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Introduction.

In this note,we shall consider piecewise linear closed aspherical 4-manifolds $M$ fibered
over $S^{1}$ . In particular, we consider the folowing problem;

(1) Is the center $z(\pi_{1}(M))$ of the fundamental group of $M$ finitely generated ?
(2) If (1) is affirmative,say,$z(\pi_{1}(M))\cong Z^{h}(k\geq 1)$ , then does $M$ admit a topological

action of h-dimensional toral group ?
We say that $M$ admits a maximal toral action when (1) and (2) are true.
In this note,we shal prove the following

THEOREM A. Let $M$ be as above. If $r$ank of the center of the fun $d$amental group
$\pi_{1}(M)$ is greater than 1, then $M$ admi $ts$ a maximal torus action.

Concerning the case of rank$(z(\pi_{1}(M)))=1$ , we shall prove the followings,where $F$ is
the the typical fiber $F,$ $p$ the projection and $h$ the attaching map.

THEOREM B. Assume $F$ is irreducible.If $h$ is a homeomorphism of a finite order,
then $M$ admits a $T^{1}$ action.

THEOREM C. Assume $F$ is irreducible. If $Fad$mits a maximal toral action an $d$

$p_{*}(z(\pi_{1}(M)))=1$ , then $M$ admi $ts$ a maximaJ toral ac tion.

In this note, we shall use the following notations;
1. Z,R denote the groups of integers or reals respectively.
2. $z(G)$ denotes the center of a group $G$ .
3. $Z^{h}$ denotes the direct sum $Z\oplus\cdots\oplus Z$ ( $m$ times).
4. $T^{h}$ denotes the group $SO(2)\times\cdots\times SO(2)$ ( $k$ times).
5. Let $N$ be a manifold and $h$ : $N\rightarrow N$ a homeomorphism. Then $N_{h}$ denotes the

manifold
$R\times zN$ ,

where $Z$ acts on $R\times N$ by $n(x, a)=(x-n, h^{n}(a))$ .
6. The sequenc of groups and homomorphisms

$1\rightarrow G_{1}\rightarrow G_{f}\rightarrow G_{3}\rightarrow 1$

is exact,unless the contrary is stated.
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1.Preliminaries

In this section,we shal list some basic facts and some results on 3-dimensional manifolds.
Let $N$ be $a$ closed 3-dimensional manifold. We refer basic definitions to [H1] and [W].

PROPOSITION 1.1. If $N$ is aspheric $al$ and its universal coverin $g\tilde{N}$ is homeomorphic
to $R^{S}$ , then $Nh$as no fake 3-cell.

PROOF. Let $p:\tilde{N}\rightarrow N$ be the projection and $D$ a 3-cel in $N$ . Then $D$ lifts to
$R^{3}$ and hence $D$ is not fake. 1

COROLLARY 1. Let $N$ be as in $Pr$oposition 1. 1. Then $N=\wp(N)(\wp(N)$ denotes
the Poin $c$are associa$teofN$).

See [HI]([HI],Chap.10).

COROLLARY 2. If $N$ is aspherical an $d$ fibered over $S^{1}$ , then $N=p(N)$ .

PROPOSITION 1.2 ([S]). IfN is irreducible, then $N$ is prim $e$ .

PROPOSITION 1.3. If $N$ is aspheric$al$ and fibered over $S^{1}$ ,then $N$ is irreducrble.
PROOF. Since $N$ is aspherical, $N$ is prime.It folows from 3.13 in [H1] that $N$ is

irreducible. 1

We can define a homomorphism ([Z]);

$\Omega$ : Homeo$(N)/Isot(N)\rightarrow Aut(\pi_{1}(N))/Inn(\pi_{1}(N))$

We have the following
THEOREM 1.1 ([W]). If $N$ is orienta$ble,irreducible$ an $d$ sufllciently large, then $\Omega$ is

injec tive.

COROLLARY. Let $N$ be as above and $h$ : $N\rightarrow N$ a homeomorphism such that
$h_{*}^{n}$ : $\pi_{1}(N)\rightarrow\pi_{1}(N)$ is an inner au tomorphism. Then there exists a homeomorphism
$h$ ‘ : $N\rightarrow N$ such that $h$ ‘ is isotopic to $h$ an $dh^{\prime n}$ is isotopic to the identity.

THEOREM 1.2 ([H1],6.6). If $H_{1}(N)$ is infinite, then $N$ is suMciently 1arge.

