2.2. The case of F = N3 or Nj,.
We shall consider only the case of F = N,. Let F = T3 be the oriented double of F and

h:F — F be the lifting of h. Put M = F
Now we define a new bundle structure over S on N4. The followings are easily shown ;

™ (Ny) =< a,B,t: [, 8] = L,tat P = o, tft ' =Bt >
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[7\'1(N4),7l'1(N4)] =< aﬂ‘z >
Hi(Ny) =<B>o <i>,
where Z denotes the image of z by the projection n1(Ng) — Hi1(Ny).
Define a homomorphism p; : Hi(Ny) — Z B &% — 1and p composition of the

natural projection 7;(Ny) — H1(N4) and p;. Clearly ker p =< aff=2,t >.
Now we define a fiber bundle N — Ny — S! associated to the exact sequence ;

1 —— ketp —— m(Ny) —— Z=<pt> — 1.

Note that my(N) = kerp and N = T?. We write Ny, = Nj,,. We have the following
LEMMA. h, preserves ker p.

ProOOF. Let 7 : Ny — N, be the projection. We have the following commutative
diagram ;

1 —— m(T?) —— mi() » Z » 1
l*. 1*‘ 12
1 —— m(T?) —— m(Na) , 7 » 1.

It follows that we can take generators a,B:1, and t; of m1(N4) such that =, (1) =
a,7,(1) = B and =, (t;) = 2. According to diagram (2), we have k() = &, h(81) = 8
and hence h,(a) = « and h.(B) = B. Now Lemma is proved by the direct computation
using the fact that h,(t?) = 2. §

Let G =< h > be the subgroup of homeomorphisms of N4. According to results in [CR](
section 2 in [CR]),we have an exact sequence ;

1—————+1l'1(N4) » T » G > 1

It follows from Theorem 61.1 in [Z] that h preserves the above bundle structure over S.
Thus we get a homeomorphism hy : N — N such that hg o hy = hy o hg. Then M is
homeomorphic to the manifold R? x z2 N, where Z? acts on R? x N by (n,m)(z,y,2) =
(z —n,y — m,hThT(2)).
Moreover N admits an action of T with respect to which h; and kg are equivariant.
In fact,we have the following commutative diagram ;

1 —— kerp=<af™?> —— m(Ny) —— Z=<ff> — 1

I I I

1 —— Z=<a> — z(m(Ny)) —— Z =< ai*> —— 1.

Decompose N = T x T such that the first factor T corresponds to < a >. Define an
action of 7! on N by z(z1,22) = (221, 22). It is clear that ho and hy are equivariant with
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this action. Now define an action of 7'° on M. First define an action of R® on R2? x T2
by the formula ;

(t1,t2,t3)(2, 9, (21,22)) = (2 + t1, ¥ + ta, ((exp2wits)zy, 2)).

It is easily to see that this action is commutative with the above action of Z2? and hence
we get an action of R® on M. It is also easy to see the restriction to the subgroup
{(2n,2m,1) € Z®} of R3 is trivial and hence we get an action of T'® on M. Thus we have
the following

THEOREM 3.2. If F = Ng or N4, then M admits a maximal toral action.
3.3. The case of rank z(n,(M))=2.
~ In this case,we assume F is irreducible and sufficiently large. It follows from results
in [H1]( Corollary 12.8 in [H1]) that F is a Seifert fibered space and hence z(7w (F)) and
z(wy(M)) are finitely generated.
3.3.1. The case of F = T8,
3.3.1.1. The case when h is of finite order.

In this case,M is one of manifolds M,, Ms, Mg, M7, Mg, My or Myo in Example 2. We
shall show that Mjg,for example,admits a maximal toral action.
Recall that
M1° = Tgm’
$10: T - T3 (21,23,25) — (21,251, 2225)

Define an action of R? on R x T by

(t1,t2)(, (21, 22, 25)) = (2 +1, ((ezp(2mits)z1, 22, 25)).

It is easy to see that this action is compatible with ¢, and induces an action of T2 = R?/Z?
on M.

3.3.1.2. The case when h is of infite order.
Since z(71(M)) = Z? and p,z(71(M)) =1, we have

z2(m (F) = {a € 2(71(F));ha(a) = a} = Z2,

1 0 a
he=10 1 5],
0 0 1
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in other words,
3 3 a b
h:T°—- T (21)22,23) — (2123, 2223, 23)-

Define an action of 72 on M by
(21, 22)[t, (23, 24, 25)] = [t, (2123, 2224, 25)].
This action is the one we want.