PROPOSITION 1.4. IfM is aspheric $al$ an $d$ fiberd over $S^{1}$ , then $M$ is suficiently large.
PROOF. Let $M=I\times\phi F$ . We have the folowing exact sequence;

$\rightarrow H_{i}(M)\rightarrow H_{i-1}(F)\rightarrow^{1d-\phi.}H_{i-1}(F)\rightarrow H_{i-1}(M)\rightarrow H_{i-2}(F)\rightarrow^{id-\phi.}H_{i-2}(F)\rightarrow$
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Since $id-\phi_{*}$ : $H_{0}(F)\rightarrow H_{0}(F)$ is zero map,we have the following exact sequence;

$\rightarrow H_{2}(M)\rightarrow H_{1}(F)\rightarrow H_{1}(F)\rightarrow H_{1}(M)\rightarrow H_{0}(F)\rightarrow 0$ .

It follows that the order of $ H_{1}(M)=\infty$ . Since $M$ is irreducible, it follows from Theorem
4 that $M$ is sufficiently large. 1

PROPOSITION 1.5. If $z(\pi_{1}(N))$ contain$sZ^{2}$ , then $z(\pi_{1}(N))$ is finitely generate $d$ .

This follows from Theorem 9.14 in [H1].

EXAMPLE 1. The following gives $p$eriodic homeomorphisms $\phi_{i}$ ofS1 $\times S^{1}$ , which
are needed in the sequel, an $d$ describes the correspondin $g$ manifold $N_{\phi_{i}}=N_{i}$ .

(1) $\phi_{1}=1.N_{1}=S^{1}\times S^{1}\times S^{1}$ .
$\pi_{1}(N_{1})=<\alpha,\beta,t$ : $[\alpha,\beta]=[\alpha,t]=[\mathcal{B},t]=1>$ .

(2) $\phi_{2}(x,y)=(-x, -y)$ . $\phi_{2}^{2}=1$ .
$\pi_{1}(N_{2})=<\alpha_{\rangle}\beta,t$ : $[\alpha,\beta]=1,t\alpha t^{-1}=\alpha^{-1},t\beta t^{-1}=\beta^{-1}>$ .

(3) $\phi_{3}(x,y)=(x, -y)$ . $\phi_{3}^{2}=1$ .
$\pi_{1}(N_{3})=<\alpha,\beta,t$ : $[\alpha)\beta]=1_{\}}t\alpha t^{-1}=\alpha_{)}t\beta t^{-1}=\beta^{-1}>$ .

(4) $\phi_{4}(x, y)=(x+y, -y)$ . $\phi_{4}^{2}=1$ .
$\pi_{1}(N_{4})=<\alpha,\beta,t$ : $[\alpha,\beta]=1,$ $t\alpha t^{-1}=\alpha,$ $t\beta t^{-1}=\alpha\beta^{-1}>$ .

EXAMPLE 2. The following gives all periodic homeomorphism$s(S^{1})^{3}=T^{3}$ and
describes the correspondin $g$ manifold $M_{\phi_{i}}=M_{i}$ .

In the folowing, $\alpha,\beta,\gamma$ are generators of $\pi_{1}(T^{3})$ and

$(*)$ $[\alpha,\beta]=[\beta,\gamma]=[\gamma,\alpha]=1$ .
(1) $\phi_{1}=1$ . $M_{1}=T^{4}$ .
(2) $\phi_{2}(x, y,z)=x+y,$ $-y,$ $-z$ ). $\phi_{2}^{2}=1$ .

$\pi_{1}(M_{2})=<\alpha,\beta,\gamma,$ $t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\alpha\beta^{-1},t\gamma t^{-1}=\gamma^{-1}>$ .
(3) $\phi_{3}(x, y,z)=(x)-y,$ $-z$ ). $\phi_{3}^{2}=1$ .

$\pi_{1}(M_{3})=<\alpha,\beta,$ $\gamma,t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\beta^{-1},t\gamma t^{-1}=\gamma^{-1}>$ .
(4) $\phi_{4}(x,y,z)=(x,y, -z)$ . $\phi_{4}^{2}=1$ .
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$\pi_{1}(M_{4})=<\alpha,\beta,$
$\gamma,$

$t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\beta,$ $t\gamma t^{-1}=\gamma^{-1}>$ .
(5) $\phi_{4}(x, y,z)=(x+z, y)-z)$ . $\phi_{6}^{2}=1$ .

$\pi_{1}(M_{5})=<\alpha,\beta,$ $\gamma,t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\beta,t\gamma t^{-1}=\alpha\gamma^{-1}>$ .
(6) $\phi_{6}(x, y,z)=(x+z, -z, y-z)$ . $\phi_{6}^{S}=1$ .

$\pi_{1}(M_{6})=<\alpha,\beta,$
$\gamma,$

$t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\gamma,t\gamma t^{-1}=\alpha\beta^{-1}\gamma^{-1}>$ .
(7) $\phi_{7}(x, y,z)=(x, -z, y-z)$ . $\phi_{7}^{s}=1$ .

$\pi_{1}(M_{7})=<\alpha,\beta,$ $\gamma,t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\gamma)t\gamma t^{-1}=\beta^{-1}\gamma^{-1}>$ .
(8) $\phi_{8}(x, y, z)=(x, z, -y)$ . $\phi_{8}^{4}=1$ .

$\pi_{1}(M_{8})=<\alpha,\beta,$ $\gamma,t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\gamma^{-1},t\gamma t^{-1}=\beta>$ .
(9) $\phi_{9}(x,y,z)=(x+z, z, -y)$ . $\phi_{9}^{4}=1$ .

$\pi_{1}(M_{9})=<\alpha,\beta,$ $\gamma,t$ : $(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\gamma^{-1},t\gamma t^{-1}=\alpha\beta>$ .
(10) $\phi_{10}(x,y, z)=(x, -z, y+z)$ . $\phi_{10}^{6}=1$ .

$\pi_{1}(M_{10})=<\alpha,\beta,$ $\gamma,t:(*),t\alpha t^{-1}=\alpha,t\beta t^{-1}=\gamma,t\gamma t^{-1}=\beta^{-1}\gamma>$ .
(11) $\phi_{11}(x,y, z)=(-x, -y, -z)$ . $\phi_{11}^{2}=1$ .

$\pi_{1}(M_{11})=<\alpha,\beta,$ $\gamma,t:(*),t\alpha t^{-\iota}=\alpha^{-1},t\beta t^{-1}=\beta^{-1},t\gamma t^{-1}=\gamma^{-1}>$ .
(12) $\phi_{12}(x,y, z)=(-z+y, y, -z)$ . $\phi_{12}^{2}=1$ .

$\pi_{1}(M_{12})=<\alpha,\beta,\gamma,$ $t:(*),$ $t\alpha t^{-1}=\alpha^{-1},t\beta t^{-1}=\alpha\beta,t\gamma t^{-1}=\gamma^{-1}>$ .
(13) $\phi_{13}(x,y, z)=(-x+z, -z, y-z)$ . $\phi_{13}^{S}=1$ .

$\pi_{1}(M_{1S})=<\alpha,\beta,\gamma,t:(*),t\alpha t^{-\iota}=\alpha^{-1},t\beta t^{-1}=\gamma,t\gamma t^{-1}=\alpha\beta^{-1}\gamma^{-1}>$ .
(14) $\phi_{14}(x,y, z)=(-x, -z,y-z)$ . $\phi_{14}^{S}=1$ .

$\pi_{1}(M_{14})=<\alpha,\beta,\gamma,t:(*),t\alpha t^{-1}=\alpha^{-1},t\beta t^{-1}=\gamma,t\gamma t^{-1}=\beta^{-1}\gamma^{-1}>$ .
(15) $\phi_{1\epsilon}(x,y, z)=(-x, z, -y)$ . $\phi_{15}^{4}=1$ .

$\pi_{1}(M_{15})=<\alpha,\beta,$ $\gamma,t:(*),t\alpha t^{-1}=\alpha^{-1},t\beta t^{-1}=\gamma^{-1},t\gamma t^{-1}=\beta>$ .
(16) $\phi_{16}(x,y, z)=(-x+z, z, -y)$ . $\phi_{16}^{4}=1$ .

$\pi_{1}(M_{16})=<\alpha,\beta,\gamma,t:(*),t\alpha t^{-1}=\alpha^{-1},t\beta t^{-1}=\gamma^{-1},t\gamma t^{-1}=\alpha\beta>$ .
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(17) $\phi_{17}(x,y)z)=(-x, -z, y+z)$ . $\phi_{17}^{6}=1$ .
$\pi_{1}(M_{17})=<\alpha,\beta)\gamma,t:(*),$ $t\alpha t^{-1}=\alpha^{-1},$ $t\beta t^{-1}=\gamma,$ $t\gamma t^{-1}=\beta^{-1}\gamma>$ .

These folow from results in [H1] and [H2].

3. 4-manifolds

In this section,we shall consider the problem stated in Introduction. Let $M$ be a 4-
dimensional closed aspherical manifold fibered over $S^{1}$ with $F$ as a fiber and a projection
$p$ . We assume $F$ is irreducible. Then we have the following

PROPOSITION. There exists a homeomorphism $h$ : $F\rightarrow F$ such that $M$ is homeo-
$m$orphic to $R\times zF,where$ the group $Z$ acts on $R\times F$ by the formula;

$n(t, x)=(t-n, h^{n}(x))$ .

This folows from the standard arguments.

We have the following exact sequence;

(1) $1\rightarrow\pi_{1}(F)\rightarrow\pi_{1}(M)\rightarrow^{P.}Z\rightarrow 1$

Let $t\in\pi_{1}(M)$ be an element such that $ p_{t}(t)=1\in$ Z.