3.3.2. The case of F = N4 or Njs.

We shall consider only Nj.
We have the following commutative diagram;

1 » 72 » w1y (F) — Z » 1
(3) | |= |2
1 » 22 - » w1 (F) > Z — 1

We can take generators ay,(; and ¢; of 1r1(F) such that w,(a1) = a,7.(81) = B and

3.3.2.1. The case when h is of infinite order.

Since rankz(1r1(F))"'—rankz(wl(F)),we have h,(a) = a and h,(t?) = ¢? and hence
he(a1) = a3 and h,(t;) = t,. Thisimplies that i : F — F is assumed to be hiz,(21,22)]0 =}
[z, (2124, 22)]o. Define an action of R? on F by the formula;

(t1yt2)[=, (21, 23)]o = [ + t1, (exp(27it3)z1, 22)]0

By direct computations,we can show that h and w are equivariant with respect to this
action. It is easy to see the above action of R? defines of T2 on F with respect to which
h and w are equivariant. This defines an action of T2 on F with respect to which A is
equivariant and hence M admits an action of T2,

3.3.2.2. The case when h is of finite order.

In this case,we have z(m;(F))?> = Z.We can construct an action of T2 on F which
satisfies the following; '

Let ev® : T2 — F be the map defined by ev®(t) = tz. Then Im{ev?® : = (T?) —
71(F)} = z(m1(F)).

Consider the action of T'! which is obtained by the restriction of the above action to
z(wy(F))he.

We have an exact sequence;

1 » Z » 1(F) —— N — 1,
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where h,|Z =id.

Since h, is of finite order,there exists a normal subgroup I’ of 7y (F) with the properties;

(i) theindex [xy(F):T] finite

(ii) he(T)=T

(iii) T is an extension of Z by a group N,where N is the fundamental group of an
orientable surface.

Let F; be the covering of F associated to I'. Then F; is an orientable 3-manifold fibered
over S having T as fiber. It follows from Theorem 11 in [CR2] that the restriction of Q
to the subset

G(T',F)={(9,H):g9 € GL(1,2),H : F;, — Fy, H(tz) = g(t)H(z)}

is surjective. Let h; be the lifting of h to F1. Note that h; exists ,because =,(F}) is
invariant under h,. Then h;, = Q(g, H). It follows from results in [W] that h, is isotopic
to a fiber preserving homeomorphism of Fy;hi(tz) = thi(z). This implies h is also T'-
invariant.Thus we have the following

THEOREM 3.3. If F = Ng, Ny,then M admits a maximal toral action.

3.3.3. The case of F=other Seifert fibered space.

Assume h is of infinite order.Then z(wy(F)) contains Z?. Thus we may assume that A
is of finite order. '

In this case,by the same arguments as above,we can prove that M admits a T'-action.
Thus we have

THEOREM 3.4. If F is the Seifert fibered space other that T3, Ny, Ny,then M admits
a maximal toral action.

3.4.The case of rank z(w1(M))=1.
3.4.1 The case when h is of finite order.

We have the following
THEOREM. If h is finite order,say of order n,then M admits an S'-action.

ProoF. Define an action of R on M by the formula; .,

sft,z] = [t + 5,2
It is easy to see that this action is well defined and nZ acts trivially.
t,2']=[tz] =t =t—m,z’ =hr™(z)
sft' 2| =[t'+ 8,2 ] =[t —m+a,h"(2)] = [t +5,2] = slt, 2]

mnlt, ] = [t +nm, 2] = [t + nm, (k") ()] = [t,2]
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Then R/nZ acts on M. This action is effective. In fact, we have

sft,z) =[t,z] & [t +s,2] = [t, 2]
e t+s=t—m,z=hr"(2)
& s=—-mm =0 (modn)
& 8 € nZ 1

3.4.2. The case when h is of infinite order.

In this case we have the following

THEOREM. Let M be with p.(2(x1(M))) = 1. If the fiber F admits a maximal
toral action, then M does also.

PrOOF. Let X denote the universal covering space of X. Then M is homeomorphic
to F x R. Since the action on F is injective , so F splits as R®* x W where k is the rank
of z(w1(F)). There exists the following central exact sequence

1 = 2(m(F)) » m(F) - T — 1.

Associated to this sequence, we have

F = (R* x W)/ 7 (F) = (R*/2(x1(F) x W)/T = (T* x W)/IL.
Then T* x W admits a natural T* action compatible with T action.

Let » be the rank of z(7,(M)). Since z(1l'1(M)) is a subgroup of z(w1(F)) ,» < k and A,
is an identity on z(7(1(M)). On the covering space corresponding to the factor z(m (M)),
we have the T" action by the same argument of 3.3.2.2, which is commutative with the
lifting of h.So we can construct 7" action on M = F},.
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