The folowing Propositions are easily proved.

PROPOSITION 3.1. $If\alpha t^{n}$ $(n\geq 1)$ is contained in $z(\pi_{1}(M)),$ $ h_{*}^{n}(\beta)=\alpha^{-1}\beta\alpha$ for
$\beta$ an$y$ element $of\pi_{1}(F)$ .

PROPOSITION 3.2. If $z(\pi_{1}(F))$ is finitely generated, then $z(\pi_{1}(M))\cap\pi_{1}(F)=$

$ z(\pi_{1}(F))^{h}\cdot$ .

We consider the oriented double $\tilde{F}$ of $F=N_{3},$ $N_{4}$ . Recal $F$ is written as folows. Define
an action of $Z$ on $R\times T^{2}$ by the formula; $n(x, (z_{1}, z_{2}))=(x-n, h_{0}^{n}(z_{1},z_{2}))$ . Then $F$ is
homeomorphic to the orbit space $(R\times T^{2})/Z.Then\tilde{F}$ is represented as the orbit space
$(R\times T^{2})/2Z.We$ write element of $F$ and $\tilde{F}$ as $[x, (z_{1}, z_{2})]_{1}$ and $[2) (z_{1}, z_{2})]_{0},respectively$.
Then the natural covering map $\pi$ : $\tilde{F}\rightarrow F$ is given by $\pi[x, (z_{1}, z_{2})]_{0}=[z, (z_{1}, z_{2})]_{1}$

and the non-trivial covering transformation $w$ : $\tilde{F}\rightarrow\tilde{F}$ given by $w[x, (z_{1}, z_{2})]0=[x-$

$1,$ $h_{0}(z_{1},z_{2})]_{0}$ .
We have the following
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THEOREM 3.3. If $F=N_{3)}N_{4}$ and $z(\pi_{1}(F))^{h}\cdot=Z^{2}$ then $h$ lifts to a homeomr-
phism $\tilde{h}$ of $\tilde{F}$ .

PROOF. We shal consider only $F=N_{4}$ . Recall that

$\pi(F)=<\alpha,\beta,t$ : $[\alpha,\beta]=1,t\alpha t^{-1}=\alpha t\beta t^{-1}=\alpha\beta^{-1}>$

$z(\pi(F))=<\alpha,t^{2}>$

Since $h.(t^{2})=t^{2},z(\pi(F))$ is $h_{t}$ -invariant. This implies that there exists a homeomorphism
$\tilde{h}$ : $\tilde{F}\rightarrow\tilde{F}$ such that the following diagram is commutative.

$1\rightarrow\pi_{1}(\tilde{F})\rightarrow\pi_{1}(F)\rightarrow Z_{2}\rightarrow 1$

(2) $\downarrow\dot{h}$ . $\downarrow h$ . $\downarrow id$

$1\rightarrow\pi_{1}(\tilde{F})\rightarrow\pi_{1}(F)\rightarrow Z_{2}\rightarrow 1$

Note that we can speak of rank of $z(\pi_{1}(M))$ since $\pi_{1}(M)$ is torsion free.

3.1. The case of rank $z(\pi_{1}(M))=4$ .
We have the following

PROPOSITION 3.3([Hl],ll.6). Let $G$ be a group. If the index of $z(G)$ in $G$ is
Rnite, then $[G, G]$ ($=commu$ tator group) is finite.

It folows from this that $\pi_{1}(M)\cong Z^{4}$ . Then $M$ is homeomorphic to $T^{4}$ .
3.2. The case of rank $z(\pi_{1}(M))=3$ .
It folows $hom(1)$ that rank of $z(\pi_{1}(F))$ is at least 2 Proposition 1.5 shows that

$z(\pi_{1}(F))$ and hence $z(\pi_{1}(M))$ is also finitely generated.

PROPOSITION 3.5. $p_{*}z(\pi_{1}(M))\neq 1$ .
PROOF. Assume the contrary. We have

$z(\pi_{1}(M))\cap\pi_{1}(F)\subset z(\pi_{1}(F))\subset\pi_{1}(F)$ .
It folows &om Proposition 3.4 that $\pi_{1}(F)\cong Z^{3}$ and hence $F\cong T^{3}$ . From the assump-
tion,we have

$z(\pi_{1}(M))\subset\{(\alpha, 0) : \alpha\in\pi_{1}(F)\}$ ,

and hence we have
$z(\pi_{1}(M))\subset\pi_{1}(F)$ .
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Since $\pi_{1}(F)$ is abelian,we have $\pi_{1}(F)/z(\pi_{1}(M))$ is finite.Consider the commutative dia-
gram;

$1\rightarrow z(\pi_{1}(M))\leftrightarrow\pi_{1}(F)\rightarrow\pi_{1}(F)/z(\pi_{1}(M))\rightarrow 1$

$\downarrow\dot{h}$ . $\downarrow h$ . $\downarrow\overline{h}$ .
$1\rightarrow z(\pi_{1}(M))\rightarrow\pi_{1}(F)\rightarrow\pi_{1}(F)/z(\pi_{1}(M))\rightarrow 1$

It is clear that $\overline{h}_{*}$ is of finite order and $\tilde{h}_{*}$ is identity,and hence $h_{*}$ is of finite order,which
contradicts the assumption.

PROPOSITION 3.6. $F$ is one of $T^{3},$ $N_{3},$ $N_{4}$ .
PROOF. It folows from Theorem 3.2 that there exists a subgroup $Z^{2}$ of $\pi_{1}(F)$ with

finite index. Then $\pi_{1}(F)$ is finitely generated. It follows from [HI]([HI] Theorem 12.10)
that $F$ is one of $T^{3},$ $N_{3},$ $N_{4}$ . I

PROPOSITION 3.7. $h$ is of finite order.

PROOF. Assume the contrary. If $F$ is orientable,it folows from Theorem 1.1 that
$h$. is also of infinite order modulo Inn $(\pi_{1}(F)),which$ contradicts Proposition 3.5. If $F$ is
not orientable,consider the orientable double $\tilde{F}$ It folows from Proposition 3.3 that $h$ lifts
to homeomorphism $h$ : $\tilde{F}\rightarrow\tilde{F}$ . We put $\tilde{M}=\tilde{F}_{\hslash}$ . Then it is clear that $h$. is of infinite
order mod Inn $(\pi_{1}(F))$ if and only if $\overline{h}_{*}$ is of infinite order mod Inn $(\pi_{1}(\overline{F}))$ . I

3.2.1. The case of $F=T^{3}$ .

We have the following

THEOREM 3.1. If $F=T^{3}$ , then $M$ admits a $m$aximal toral $ac$ tion.
PROOF. Note that $M$ is one of manifolds in Example 2. Since $z(\pi_{1}(M))=Z^{S}$

$M=M_{4}$ or $M_{S}$ . We can define a $T^{3}$-action on $M_{5}$ as folows ;
First define of $R^{3}$ on $R\times T^{3}$ by the formula;

$(x,y, z)(t, (z_{1}, z_{2}, z_{3}))=(t+x, ((exp(2\pi iy)z_{1}, (exp(2\pi iz)z_{2}, z_{S}))$ .
This is compatible with the action of $\phi_{5}$ . It is easy to show that this action induces an
action of $T^{3}$ . I

3.2.2. The case of $F=N_{3}$ or $N_{4}$ .
We shall consider only the case of $F=N_{4}$ . Let $\tilde{F}=T^{3}$ be the oriented double of $F$ and

$\tilde{h}$ : $\tilde{F}\rightarrow\tilde{F}$ be the lifting of $h$ . Put $\tilde{M}=\tilde{F}_{\hslash}$ .
Now we define a new bundle structure over $S^{1}$ on $N_{4}$ . The folowings are easily shown;

$\pi_{1}(N_{4})=<\alpha,\beta,$ $t$ : $[\alpha,\beta]=1,t\alpha t^{-1}=\alpha,$ $t\beta t^{-1}=\alpha\beta^{-1}>$
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$[\pi_{1}(N_{4}), \pi_{1}(N_{4})]=<\alpha\beta^{-2}>$

$H_{1}(N_{4})=<\overline{\beta}>\oplus<\overline{t}>$ ,

where $\overline{x}$ denotes the image of $x$ by the projection $\pi_{1}(N_{4})\rightarrow H_{1}(N_{4})$ .
Define a homomorphism $\rho_{1}$ : $H_{1}(N_{4})\rightarrow Z$ $\overline{\beta}\oplus\overline{t}\mapsto 1$ and $\rho$ composition of the

natural projection $\pi_{1}(N_{4})\rightarrow H_{1}(N_{4})$ and $\rho_{1}$ . Clearly ker $\rho=<\alpha\beta^{-},t>$ .
Now we define a fiber bundle $N\rightarrow N_{4}\rightarrow S^{1}$ associated to the exact sequence;

$1\rightarrow ker\rho\rightarrow\pi_{1}(N_{4})\rightarrow Z=<\overline{\beta}\overline{t}>\rightarrow 1$ .

Note that $\pi_{1}(N)=ker\rho$ and $N\cong T^{2}$ . We write $N_{4}=N_{h_{0}}$ . We have the folowing

LEMMA. $h$. preserves ker $\rho$ .
PROOF. Let $\pi:\tilde{N}_{4}\rightarrow N_{4}$ be the projection. We have the folowing commutative

diagram;
$1\rightarrow\pi_{1}(T)\rightarrow\pi_{1}(\tilde{N}_{4})\rightarrow Z\rightarrow 1$

$\downarrow*$ . $\downarrow\pi$ . $\downarrow$
,

$1\rightarrow\pi_{1}(T^{2})\rightarrow\pi_{1}(N_{4})\rightarrow Z\rightarrow 1$ .
It folows that we can take generators $\alpha_{1},\beta_{1}$ , and $t_{1}$ of $\pi_{1}(\tilde{N}_{4})$ such that $\pi.(\alpha_{1})=$

$\alpha,$ $\pi.(\beta_{1})=\beta$ and $\pi.(t_{1})=t^{2}$ . According to diagram (2), we have $\tilde{h}(\alpha_{1})=\alpha,\tilde{h}(\beta_{1})=\beta$

and hence $ h.(\alpha)=\alpha$ and $ h_{*}(\beta)=\beta$ . Now Lemma is proved by the direct computation
using the fact that $h_{*}(\ell^{2})=t^{2}$ . I

Let $G=<h>be$ the subgroup of homeomorphisms of $N_{4}$ . According to results in [CR] $($

section 2 in $[CR]$ ),$we$ have an exact sequence;

$1\rightarrow\pi_{1}(N_{4})\rightarrow\Gamma\rightarrow G\rightarrow 1$

It folows from Theorem 61.1 in [Z] that $h$ preserves the above bundle structure over $S^{1}$ .
Thus we get a homeomorphism $h_{1}$ : $N\rightarrow N$ such that $h_{0}oh_{1}=h_{1}oh_{0}$ . Then $M$ is
homeomorphic to the manifold $R^{2}\times Z^{2}N$ , where $Z^{2}$ acts on $R^{2}\times N$ by $(n,m)(x, y, z)=$

$(x-n,y-m,h_{1}^{n}h_{0}^{m}(z))$ .
Moreover $N$ admits an action of $T^{1}$ with respect to which $h_{1}$ and $h_{0}$ are equivariant.
In fact,we have the folowing commutative diagram ;

$ 1\rightarrow ker\rho=<\alpha\beta^{-2}>\rightarrow$ $\pi_{1}(N_{4})$ $\rightarrow Z=<\tilde{\beta}t^{\sim}>\rightarrow 1$

$\uparrow$ $\uparrow$ $\uparrow$

$ 1\rightarrow$ $Z=<\alpha>$ $\rightarrow z(\pi_{1}(N_{4}))\rightarrow Z=<\tilde{\alpha}t^{\urcorner}>\rightarrow 1$ .
Decompose $N=T^{1}\times T^{1}$ such that the first factor $T^{1}$ corresponds to $<\alpha>$ . Define an
action of $T^{1}$ on $N$ by $z(z_{1}, z_{2})=(zz_{1}, z_{2})$ . It is clear that $h_{0}$ and $h_{1}$ are equivariant with
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this action. Now define an action of $T^{3}$ on $M$ . First define an action of $R^{3}$ on $R^{2}\times T^{2}$

by the formula;

$(t_{1},t_{2},t_{3})(x, y, (z_{1},z_{2}))=(x+t_{1}, y+t_{2}, ((exp2\pi it_{3})z_{1}, z_{2}))$ .
It is easily to see that this action is commutative with the above action of $Z^{2}$ and hence
we get an action of $R^{3}$ on $M$ . It is also easy to see the restriction to the subgroup
$\{(2n, 2m, l)\in Z^{3}\}$ of $R^{3}$ is trivial and hence we get an action of $T^{S}$ on $M$ . Thus we have
the folowing

THEOREM 3.2. If $F=N_{3}$ or $N_{4}$ , then $M$ admits a $m$aximal toral action.

3.3. The case of rank $z(\pi_{1}(M))=2$ .

In this case,we assume $F$ is irreducible and sufficiently large. It follows from results
in [H1]( Corolary 12.8 in [H1]) that $F$ is a Seifert fibered space and hence $z(\pi_{1}(F))$ and
$z(\pi_{1}(M))$ are finitely generated.

3.3.1. The case of $F=T^{3}$ .

3.3.1.1. The case when $h$ is of finite order.

In this case, $M$ is one of manifolds $M_{2},$ $M_{3},$ $M_{6},$ $M_{7},$ $M_{8},$ $M_{9}$ or $M_{10}$ in Example 2. We
shal show that $M_{10},for$ example,admits a maximal toral action.

Recal that
$M_{10}=T_{\phi_{10}}^{3}$ ,

$\phi_{10}$ : $T^{3}\rightarrow T^{3}$
$(z_{1}, z_{2}, z_{3})\mapsto(z_{1}, z_{3}^{-1}, z_{2}z_{3})$

Define an action of $R^{2}$ on $R\times T^{3}$ by

$(t_{1}, t_{2})(x, (z_{1}, z_{2}, z_{S}))=(x+t, ((exp(2\pi it_{2})z_{1}, z_{2}, z_{3}))$ .
It is easy to see that this action is compatible with $\phi_{10}$ and induces an action of $T^{2}=R^{2}/Z^{2}$

on $M_{10}$ .

3.3.1.2. The case when $h$ is of infite order.

Since $z(\pi_{1}(M))\cong Z^{2}$ and $p_{t}z(\pi_{1}(M))=1$ , we have

$z(\pi_{1}(F))^{h}\cdot=\{\alpha\in z(\pi_{1}(F));h_{*}(\alpha)=\alpha\}\cong Z^{2}$ .
Hence we have

$h_{t}=\left(\begin{array}{lll}1 & 0 & a\\0 & 1 & b\\0 & 0 & 1\end{array}\right)$ ,
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in other words,
$h$ : $T^{S}\rightarrow T^{3}$ $(z_{1}, z_{2},z_{3})\mapsto(z_{1}z_{3}^{a}, z_{2}z_{3}^{b}, z_{3})$ .

Define an action of $T^{2}$ on $M$ by

$(z_{1}, z_{2})[t, (z_{S}, z_{4}, z)]=[t, (z_{1}z_{S}, z_{2}z_{4}, z\epsilon)]$ .
This action is the one we want.

3.3.2. The case of $F=N_{4}$ or $N_{S}$ .
We shal consider only $N_{4}$ .
We have the following commutative diagram;

$1\rightarrow Z^{2}\rightarrow\pi_{1}(\tilde{F})\rightarrow Z\leftrightarrow 1$

(3) $\downarrow\#$ . $\downarrow\pi$. $\downarrow 2$

$1\rightarrow Z^{2}\rightarrow\pi_{1}(F)\rightarrow Z\rightarrow 1$

We can take generators $\alpha_{1},\beta_{1}$ and $t_{1}$ of $\pi_{1}(\tilde{F})$ such that $\pi_{*}(\alpha_{1})=\alpha,\pi.(\beta_{1})=\beta$ and
$\pi.(t_{1})=t^{2}$ .

3.3.2.1. The case when $h$ is of infinite order.

Since rankz $(\pi_{1}(F))^{h}\cdot=rankz(\pi_{1}(F)),we$ have $ h_{*}(\alpha)=\alpha$ and $h.(t^{2})=t^{2}$ and hence
$\tilde{h}.(\alpha_{1})=\alpha_{1}$ and $\tilde{h}.(t_{1})=t_{1}$ . This implies that $\tilde{h}$ : $\tilde{F}\rightarrow\tilde{F}$ is assumed to be $\dot{h}[x, (z_{1}, z_{2})]_{0}=1$

$[x, (z_{1}z_{2}^{a}, z_{2})]_{0}$ . Define an action of $R^{2}$ on $\tilde{F}$ by the formula;

$(t_{1},t_{2})[z, (z_{1}, z_{2})]_{0}=[x+t_{1}, (\exp(2\pi it_{2})z_{1},z_{2})]_{0}$

By direct computations,we can show that $\tilde{h}$ and $w$ are equivariant with respect to this
action. It is easy to see the above action of $R^{2}$ defines of $T^{2}$ on $\tilde{F}$ with respect to which
$h$ and $w$ are equivariant. This defines an action of $T^{2}$ on $F$ with respect to which $h$ is
equivariant and hence $M$ admits an action of $T^{2}$ .

3.3.2.2. The case when $h$ is of finite order.

In this case,we have $z(\pi_{1}(F))^{h}\cdot=$ Z.We can construct an action of $T^{2}$ on $F$ which
satisfies the folowing;

Let $ev^{\Phi}$ : $T^{2}\rightarrow F$ be the map defined by $ev^{x}(t)=tx$ . Then ${\rm Im}\{ev_{*}^{l}$ : $\pi_{1}(T^{2})\rightarrow$

$\pi_{1}(F)\}=z(\pi_{1}(F))$ .
Consider the action of $T^{1}$ which is obtained by the restriction of the above action to

$ z(\pi_{1}(F))^{h}\cdot$ .
We have an exact sequence;

$1\rightarrow Z\rightarrow\pi_{1}(F)\rightarrow N\rightarrow 1$ ,
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where $h.|Z=id$ .
Since $h_{*}$ is of finite order,there exists a normal subgroup $\Gamma$ of $\pi_{1}(F)$ with the properties;
(i) the index $[\pi_{1}(F):\Gamma]$ :finite
(ii) $ h_{*}(\Gamma)=\Gamma$

(iii) $\Gamma$ is an extension of $Z$ by a group $N,whereN$ is the fundamental group of an
orientable surface.

Let $F_{1}$ be the covering of $F$ associated to $\Gamma$ . Then $F_{1}$ is an orientable 3-manifold fibered
over $S$ having $T^{1}$ as fiber. It folows from Theorem 11 in [CR2] that the restriction of $\Omega$

to the subset

$G(T^{1}, F_{1})=\{(g, H):g\in GL(1, Z), H:F_{1}\rightarrow F_{1}, H(tx)=g(t)H(ae)\}$

is surjective. Let $h_{1}$ be the lifting of $h$ to $F1$ . Note that $h_{1}$ exists ,because $\pi_{1}(F_{1})$ is
invariant under $h_{t}$ . Then $h_{1}$ . $=\Omega(g, H)$ . It folows from results in [W] that $h_{1}$ is isotopic
to a fiber preserving homeomorphism of $F_{1};h_{1}(tx)=th_{1}(x)$ . This implies $h$ is also $T^{1_{-}}$

invariant.Thus we have the folowing

THEOREM 3.3. ff $F=N_{S},$ $N_{4}$ , then $M$ admits $a$ $m$aximal toral action.

3.3.3. The case of $F=other$ Seifert fibered space.

Assume $h$ is of infinite order.Then $z(\pi_{1}(F))$ contains $Z^{2}$ . Thus we may assume that $h$

is of finite order.
In this case,by the same arguments as above,we can prove that $M$ admits a $T^{2}$ -action.

Thus we have

THEOREM 3.4. IfF is the Seifer $t$ fiber$ed$ space other that $T^{3},$ $N_{4},$ $N_{4}$ , then $M$ admits
a maxim $al$ toral action.

3.$4.The$ case of rank $z(\pi_{1}(M))=1$ .
3.4.1 The case when $h$ is of finite order.

We have the following

THEOREM. Ifh is finite order,say of order $n$ , then $M$ admi $ts$ an $S^{1}$ -action.

PROOF. Define an action of $R$ on $M$ by the formula;

$s[t, x]=[t+s, z]$ .
It is easy to see that this action is wel defined and $nZ$ acts trivialy.

$[t^{\prime}, x^{l}]=[t, x]\Rightarrow t^{l}=t-m,$ $x^{\prime}=h^{m}(x)$

$s[t^{l}, x^{\prime}]=[t^{\prime}+\ell, x^{l}]=[t-m+\epsilon, h^{n}(x)]=[t+\delta, \$]$ =s $[t, x]$

$mn[t, x]=[t+nm, x]=[t+nm, (h^{n})^{m}(x)]=[t, x]$
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Then $R/nZ$ acts on $M$ . This action is effective. In fact, we have

$s[t,x]=[t, x]\Leftrightarrow[t+\epsilon, x]=[t, x]$

$\Leftrightarrow t+s=t-m,$ $x=h^{m}(x)$

$\Leftrightarrow\ell=-m,m\equiv 0$ (mod $n$ )
$\Leftrightarrow\delta\in nZ$ I

3.4.2. The case when $h$ is of infinite order.

In this case we have the folowing

THEOREM. Let $M$ be with $p_{*}(z(\pi_{1}(M)))=1$ . If the fiber $F$ admits a $m$axim $al$

toral action, then $M$ does also.

PROOF. Let $\tilde{X}$ denote the universal covering space of $X$ . Then $\tilde{M}$ is homeomorphic
to $F\times R$ . Since the action on $F$ is injective, so $\tilde{F}$ splits as $R^{h}\times W$ where $k$ is the rank
of $z(\pi_{1}(F))$ . There exists the folowing central exact sequence

$1\rightarrow z(\pi_{1}(F))\rightarrow\pi_{1}(F)\rightarrow\Gamma\rightarrow 1$ .
Associated to this sequence, we have

$ F=(R^{h}\times W)/\pi_{1}(F)=(R^{h}/z(\pi_{1}(F)\times W)/\Gamma=(T^{h}\times W)/\Gamma$ .
Then $T^{h}\times W$ admits a natural $T^{h}$ action compatible with $\Gamma$ action.

Let $f$ be the rank of $z(\pi_{1}(M))$ . Since $z(\pi_{1}(M))$ is a subgroup of $z(\pi_{1}(F)),r\leq k$ and $h_{*}$

$isanidentityonz(\pi(1(M))$ . $Onthecoveringspacecorrespondingtothefactorz(\pi_{1}(M))$ ,
we have the $T^{f}$ action by the same argument of 3.3.2.2, which is commutative with the
lifting of h.So we can construct $T$‘ action on $M=F_{h}$ .
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